A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Composite Synthesis
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukushima, K.; Wu, M.-H.; Bocchini, S.; Rasyida, A.; Yang, M.-C. PBAT based nanocomposites for medical and industrial applications. Mater. Sci. Eng. C 2012, 32, 1331–1351. [Google Scholar] [CrossRef]
- Pita-López, M.L.; Fletes-Vargas, G.; Espinosa-Andrews, H.; Rodríguez-Rodríguez, R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 2021, 145, 110176. [Google Scholar] [CrossRef]
- Gupta, A.; Kowalczuk, M.; Heaselgrave, W.; Britland, S.T.; Martin, C.; Radecka, I. The production and application of hydrogels for wound management: A review. Eur. Polym. J. 2019, 111, 134–151. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, F.; Dong, W. Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation. Polymers 2022, 14, 3930. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [Green Version]
- Chocholata, P.; Kulda, V.; Babuska, V. Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials 2019, 12, 568. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, D.R.; Biswal, T. Alginate and its application to tissue engineering. SN Appl. Sci. 2021, 3, 30. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Wang, B.; Miyata, H.; Wang, Y.; Nayeem, O.G.; Kim, J.J.; Lee, S.; Yokota, T.; Onodera, H.; et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci. Adv. 2022, 8, eabo1396. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 2011, 21, 10399–10406. [Google Scholar] [CrossRef]
- Serrano-Aroca, Á.; Iskandar, L.; Deb, S. Green synthetic routes to alginate-graphene oxide composite hydrogels with enhanced physical properties for bioengineering applications. Eur. Polym. J. 2018, 103, 198–206. [Google Scholar] [CrossRef]
- Chang, B.; Ahuja, N.; Ma, C.; Liu, X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. Mater. Sci. Eng. R Rep. 2017, 111, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Miao, Y.; Tan, H.; Zhou, T.; Ling, Z.; Chen, Y.; Xing, X.; Hu, X. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater. Sci. Eng. C 2016, 63, 274–284. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M.; Yacoub, M.H. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 316–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.B.; Bartley, J.P.; Johnson, R.A. Preparation and characterization of alginate hydrogel membranes crosslinked using a water-soluble carbodiimide. J. Appl. Polym. Sci. 2003, 90, 747–753. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 2020, 14, 8. [Google Scholar] [CrossRef]
- Venkatesan, J.; Nithya, R.; Sudha, P.N.; Kim, S.-K. Role of Alginate in Bone Tissue Engineering. Adv. Food Nutr. Res. 2014, 73, 45–57. [Google Scholar] [CrossRef]
- Kalaf, E.A.G.; Pendyala, M.; Bledsoe, J.G.; Sell, S.A. Characterization and restoration of degenerated IVD function with an injectable, in situ gelling alginate hydrogel: An in vitro and ex vivo study. J. Mech. Behav. Biomed. Mater. 2017, 72, 229–240. [Google Scholar] [CrossRef]
- Sonker, A.K.; Rathore, K.; Nagarale, R.K.; Verma, V. Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof. J. Polym. Environ. 2018, 26, 1782–1794. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Valdés, C.; Valdés, O.; Bustos, D.; Abril, D.; Cabrera-Barjas, G.; Pereira, A.; Villaseñor, J.; Polo-Cuadrado, E.; Carreño, G.; Durán-Lara, E.F.; et al. Use of Poly(vinyl alcohol)-Malic Acid (CLHPMA) Hydrogels and Chitosan Coated Calcium Alginate (CCCA) Microparticles as Potential Sorbent Phases for the Extraction and Quantitative Determination of Pesticides from Aqueous Solutions. Polymers 2021, 13, 3993. [Google Scholar] [CrossRef]
- Guastaferro, M.; Reverchon, E.; Baldino, L. Polysaccharide-Based Aerogel Production for Biomedical Applications: A Comparative Review. Materials 2021, 14, 1631. [Google Scholar] [CrossRef] [PubMed]
- Permana, G.; Bajamal, A.; Subagio, E.; Parenrengi, M.; Rasyida, A.; Utomo, B. Novel Silicone Rubber and Polyvinyl Alcohol (PVA) Compound as Nucleus Pulposus Replacement in Intervertebral Disc Herniation Surgery. Turk. Neurosurg. 2022, 32, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiong, P.; Yan, F.; Li, S.; Ren, C.; Yin, Z.; Li, A.; Li, H.; Ji, X.; Zheng, Y.; et al. An overview of graphene-based hydroxyapatite composites for orthopedic applications. Bioact. Mater. 2018, 3, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rasyida, A.; Silaen, Y.M.T.; Wicaksono, S.T.; Ardyananta, H.; Nurdiansah, H.; Halimah, S. Preliminary characterization of hydrogel composite alginate/pva/r-go as an injectable materials for medical applications. Mater. Sci. Forum 2019, 964, 161–167. [Google Scholar] [CrossRef]
- Nurdiansah, H.; Firlyana, R.E.; Susanti, D.; Purwaningsih, H. Synthesis of ZnO/rGO/TiO2 Composite and Its Photocatalytic Activity for Rhodamine B Degradation. IOP Conf. Series Mater. Sci. Eng. 2020, 833, 012028. [Google Scholar] [CrossRef]
- Cheng-An, T.; Hao, Z.; Fang, W.; Hui, Z.; Xiaorong, Z.; Jianfang, W. Mechanical Properties of Graphene Oxide/Polyvinyl Alcohol Composite Film. Polym. Polym. Compos. 2017, 25, 11–16. [Google Scholar] [CrossRef]
- Guo, H.; Li, X.; Li, B.; Wang, J.; Wang, S. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane. Mater. Des. 2017, 114, 355–363. [Google Scholar] [CrossRef]
- Boontheekul, T.; Kong, H.-J.; Mooney, D.J. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 2005, 26, 2455–2465. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Lin, R.-Z.; Melero-Martin, J.M.; Chen, Y.-C. Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artif. Cells Nanomedicine Biotechnol. 2018, 46, S434–S447. [Google Scholar] [CrossRef]
- Mohandas, A.; Kumar, S.; Raja, B.; Lakshmanan, V.-K.; Jayakumar, R. Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds. Int. J. Nanomed. 2020, 10, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Pradipta, T.R. Studi Pengaruh Penambahan PVA dan Bentonit Terhadap Morfologi dan Sifat Fisik Komposit Berbasis Hidrogel Alginat Sebagai Kandidat Material Perancah untuk Regenarasi Tulang Rawan; Institut Teknologi Sepuluh Nopember: Surabaya, Indonesia, 2019. [Google Scholar]
- Sachan, N.K.; Pushkar, S.; Jha, A.; Bhattcharya, A. Sodium alginate: The wonder polymer for controlled drug delivery. J. Pharm. Res. 2015, 2, 1191–1199. [Google Scholar]
- Kamoun, E.A.; Kenawy, E.-R.S.; Tamer, T.M.; El-Meligy, M.A.; Eldin, M.S.M. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arab. J. Chem. 2015, 8, 38–47. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based antibacterial paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Chatterjee, N.; Eom, H.-J.; Choi, J. A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials 2014, 35, 1109–1127. [Google Scholar] [CrossRef]
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of Graphene Oxide. Nanoscale Res. Lett. 2011, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016, 13, 57. [Google Scholar] [CrossRef] [Green Version]
- Lasocka, I.; Szulc-Dąbrowska, L.; Skibniewski, M.; Skibniewska, E.; Strupinski, W.; Pasternak, I.; Kmieć, H.; Kowalczyk, P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. In Vitro 2018, 48, 276–285. [Google Scholar] [CrossRef]
Sample (wt.% r-GO) | Week1 | Week2 | Week3 | Week4 |
---|---|---|---|---|
0 | 0.045 ± 0.007 | 0.171 ± 0.006 | 0.283 ± 0.006 | 0.432 ± 0.016 |
0.4 | 0.054 ± 0.013 | 0.098 ± 0.075 | 0.141 ± 0.073 | 0.297 ± 0.016 |
0.8 | 0.017 ± 0.008 | 0.041 ± 0.016 | 0.089 ± 0.020 | 0.281 ± 0.018 |
1.2 | 0.045 ± 0.018 | 0.080 ± 0.030 | 0.114 ± 0.033 | 0.247 ± 0.015 |
1.6 | 0.099 ± 0.041 | 0.165 ± 0.019 | 0.237 ± 0.006 | 0.336 ± 0.008 |
Sample (wt.% r-GO) | Week1 | Week2 | Week3 | Week4 |
---|---|---|---|---|
0 | 4.49 ± 0.007 | 17.08 ± 0.006 | 28.28 ± 0.006 | 30.16 ± 0.007 |
0.4 | 5.35 ± 0.049 | 9.83 ± 0.075 | 14.07 ± 0.073 | 22.87 ± 0.008 |
0.8 | 1.68 ± 0.008 | 4.12 ± 0.017 | 8.95 ± 0.021 | 21.91 ± 0.010 |
1.2 | 3.73 ± 0.026 | 7.23 ± 0.042 | 10.63 ± 0.047 | 19.15 ± 0.014 |
1.6 | 10.00 ± 0.040 | 16.48 ± 0.019 | 23.67 ± 0.005 | 25.14 ± 0.004 |
Sample (wt.% r-GO) | Before Degradation (µm) | After Degradation (µm) |
---|---|---|
0 | 2440.191 ± 3.121 | 2417.098 ± 3.117 |
0.4 | 5571.200 ± 3.109 | 5587.371 ± 3.109 |
0.8 | 3768.973 ± 2.814 | 3777.838 ± 2.854 |
1.2 | 3378.106 ± 2.325 | 3383.871 ± 2.330 |
1.6 | 4722.698 ± 2.757 | 4732.647 ± 2.760 |
Sample (wt.% r-GO) | Cell Viability |
---|---|
0 | 93.54 ± 1.05 |
0.4 | 122.26 ± 0.93 |
0.8 | 120.50 ± 1.44 |
1.2 | 113.21 ± 0.52 |
1.6 | 98.65 ± 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasyida, A.; Halimah, S.; Wijayanti, I.D.; Wicaksono, S.T.; Nurdiansah, H.; Silaen, Y.M.T.; Ni’mah, Y.L.; Ardhyananta, H.; Purniawan, A. A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers 2023, 15, 534. https://doi.org/10.3390/polym15030534
Rasyida A, Halimah S, Wijayanti ID, Wicaksono ST, Nurdiansah H, Silaen YMT, Ni’mah YL, Ardhyananta H, Purniawan A. A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers. 2023; 15(3):534. https://doi.org/10.3390/polym15030534
Chicago/Turabian StyleRasyida, Amaliya, Salma Halimah, Ika Dewi Wijayanti, Sigit Tri Wicaksono, Haniffudin Nurdiansah, Yohannes Marudut Tua Silaen, Yatim Lailun Ni’mah, Hosta Ardhyananta, and Agung Purniawan. 2023. "A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties" Polymers 15, no. 3: 534. https://doi.org/10.3390/polym15030534
APA StyleRasyida, A., Halimah, S., Wijayanti, I. D., Wicaksono, S. T., Nurdiansah, H., Silaen, Y. M. T., Ni’mah, Y. L., Ardhyananta, H., & Purniawan, A. (2023). A Composite of Hydrogel Alginate/PVA/r-GO for Scaffold Applications with Enhanced Degradation and Biocompatibility Properties. Polymers, 15(3), 534. https://doi.org/10.3390/polym15030534