Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of LDPE/TOS Blends
2.3. Mechanical Properties
2.4. Morphology
2.5. Thermogravimetric Analysis (TGA)
2.6. Differential Scanning Calorimetry (DSC)
2.7. Contact Angle
2.8. Water Uptake Rate
2.9. Water Vapor Permeability
2.10. Vegetable Preservation Test
2.11. Antibacterial Test
2.12. Chicken Preservation Test
2.13. Statistical Method
3. Results and Discussion
3.1. Tensile Strength
3.2. Morphology
3.3. TGA
3.4. DSC
3.5. Water Absorption and Hydrophilicity
3.6. Barrier Properties
3.7. Vegetable Preservation Experiment
3.8. Shelf-Life of Chicken Meat
3.9. Antibacterial Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babaremu, K.; Oladijo, O.P.; Akinlabi, E. Biopolymers: A suitable replacement for plastics in product packaging. Adv. Ind. Eng. Polym. Res. 2023, in press. [Google Scholar] [CrossRef]
- Agarwal, A.; Shaida, B.; Rastogi, M.; Singh, N.B. Food packaging materials with special reference to biopolymers-properties and applications. Chem. Afr. 2023, 6, 117–144. [Google Scholar] [CrossRef]
- Jordan, J.L.; Casem, D.T.; Bradley, J.M.; Dwivedi, A.K.; Brown, E.N.; Jordan, C.W. Mechanical Properties of Low Density Polyethylene. J. Dynamic Behavior Mater. 2016, 2, 411–420. [Google Scholar] [CrossRef]
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Reesha, K.V.; Panda, S.K.; Bindu, J.; Varghese, T.O. Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int. J. Biol. Macromol. 2015, 79, 934–942. [Google Scholar] [CrossRef]
- Santos, X.; Rodríguez, J.; Guillén, F.; Pozuelo, J.; Molina-Guijarro, J.M.; Videira-Quintela, D.; Martín, O. Capability of Copper Hydroxy Nitrate (Cu2(OH)3NO3) as an Additive to Develop Antibacterial Polymer Contact Surfaces: Potential for Food Packaging Applications. Polymers 2023, 15, 1661. [Google Scholar] [CrossRef]
- Castillo, P.; Goñi-Ciaurriz, L.; Olate-Moya, F.; Bastías, R.; Farias, S.; Palza, H. Polyethylene with MoS2 nanoparticles toward antibacterial active packaging. J. Appl. Polym. Sci. 2023, 140, 53323. [Google Scholar] [CrossRef]
- Basiron, N.; Sreekantan, S.; Akil, H.M.; Saharudin, K.A.; Harun, N.H.; Mydin, R.B.S.; Seeni, A.; Rahman, N.R.A.; Adam, F.; Iqbal, A.; et al. Effect of Li-TiO2 nanoparticles incorporation in ldpe polymer nanocomposites for biocidal activity. Nano-Struct. Nano-Objects. 2019, 19, 100359. [Google Scholar] [CrossRef]
- Li, D.; Ye, Q.; Jiang, L.; Luo, Z. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J. Sci. Food Agric. 2017, 97, 1116–1123. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Jiang, L.; Xu, X. Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam. LWT—Food Sci. Technol. 2015, 60, 1155–1161. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Goldman, D.; Danin-Poleg, Y.; Kashi, Y.; Nitzan, N.; Anita, V.; Segal, E. Antibacterial and antifungal LDPE films for active packaging. Polym. Adv. Technol. 2015, 26, 110–116. [Google Scholar] [CrossRef]
- Bruna, J.E.; Peñaloza, A.; Guarda, A.; Rodríguez, F.; Galotto, M.J. Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for potential use in food packaging. Appl. Clay Sci. 2012, 58, 79–87. [Google Scholar] [CrossRef]
- Tsou, C.H.; Wu, C.S.; Hung, W.S.; De Guzman, M.R.; Gao, C.; Wang, R.Y.; Peng, M.C.; Suen, M.C. Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder. Polymer 2019, 160, 265–271. [Google Scholar] [CrossRef]
- Tsou, C.H.; Zeng, R.; Wan, N.; De Guzman, M.R.; Hu, X.F.; Yang, T.; Gao, C.; Wei, X.; Yi, J.; Lan, L.; et al. Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties. Chin. J. Chem. Eng. 2023, 57, 118–131. [Google Scholar] [CrossRef]
- Feng, J.; Li, Z.; Olah, A.; Baer, E. High oxygen barrier multilayer EVOH/LDPE film/foam. J. Appl. Polym. Sci. 2018, 135, 46425. [Google Scholar] [CrossRef]
- Lagaron, J.M.; Catalá, R.; Gavara, R. Structural characteristics defining high barrier properties in polymeric materials. Mater. Sci. Technol. 2004, 20, 1–7. [Google Scholar] [CrossRef]
- Puebla, K.; Arcaute, K.; Quintana, R.; Wicker, R.B. Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography. Rapid Prototyp. J. 2012, 18, 374–388. [Google Scholar] [CrossRef]
- Deng, R.; Liu, Y.; Ding, Y.; Xie, P.; Luo, L.; Yang, W. Melt electrospinning of low-density polyethylene having a low-melt flow index. J. Appl. Polym. Sci. 2009, 114, 166–175. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method. Commun. Soil Sci. Plant Anal. 1989, 20, 1675–1695. [Google Scholar] [CrossRef]
- Vasques Mendonça, A.R.; Guelli, U. de Souza, S.M.; Valle, J.A.; de Souza, A.A.U. Thermogravimetric analysis and kinetic study of pyrolysis and combustion of residual textile sludge. J. Therm. Anal. Calorim. 2015, 121, 807–814. [Google Scholar] [CrossRef]
- Ong, P.J.; Leow, Y.; Soo, X.Y.D.; Chua, M.H.; Ni, X.; Suwardi, A.; Tan, C.K.I.; Zheng, R.; Wei, F.; Xu, J.; et al. Valorization of Spent coffee Grounds: A sustainable resource for Bio-based phase change materials for thermal energy storage. Waste Manage. 2023, 157, 339–347. [Google Scholar] [CrossRef]
- Peta, K.; Bartkowiak, T.; Galek, P.; Mendak, M. Contact angle analysis of surface topographies created by electric discharge machining. Tribol. Int. 2021, 163, 107139. [Google Scholar] [CrossRef]
- Azmin, S.N.H.M.; Nor, M.S.M. Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J. Bioresour. Bioprod. 2020, 5(4), 248–255. [Google Scholar] [CrossRef]
- Huang, J.; Tong, X.; Yang, J.; Wang, Z.; Zhang, M.; Wang, X.; Yang, J. Synthesis of poly (hexamethylene terephthalamide)-co-polycaprolactam/modified montmorillonite nanocomposites with enhanced mechanical properties and lower water absorption rate by in-situ polymerization. J. Polym. Res. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Suwanposri, A.; Yukphan, P.; Yamada, Y.; Ochaikul, D. Statistical optimisation of culture conditions for biocellulose production by Komagataeibacter sp. PAP1 using soya bean whey. Maejo Int. J. Sci. Technol. 2014, 8, 1. [Google Scholar]
- ASTM International. Standard Test Method for Water Vapor Transmission Rate of Sheet Materials Using Dynamic Relative Humidity Measurement. 2013. Available online: https://enterprise2.astm.org/DOWNLOAD-/E398.1272742-1.pdf (accessed on 11 August 2023).
- Oves, M.; Rauf, M.A.; Aslam, M.; Qari, H.A.; Sonbol, H.; Ahmad, I.; Zaman, G.S.; Saeed, M. Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J. Biol. Sci. 2022, 29(1), 460–471. [Google Scholar] [CrossRef]
- Ge, F.F.; Wan, N.; Tsou, C.H.; Chen, J.C.; Wu, C.S.; De Guzman, M.R.; Zeng, C.Y.; Zhou, L.; Wang, Y.T.; Luo, X.; et al. Thermal properties and hydrophilicity of antibacterial poly (phenylene sulfide) nanocomposites reinforced with zinc oxide-doped multiwall carbon nanotubes. J. Polym. Res. 2022, 29, 83. [Google Scholar] [CrossRef]
- Chen, S.; De Guzman, M.R.; Tsou, C.H.; Li, M.; Suen, M.C.; Gao, C.; Tsou, C.Y. Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity. Polym J. 2023, 55, 45–61. [Google Scholar] [CrossRef]
- Ojha, N.; Pradhan, N.; Singh, S.; Barla, A.; Shrivastava, A.; Khatua, P.; Rai, V.; Bose, S. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep. 2017, 7, 39515. [Google Scholar] [CrossRef]
- Tjong, S.C.; Liang, G.D. Microstructural characteristics and tensile properties of polypropylene composites filled with silver nanoplatelets. Polymer 2000, 41, 5703–5710. [Google Scholar]
- Premalal, H.G.B.; Ismail, H.; Baharin, A. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2002, 83, 707–719. [Google Scholar]
- Tsou, C.H.; Du, J.H.; Yao, W.H.; Fu, L.; Wu, C.S.; Huang, Y.; Qu, C.L.; Liao, B. Improving Mechanical and Barrier Properties of Antibacterial Poly (Phenylene Sulfide) Nanocomposites Reinforced with Nano Zinc Oxide-Decorated Graphene. Polymers 2023, 15, 2779. [Google Scholar] [CrossRef] [PubMed]
- AVCIOĞLU, S. LDPE matrix composites reinforced with dysprosium-boron containing compounds for radiation shielding applications. J. Alloys Compd. 2022, 927, 166900. [Google Scholar] [CrossRef]
- Prabhakar, M.N.; Shah, A.U.R.; Rao, K.C.; Song, J.I. Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers Polym. 2015, 16, 1119–1124. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S.; Deng, J.; Yang, H.; Zhang, Q.; Fu, Q.; Dong, X.; Wang, D.; Han, C.C. The role of clay network on macromolecular chain mobility and relaxation in isotactic polypropylene/organoclay nanocomposites. Polymer 2006, 47, 7131–7144. [Google Scholar] [CrossRef]
- Naz, A.; Riaz, I.; Jalil, R.; Afzal, S. Creep strain and recovery analysis of polypropylene composites filled with graphene nano filler. Polymer 2021, 217, 123423. [Google Scholar] [CrossRef]
- Zeng, D.; Su, Y.; Dong, J.; Ma, X.; Yu, L.; Lv, Y. Investigation on improvement of thermal, mechanical, and barrier properties of lignin/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) using inorganic nanoparticles as fillers. Polym. Compos. 2022, 43, 7871–7881. [Google Scholar] [CrossRef]
- Chrissafis, K.; Bikiaris, D. Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers. Thermochimica Acta. 2011, 523, 1–24. [Google Scholar] [CrossRef]
- Bello, A.M.; Haladu, I. A Guinea Fowl Eggshells Derived Calcium Oxide Catalyst for Transesterification of Coconut Oil. Univers. J. Catal. Sci. 2023, 1, 1–10. [Google Scholar]
- Yang, S.J.; Song, W.J.; Dingwell, D.B.; He, J.; Guo, H.B. Surface roughness affects metastable non-wetting behavior of silicate melts on thermal barrier coatings. Rare Met. 2022, 41, 469–481. [Google Scholar] [CrossRef]
- Tsou, C.H.; Ma, Z.L.; De Guzman, M.R.; Zhao, L.; Du, J.; Emori, W.; Gao, C.; Zhao, Y.; Yang, T.; Wu, J. High-performance antibacterial nanocomposite films with a 3D network structure prepared from carboxylated graphene and modified polyvinyl alcohol. Prog. Org. Coat. 2022, 166, 106805. [Google Scholar] [CrossRef]
- Kumar, S.S.A.; Bashir, S.; Ramesh, K.; Ramesh, S. New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: The relevance of the Graphene/Polymer barrier coatings. Prog. Org. Coat. 2021, 154, 106215. [Google Scholar] [CrossRef]
- Tsou, C.H.; Ge, F.F.; Lin, L.; Yuan, S.; De Guzman, M.R.; Potiyaraj, P. Barrier and Biodegradable Properties of Poly (butylene adipate-co-terephthalate) Reinforced with ZnO-Decorated Graphene Rendering it Antibacterial. ACS Appl. Polym. Mater. 2023, 5, 1681–1695. [Google Scholar] [CrossRef]
- Griffin, A.; Guo, Y.; Hu, Z.; Zhang, J.; Chen, Y.; Qiang, Z. Scalable methods for directional assembly of fillers in polymer composites: Creating pathways for improving material properties. Polym. Compos. 2022, 43, 5747–5766. [Google Scholar] [CrossRef]
- Zia, J.; Paul, U.C.; Heredia-Guerrero, J.A.; Athanassiou, A.; Fragouli, D. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging. Polymer 2019, 175, 137–145. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Zheng, M.; Chen, F. Improved Water Resistance and Antibacterial Activity of a Novel Chitosan–Glucose–Stearic Acid Composite. ACS Appl. Mater. Interfaces. 2017, 9, 12748–12757. [Google Scholar]
- Zhang, J.; Tan, W.; Han, Y.; Dong, Z. Mechanism of LDPE/wood flour composites with two sizes of wood flour. Polymers 2019, 11, 993. [Google Scholar] [CrossRef] [PubMed]
- Bolton, D.J.; Meredith, H.; Walsh, D.; McDowell, D.A. The effect of chemical treatments in laboratory and broiler plant studies on the microbial status and shelf-life of poultry. Food Control 2014, 36, 230–237. [Google Scholar] [CrossRef]
- Tongwanichniyom, S.; Kitjaruwankul, S.; Phornphisutthimas, S. Production of biomaterials from seafood waste for application as vegetable wash disinfectant. Heliyon 2022, 8, e09357. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J. Chem. Eng. Jpn. 1995, 28, 288–293. [Google Scholar] [CrossRef]
- Sawai, J.; Kojima, H.; Igarashi, H.; Hashimoto, A.; Shoji, S.; Takahara, A.; Sawaki, T.; Kokugan, T.; Shimizu, M. Escherichia coli damaged by ceramic power slurry. J. Chem. Eng. Jpn. 1997, 30, 1034–1039. [Google Scholar] [CrossRef]
- Roy, A.; Gauri, S.S.; Bhattacharya, M.; Bhattacharya, J. Antimicrobial activity of CaO nanoparticles. J. Biomed. Nanotechnol. 2013, 9, 1570–1578. [Google Scholar] [CrossRef] [PubMed]
Sample | LDPE (%) | TOS (%) |
---|---|---|
LDPE | 100 | 0 |
LDPE/TOS (10%) | 90 | 10 |
LDPE/TOS (20%) | 80 | 20 |
LDPE/TOS (30%) | 70 | 30 |
LDPE/TOS (40%) | 60 | 40 |
LDPE/TOS (50%) | 50 | 50 |
LDPE/TOS (60%) | 40 | 60 |
Sample | Tonset (°C) | Tmax (°C) |
---|---|---|
LDPE | 259.41 | 500.48 |
LDPE/TOS (20%) | 413.18 | 503.23 |
LDPE/TOS (30%) | 404.35 | 504.47 |
LDPE/TOS (40%) | 412.95 | 504.85 |
LDPE/TOS (50%) | 418.54 | 505.62 |
LDPE/TOS (60%) | 451.15 | 509.77 |
Sample | Tg (°C) | Tc (°C) | ΔHm (J/g) | Xc (%) | Tm (°C) |
---|---|---|---|---|---|
LDPE | 69.7 | 96.1 | −54.77 | 18.69 | 113.8 |
LDPE/TOS(50%) | 69.9 | 95.8 | −28.32 | 19.33 | 114.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, C.-L.; Lin, S.-M.; Potiyaraj, P.; Meng, L.; Wu, C.-S.; Yuan, L.; Luo, X.; Ge, F.-F.; Tsou, C.-H. Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation. Polymers 2023, 15, 3977. https://doi.org/10.3390/polym15193977
Qu C-L, Lin S-M, Potiyaraj P, Meng L, Wu C-S, Yuan L, Luo X, Ge F-F, Tsou C-H. Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation. Polymers. 2023; 15(19):3977. https://doi.org/10.3390/polym15193977
Chicago/Turabian StyleQu, Chang-Lei, Shang-Ming Lin, Pranut Potiyaraj, Lei Meng, Chin-San Wu, Li Yuan, Xin Luo, Fei-Fan Ge, and Chi-Hui Tsou. 2023. "Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation" Polymers 15, no. 19: 3977. https://doi.org/10.3390/polym15193977
APA StyleQu, C. -L., Lin, S. -M., Potiyaraj, P., Meng, L., Wu, C. -S., Yuan, L., Luo, X., Ge, F. -F., & Tsou, C. -H. (2023). Polymer Packaging through the Blending of Biowaste Oyster Shell and Low-Density Polyethylene: A Sustainable Approach for Enhanced Food Preservation. Polymers, 15(19), 3977. https://doi.org/10.3390/polym15193977