Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Processing
2.2.1. Blend Preparation
2.2.2. Compression Moulding
2.3. Characterization
2.3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3.2. Mechanical Analysis
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Thermogravimetry (TGA)
2.3.5. Differential Scanning Calorimetry (DSC)
- First heating cycle from −60 °C to 350 °C; stabilization at 350 °C for 3 min;
- Cooling from 350 °C to −60 °C; stabilization at 350 °C for 3 min;
- Second heating cycle from −60 °C to 350 °C; stabilization at 350 °C for 3 min.
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Mechanical Analysis
3.3. Scanning Electron Microscopy (SEM)
3.4. Thermogravimetry (TGA)
3.5. Differential Scanning Calorimetry (DSC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, U.H.; Ahmad, I.; Hamzah, A.; Rosli, N.A. Kecekapan Filem Kanji/Minyak Kayu Manis sebagai Pembungkus Makanan dengan Sifat Antimikrob. Sains Malays. 2020, 49, 1935–1945. [Google Scholar] [CrossRef]
- Tripathi, N.; Misra, M.; Mohanty, A.K. Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Eng. Au 2021, 1, 7–38. [Google Scholar] [CrossRef]
- Nanda, S.; Patra, B.R.; Patel, R.; Bakos, J.; Dalai, A.K. Innovations in applications and prospects of bioplastics and biopolymers: A review. Environ. Chem. Lett. 2022, 20, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Nasir, M.; Wafiqah, A.; Sahmat, M.A.; Kamaruddin, H.; Razman, F.I.; Hanif, M.W.Z.; Romzi, N.; Faizal, N. Awareness in reducing single-use plastic: A case study of students in UKM. Opcion 2020, 36, 1910–1917. [Google Scholar]
- BaniHani, S.; Al-Oqla, F.M.; Mutawe, S. Mechanical performance investigation of lignocellulosic coconut and pomegranate/LDPE biocomposite green materials. J. Mech. Behav. Mater. 2021, 30, 249–256. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Abdullah, L.C.; Aung, M.M.; Ratnam, C.T. Thermal and Structural Analysis of Epoxidized Jatropha Oil and Alkaline Treated Kenaf Fiber Reinforced Poly(Lactic Acid) Biocomposites. Polymers 2020, 12, 2604. [Google Scholar] [CrossRef]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef] [Green Version]
- Damayanti, N.; Sulaiman, N.; Ibrahim, N. Plastic biodegradation of peseudomonas aeruginosa UKMCC1011 using a modified winogradsky column. Sci. Eng. 2020, 7, 43–49. Available online: https://core.ac.uk/display/326785455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1 (accessed on 16 November 2022).
- Monwar, M.; Yu, Y. Determination of the Composition of LDPE/LLDPE Blends via 13C NMR. Macromol. Symp. 2020, 390, 1900013. [Google Scholar] [CrossRef]
- Jafri, N.F.; Salleh, K.M.; Zakaria, S.; Hassan, N.J.M. Penghasilan Filem Selulosa Terjana Semula: Suatu Ulasan. Sains Malays. 2022, 51, 1525–1543. [Google Scholar] [CrossRef]
- Smail, D.; Chaoui, S. Influence of organoclay filler and dicumyl peroxide (DCP) on the properties of the low-density polyethylene (LDPE)/thermoplastic starch (TPS) blend. Polym. Polym. Compos. 2020, 29, 1599–1611. [Google Scholar] [CrossRef]
- Alim, A.A.A.; Shirajuddin, S.S.M.; Anuar, F.H. A review of nonbiodegradable and biodegradable composites for food packaging application. J. Chem. 2022, 2022, 7670819. [Google Scholar] [CrossRef]
- Bhasney, S.M.; Kumar, A.; Katiyar, V. Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Compos. Part B Eng. 2020, 184, 107717. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Harnkarnsujarit, N. Morphology and permeability of bio-based poly(butylene adipate-co-terephthalate) (PBAT), poly(butylene succinate) (PBS) and linear low-density polyethylene (LLDPE) blend films control shelf-life of packaged bread. Food Control 2022, 132, 108541. [Google Scholar] [CrossRef]
- Rigotti, D.; Dorigato, A.; Pegoretti, A. Thermo-mechanical behaviour and hydrolytic degradation of linear low density polyethylene/poly(3-hydroxybutyrate) blends. Front. Mater. 2020, 7, 31. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.J.; Álvarez-Láinez, M.L.; Orrego, C.E. Optimization of processing conditions and mechanical properties of banana fiber-reinforced polylactic acid/high-density polyethylene biocomposites. J. Appl. Polym. Sci. 2021, 139, 51501. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1333–1380. [Google Scholar] [CrossRef]
- Jariyasakoolroj, P.; Leelaphiwat, P.; Harnkarnsujarit, N. Advances in research and development of bioplastic for food packaging. J. Sci. Food Agric. 2020, 100, 5032–5045. [Google Scholar] [CrossRef]
- Sandoval, A.J.; Fernandez, M.M.; Candal, M.V.; Safari, M.; Santamaria, A.; Muller, A.J. Rheology and tack properties of bio-degradable isodimorphic poly(butylene succinate)-Ran-poly(ε-caprolactone) random copolyesters and their potential use as adhesives. Polymers 2022, 14, 623. [Google Scholar] [CrossRef]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Giganate, V.; Cinelli, P. A brief review of Poly(Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef] [PubMed]
- Starkova, O.; Platnieks, O.; Sabalina, A.; Gaidukovs, S. Hydrothermal Ageing Effect on Reinforcement Efficiency of Nanofibrillated Cellulose/Biobased Poly (butylene succinate) Composites. Polymers 2022, 14, 221. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Zdanowicz, M.; Macieja, S.; Kowalczyk, K.; Bartkowiak, A. Development and Characterization of Bioactive Poly(butylene-succinate) Films Modified with Quercetin for Food Packaging Applications. Polymers 2021, 13, 1798. [Google Scholar] [CrossRef] [PubMed]
- Koriem, A.; Ollick, A.; Elhadary, M. The effect of artificial weathering and hardening on mechanical properties of HDPE with and without UV stabilizers. Alex. Eng. J. 2021, 60, 4167–4175. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahi, S.; Djidjelli, H.; Boukerrou, A. Study of the properties and biodegradability of the native and plasticized corn flour-filled low density polyethylene composites for food packaging applications. Mater. Today Proc. 2021, 36, 67–73. [Google Scholar] [CrossRef]
- Hassan, N.A.A.; Ahmad, S.; Chen, R.S. Density Measurement, Tensile and Morphology Properties of Polylactic Acid Biocomposites Foam Reinforced with Different Kenaf Filler Loading. Sains Malays. 2020, 49, 2293–2300. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J. Appl. Polym. Sci. 2017, 135, 45726. [Google Scholar] [CrossRef] [Green Version]
- El-Rafey, E.; Walid, W.M.; Syala, E.; Ezzat, A.A.; Ali, S.F.A. A study on the physical, mechanical, thermal properties and soil biodegradation of HDPE blended with PBS/HDPE-g-MA. Polym. Bull. 2021, 79, 2383–2409. [Google Scholar] [CrossRef]
- Idris, M.S.F.; Mustaffarizan, N.M.; Yusoff, S.F.M. Hydrogenated Liquid Natural Rubber for Compatibility Enhancement of Poly(lactic acid) and Natural Rubber Blends. Sains Malays. 2021, 50, 3003–3014. [Google Scholar] [CrossRef]
- Wu, D.T.; Fredrickson, G.H.; Carton, J.-P.; Ajdari, A.; Leibler, L. Distribution of chain ends at the surface of a polymer melt: Compensation effects and surface tension. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 2373–2389. [Google Scholar] [CrossRef]
- Wu, D.T.; Fredrickson, G.H. Effect of Architecture in the Surface Segregation of Polymer Blends. Macromolecules 1996, 29, 7919–7930. [Google Scholar] [CrossRef]
- Mei, H.; Laws, T.S.; Mahalik, J.P.; Li, J.; Mah, A.H.; Terlier, T.; Bonnesen, P.; Uhrig, D.; Kumar, R.; Stein, G.E.; et al. Entropy and Enthalpy Mediated Segregation of Bottlebrush Copolymers to Interfaces. Macromolecules 2019, 52, 8910–8922. [Google Scholar] [CrossRef]
- Mah, A.H.; Laws, T.; Li, W.; Mei, H.; Brown, C.C.; Ievlev, A.; Kumar, R.; Verduzco, R.; Stein, G.E. Entropic and Enthalpic Effects in Thin Film Blends of Homopolymers and Bottlebrush Polymers. Macromolecules 2019, 52, 1526–1535. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, S.-Y.; Wang, Z.-G.; Zhang, N.-W.; Ren, J. Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly(lactic acid)/poly(propylene carbonate) blends. Polym. Bull. 2018, 75, 5437–5454. [Google Scholar] [CrossRef]
- Hemsri, S.; Puttiwanit, K.; Saeaung, K.; Satung, P. Low density polyethylene/poly(butylene adipate-co-terephthalate) films: Effect of a compatibilizer on morphology and properties. IOP Conf. Ser. Mater. Sci. Eng. 2020, 965, 012020. [Google Scholar] [CrossRef]
- Oner, B.; Gökkurt, T.; Aytac, A. Studies on Compatibilization of Recycled Polyethylene/Thermoplastic Starch Blends by Using Different Compatibilizer. Open Chem. 2019, 17, 557–563. [Google Scholar] [CrossRef]
- Da Silva Barbosa Ferreira, E.; Luna, C.B.B.; Siqueira, D.D.; dos Santos Filho, E.A.; Araujo, E.M.; Wellen, R.M.R. Production of Eco-Sustainable Materials: Compatibilizing Action of Poly(Lactic Acid)/High-Density Biopolyethylene Bioblends. Sustainability 2021, 13, 12157. [Google Scholar] [CrossRef]
- Nunes, F.C.; Ribeiro, K.C.; Martini, F.A.; Barrioni, B.R.; Santos, J.P.F.; Carvalho, B. PBAT/PLA/cellulose nanocrystals bio-composites compatibilized with polyethylene grafted maleic anhydride (PE-g-MA). J. Appl. Polym. Sci. 2021, 138, 51342. [Google Scholar] [CrossRef]
- Madhu, G.; Bhunia, H.; Bajpai, P.K. Blends of high density polyethylene and poly(l-lactic acid): Mechanical and thermal properties. Polym. Eng. Sci. 2013, 54, 2155–2160. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Nowak-Grzebyta, J.; Gawdzińska, K.; Mysiukiewicz, O.; Tomasik, M. Polyethylene/Polyamide Blends Made of Waste with Compatibilizer: Processing, Morphology, Rheological and Thermo-Mechanical Behavior. Polymers 2021, 13, 2385. [Google Scholar] [CrossRef]
- Ferri, J.M.; Garcia-Garcia, D.; Rayón, E.; Samper, M.D.; Balart, R. Compatibilization and Characterization of Polylactide and Biopolyethylene Binary Blends by Non-Reactive and Reactive Compatibilization Approaches. Polymers 2020, 12, 1344. [Google Scholar] [CrossRef]
- Then, Y.Y.; Ibrahim, N.A.; Zainuddin, N.; Ariffin, H.; Yunus, W.M.Z.W. Oil Palm Mesocarp Fiber as New Lignocellulosic Material for Fabrication of Polymer/Fiber Biocomposites. Int. J. Polym. Sci. 2013, 2013, 797452. [Google Scholar] [CrossRef]
- El-Wakil, A.A.; Moustafa, H.; Abdel-Hakim, A. Effect of LDPE-g-MA as a compatibilizer for LDPE/PA6 blend on the phase morphology and mechanical properties. Polym. Bull. 2021, 79, 2249–2262. [Google Scholar] [CrossRef]
- Videira-Quintela, D.; Guillén, F.; Martin, O.; Montalvo, G. Antibacterial LDPE films for food packaging application filled with metal-fumed silica dual-side fillers. Food Packag. Shelf Life 2021, 31, 100772. [Google Scholar] [CrossRef]
- Ostheller, M.-E.; Abdelgawad, A.M.; Balakrishnan, N.K.; Hassanin, A.H.; Groten, R.; Seide, G. Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers. Nanomaterials 2022, 12, 283. [Google Scholar] [CrossRef]
- Gowman, A.; Wang, T.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. Bio-poly(butylene succinate) and Its Composites with Grape Pomace: Mechanical Performance and Thermal Properties. ACS Omega 2018, 3, 15205–15216. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K.M. Polylactic acid and high-density polyethylene blend: Characterization and application in additive manufacturing. J. Appl. Polym. Sci. 2020, 137, 49602. [Google Scholar] [CrossRef]
- Khumkomgool, A.; Saneluksana, T.; Harnkarnsujarit, N. Active meat packaging from thermoplastic cassava starch containing sappan and cinnamon herbal extracts via LLDPE blown-film extrusion. Food Packag. Shelf Life 2020, 26, 100557. [Google Scholar] [CrossRef]
- Rogovina, S.; Prut, E.; Aleksanyan, K.; Krasheninnikov, V.; Perepelitsyna, E.; Shashkin, D.; Ivanushkina, N.; Berlin, A. Production and investigation of structure and properties of polyethylene-polylactide composites. J. Appl. Polym. Sci. 2019, 136, 47598. [Google Scholar] [CrossRef]
- Salleh, F.M.; Hassan, A.; Yahya, R.; Isa, M.R.M.; Lafia-Araga, R.A. Physico-thermal properties of kenaf fiber/high-density polyethylene/maleic anhydride compatibilized composites. High Perform. Polym. 2018, 30, 900–910. [Google Scholar] [CrossRef]
- Quitadamo, A.; Massardier, V.; Valente, M. Eco-Friendly Approach and Potential Biodegradable Polymer Matrix for WPC Composite Materials in Outdoor Application. Int. J. Polym. Sci. 2019, 2019, 3894370. [Google Scholar] [CrossRef]
- Zare, L.; Arezafar, A.; Jazanl, O.M. Effects of processing conditions on the phase morphology and mechanical properties of highly toughened polypropylene/polybutylene terephthalate (PBT) blends. Iran. Polym. J. 2021, 30, 1181–1200. [Google Scholar] [CrossRef]
- Lekube, B.M.; Burgstaller, C. Study of mechanical and rheological properties, morphology, and miscibility in polylactid acid blends with thermoplastic polymers. J. Appl. Polym. Sci. 2021, 139, 51662. [Google Scholar] [CrossRef]
- Mooninta, S.; Poompradub, S.; Prasassarakich, P. Packaging Film of PP/LDPE/PLA/Clay Composite: Physical, Barrier and Degradable Properties. J. Polym. Environ. 2020, 28, 3116–3128. [Google Scholar] [CrossRef]
- Dehkordi, M.S.; Lazemi, H.A.; SaeedModaghegh, H.R. Estimation of the drop modulus using the brittleness index of intact rock and geological strength index of rock mass, case studies: Nosoud and Zagros tunnels in Iran. Model. Earth Syst. Environ. 2019, 5, 479–492. [Google Scholar] [CrossRef]
- Ismail, A.B.; Bakar, H.B.A.; Shafei, S.B. Comparison of LDPE/corn stalk with eco degradant and LDPE/corn stalk with MAPE: Influence of coupling agent and compatibilizer on mechanical properties. Mater. Today Proc. 2020, 31, 360–365. [Google Scholar] [CrossRef]
- Babaniyi, R.B.; Afolabi, F.J.; Obagunwa, M.P. Recycling of used polyethylene through solvent blending of plasticized polyhydroxybutyrate and its degradation potential. Compos. Part C Open Access 2020, 2, 100021. [Google Scholar] [CrossRef]
- Alzarzouri, F.; Jabra, R.; Deri, F. Melt rheological behaviour and mechanical properties of poly(lactic acid)/high density polyethylene blends. Mater. Phys. Mech. 2021, 47, 103–116. [Google Scholar]
- Chow, H.M.; Koay, S.C.; Choo, H.L.; Chan, M.Y.; Ong, T.K. Investigating effect of compatibilizer on polymer blend filament from post-used styrofoam and polyethylene for fused deposition modelling. J. Phys. Conf. Ser. 2022, 2222, 012006. [Google Scholar] [CrossRef]
- Djellali, S.; Haddaoui, N.; Sadoun, T.; Bergeret, A.; Grohens, Y. Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iran. Polym. J. 2013, 22, 245–257. [Google Scholar] [CrossRef]
- Vrsaljko, D.; Macut, D.; Kovačević, V. Potential role of nanofillers as compatibilizers in immiscible PLA/LDPE Blends. J. Appl. Polym. Sci. 2015, 132, 1–14. [Google Scholar] [CrossRef]
- Milovanovic, V.L.; Hajdinjak, I.; Lovrisa, I.; Vrsaljko, D. The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE-LD and PLA/PE-HD polymer blends and their nanocomposites with TiO2 and CaCO3. Polym. Eng. Sci. 2019, 59, 1395–1408. [Google Scholar] [CrossRef]
- Bhasney, S.M.; Bhagabati, P.; Kumar, A.; Katiyar, V. Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite. Compos. Sci. Technol. 2019, 171, 54–61. [Google Scholar] [CrossRef]
- Ismail, H.; Ahmad, Z.; Nordin, R.; Rashid, A.-R. Processibility and Miscibility Studies of Uncompatibilized Linear Low Density Polyethylene/Poly(Vinyl Alcohol) Blends. Polym. Plast. Technol. Eng. 2009, 48, 1191–1197. [Google Scholar] [CrossRef]
- Panrong, T.; Karbowiak, T.; Harnkarnsujarit, N. Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. J. Food Eng. 2020, 284, 110057. [Google Scholar] [CrossRef]
- Aishah, N.; Moshiul, A.K.M.; Desa, M.S.Z.M.; Norazmi, M.; Alhadadi, W.; Hafizah, F.; Nor, M.Z.M. Mechanical and thermal properties of binary blends polylactic acid (PLA) and recycled high-density polyethylene (rHDPE). In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 736, p. 052022. [Google Scholar]
- De Matos Costa, A.R.; Crocitti, A.; de Carvalho, L.H.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends. Polymers 2020, 12, 2317. [Google Scholar] [CrossRef]
- Mazerolles, T.; Heuzey, M.C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M.A. Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydr. Polym. 2019, 206, 757–766. [Google Scholar] [CrossRef]
- Lu, X.; Tang, L.; Wang, L.; Zhao, J.; Li, D.; Wu, Z.; Xiao, P. Morphology and properties of bio-based poly(lactic acid)/high-density polyethylene blends and their glass fiber reinforced composites. Polym. Test. 2016, 54, 90–97. [Google Scholar] [CrossRef]
- Bezerra, E.B.; De França, D.C.; Morais, D.D.D.S.; Silva, I.D.D.S.; Siqueira, D.D.; Araújo, E.M.; Wellen, R.M.R. Compatibility and characterization of Bio-PE/PCL blends. Polimeros 2019, 29, e2019022. [Google Scholar] [CrossRef]
- Moreno, D.D.P.; Saron, C. Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Manag. Res. 2018, 36, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Kopitzky, R.; Berrenrath, C. Experimental Determination of Molecular Weight-Dependent Miscibility of PBAT/PLA Blends. Polymers 2021, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Scholten, P.B.V.; Ozen, M.B.; Soyler, Z.; Thomassin, J.-M.; Wilhelm, M.; Detrembleur, C.; Meier, M.A.R. Rheological and mechanical properties of cellulose/LDPE composites using sustainable and fully renewable compatibiliser. J. Appl. Polym. Sci. 2020, 137, 48744. [Google Scholar] [CrossRef]
- Ayu, R.S.; Khalina, A.; Harmaen, A.S.; Zaman, K.; Isma, T.; Liu, Q.; Ilyas, R.A.; Lee, C.H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers 2020, 12, 1571. [Google Scholar] [CrossRef]
- Hamadache, H.; Djidjelli, H.; Boukerrou, A.; Kaci, M.; Antonio, J.-R.J.; Martin-Martinez, J.M. Different compatibility approaches to improve the thermal and mechanical properties of EVA/starch composites. Polym. Compos. 2019, 40, 3242–3253. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.L.; Gao, D.; Jahnke, A.A.; Sun, J.; Tilley, A.J.; Seferos, D.W. Molecular weight and end capping effects on the optoelectronic properties of structurally related ‘heavy atom’ donor-acceptor polymers. J. Mater. Chem. A. 2014, 2, 14468–14480. [Google Scholar] [CrossRef] [Green Version]
- Darshan, T.G.; Veluri, S.; Kartik, B.; Yen-Hsiang, C.; Fang-Chyou, C. Poly(butylene succinate)/high density polyethylene blend nanocomposites with enhanced physical properties-Selectively localized carbon nanotube in pseudo-double percolated structure. Polym. Degrad. Stab. 2019, 163, 185–194. [Google Scholar] [CrossRef]
- Hong, S.-H.; Hwang, S.-H. Construction, physical properties and foaming behaviour of high-content lignin reinforced low-density polyethylene biocomposites. Polymers 2022, 14, 2688. [Google Scholar] [CrossRef]
- Kibirkštis, E.; Mayik, V.; Zatserkovna, R.; Vaitasius, K.; Stepanenko, A.; Kandrotaitė-Janutienė, R.; Venytė, I.; Danilovas, P.P. Study of physical and mechanical properties of partially biodegradable LDPE polymeric films and their application for printing and packaging. Polym. Test. 2022, 112, 107646. [Google Scholar] [CrossRef]
- Nanni, A.; Cancelli, U.; Montevecchi, G.; Masino, F.; Messori, M.; Antonelli, A. Functionalization and use of grape stalks as poly(butylene succinate) (PBS) reinforcing fillers. Waste Manag. 2021, 126, 538–548. [Google Scholar] [CrossRef]
- Chrissafis, K.; Paraskevopoulos, K.; Bikiaris, D. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochim. Acta 2005, 435, 142–150. [Google Scholar] [CrossRef]
- Thongsong, W.; Kulsetthanchalee, C.; Threepopnatkul, P. Effect of polybutylene adipate-co-terephthalate on properties of polyethylene terephthalate thin films. Mater. Today: Proc. 2017, 4, 6597–6604. [Google Scholar] [CrossRef]
- Santos, R.M.; Costa, A.R.M.; Almeida, Y.M.B.; Carvalho, L.H.; Delgado, J.M.P.Q.; Lima, E.S.; Magalhães, H.L.F.; Gomez, R.S.; Leite, B.E.; Rolim, F.D.; et al. Thermal and Rheological Characterization of Recycled PET/Virgin HDPE Blend Compatibilized with PE-g-MA and an Epoxy Chain Extender. Polymers 2022, 14, 1144. [Google Scholar] [CrossRef] [PubMed]
- Marek, A.A.; Verney, V.; Totaro, G.; Sisti, L.; Celli, A.; Cionci, N.B.; Di Gioia, D.; Massacrier, L.; Leroux, F. Organo-modified LDH fillers endowing multi-functionality to bio-based poly(butylene succinate): An extended study from the laboratory to possible market. Appl. Clay Sci. 2020, 188, 105502. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Jorda-Vilaplana, A.; Balart, R.; Torres-Giner, S. A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. J. Appl. Polym. Sci. 2018, 136, 47396. [Google Scholar] [CrossRef]
- Quitadamo, A.; Massardier, V.; Santulli, C.; Valente, M. Optimization of Thermoplastic Blend Matrix HDPE/PLA with Different Types and Levels of Coupling Agents. Materials 2018, 11, 2527. [Google Scholar] [CrossRef] [Green Version]
- Du, X.-C.; Xu, X.-L.; Liu, X.-H.; Yang, J.-H.; Wang, Y.; Gao, X.-L. Graphene oxide induced crystallization and hydrolytic degradation of poly(butylene succinate). Polym. Degrad. Stab. 2016, 123, 94–104. [Google Scholar] [CrossRef]
- Mengual, A.; Juárez, D.; Balart, R.; Ferrándiz, S. PE-g-MA, PP-g-MA and SEBS-g-MA compatibilizers used in material blends. Procedia Manuf. 2017, 13, 321–326. [Google Scholar] [CrossRef]
Sample Code | LDPE (wt.%) | PBS (wt.%) | PE–g–MA (phr) |
---|---|---|---|
LDPE | 100 | - | - |
PBS | - | 100 | - |
90LDPE/10PBS | 90 | 10 | 0 |
90LDPE/10PBS/3PE–g–MA | 90 | 10 | 3 |
90LDPE/10PBS/5PE–g–MA | 90 | 10 | 5 |
90LDPE/10PBS/7PE–g–MA | 90 | 10 | 7 |
80LDPE/20PBS | 80 | 20 | 0 |
80LDPE/20PBS/3PE–g–MA | 80 | 20 | 3 |
80LDPE/20PBS/5PE–g–MA | 80 | 20 | 5 |
80LDPE/20PBS/7PE–g–MA | 80 | 20 | 7 |
70LDPE/30PBS | 70 | 30 | 0 |
70LDPE/30PBS/3PE–g–MA | 70 | 30 | 3 |
70LDPE/30PBS/5PE–g–MA | 70 | 30 | 5 |
70LDPE/30PBS/7PE–g–MA | 70 | 30 | 7 |
60LDPE/40PBS | 60 | 40 | 0 |
60LDPE/40PBS/3PE–g–MA | 60 | 40 | 3 |
60LDPE/40PBS/5PE–g–MA | 60 | 40 | 5 |
60LDPE/40PBS/7PE–g–MA | 60 | 40 | 7 |
50LDPE/50PBS | 50 | 50 | 0 |
50LDPE/50PBS/3PE–g–MA | 50 | 50 | 3 |
50LDPE/50PBS/5PE–g–MA | 50 | 50 | 5 |
50LDPE/50PBS/7PE–g–MA | 50 | 50 | 7 |
Sample | Onset Degradation Temperature (°C) | Maximum Degradation Temperature (°C) |
---|---|---|
LDPE | 405.4 | 463.6 |
90LDPE/10PBS | 388.6 | 459.3 |
80LDPE/20PBS | 383.9 | 461.9 |
70LDPE/30PBS | 334.9 | 455.5 |
60LDPE/40PBS | 332.0 | 438.4 |
50LDPE/50PBS | 332.3 | 400.4 |
PBS | 331.0 | 392.6 |
90LDPE/10PBS/3PE–g–MA | 394.6 | 460.0 |
90LDPE/10PBS/5PE–g–MA | 399.0 | 463.4 |
90LDPE/10PBS/7PE–g–MA | 398.7 | 463.6 |
Sample | Tm LDPE (°C) | Tm PBS (°C) | Tc LDPE (°C) | Tc PBS (°C) |
---|---|---|---|---|
LDPE | 111.8 | - | 90.0 | - |
90LDPE/10PBS | 109.6 | - | 90.2 | - |
80LDPE/20PBS | 112.1 | - | 89.7 | - |
70LDPE/30PBS | 110.6 | - | 89.7 | 69.3 |
60LDPE/40PBS | 110.8 | 117.4 | 90.2 | 66.7 |
50LDPE/50PBS | 110.8 | 117.3 | 90.0 | 65.6 |
PBS | - | 117.6 | - | 60.1 |
90LDPE/10PBS/3PE–g–MA | 109.8 | - | 89.2 | - |
90LDPE/10PBS/5PE–g–MA | 112.1 | - | 89.2 | - |
90LDPE/10PBS/7PE–g–MA | 109.6 | - | 89.6 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arman Alim, A.A.; Baharum, A.; Mohammad Shirajuddin, S.S.; Anuar, F.H. Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers 2023, 15, 261. https://doi.org/10.3390/polym15020261
Arman Alim AA, Baharum A, Mohammad Shirajuddin SS, Anuar FH. Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers. 2023; 15(2):261. https://doi.org/10.3390/polym15020261
Chicago/Turabian StyleArman Alim, Aina Aqila, Azizah Baharum, Siti Salwa Mohammad Shirajuddin, and Farah Hannan Anuar. 2023. "Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties" Polymers 15, no. 2: 261. https://doi.org/10.3390/polym15020261
APA StyleArman Alim, A. A., Baharum, A., Mohammad Shirajuddin, S. S., & Anuar, F. H. (2023). Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties. Polymers, 15(2), 261. https://doi.org/10.3390/polym15020261