Color Stability of Resin Cements after Water Aging
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-Term Sorption and Solubility of Bulk-Fill and Conventional Resin-Composites in Water and Artificial Saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Scholz, K.J.; Tabenski, I.M.; Vogl, V.; Cieplik, F.; Schmalz, G.; Buchalla, W.; Hiller, K.A.; Federlin, M. Randomized clinical split-mouth study on the performance of CAD/CAM-partial ceramic crowns luted with a self-adhesive resin cement or a universal adhesive and a conventional resin cement after 39 months. J. Dent. 2021, 115, 103837. [Google Scholar] [CrossRef] [PubMed]
- Bresser, R.A.; Gerdolle, D.; van den Heijkant, I.A.; Sluiter-Pouwels, L.M.A.; Cune, M.S.; Gresnigt, M.M.M. Up to 12 years clinical evaluation of 197 partial indirect restorations with deep margin elevation in the posterior region. J. Dent. 2019, 91, 103227. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, H.; Huang, H.; Wang, M.; Wang, J. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef] [PubMed]
- Borgia, E.; Baron, R.; Borgia, J.L. Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. J. Prosthet. 2019, 28, e195–e203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kürklü, D.; Azer, S.S.; Yilmaz, B.; Johnston, W.M. Porcelain Thickness and Cement Shade Effects on the Colour and Translucency of Porcelain Veneering Materials. J. Dent. 2013, 41, 1043–1050. [Google Scholar] [CrossRef]
- Basso, G.R.; Kodama, A.B.; Pimentel, A.H.; Kaizer, M.R.; Bona, A.D.; Moraes, R.R.; Boscato, N. Masking Colored Substrates Using Monolithic and Bilayer CAD-CAM Ceramic Structures. Oper. Dent. 2017, 42, 387–395. [Google Scholar] [CrossRef]
- Basegio, M.M.; Pecho, O.E.; Ghinea, R.; Perez, M.M.; Della Bona, A. Masking Ability of Indirect Restorative Systems on Tooth-Colored Resin Substrates. Dent. Mater. 2019, 35, e122–e130. [Google Scholar] [CrossRef]
- Sonza, Q.N.; Della Bona, A.; Pecho, O.E.; Borba, M. Effect of Substrate and Cement on the Final Color of Zirconia-Based All-Ceramic Crowns. J. Esthet. Restor. Dent. 2021, 33, 891–898. [Google Scholar] [CrossRef]
- Comba, A.; Paolone, G.; Baldi, A.; Vichi, A.; Goracci, C.; Bertozzi, G.; Scotti, N. Effects of Substrate and Cement Shade on the Translucency and Color of CAD/CAM Lithium-Disilicate and Zirconia Ceramic Materials. Polymers 2022, 14, 1778. [Google Scholar] [CrossRef]
- Petropoulou, A.; Vrochari, A.D.; Hellwig, E.; Stampf, S.; Polydorou, O. Water Sorption and Water Solubility of Self-Etching and Self-Adhesive Resin Cements. J. Prosthet. Dent. 2015, 114, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Schmitt, G.U.; Kaizer, M.R.; Boscato, N.; Moraes, R.R. Resin-Based Luting Agents and Color Stability of Bonded Ceramic Veneers. J Prosthet. Dent. 2015, 114, 272–277. [Google Scholar] [CrossRef]
- Mancuso, E.; Mazzitelli, C.; Maravic, T.; Pitta, J.; Mengozzi, A.; Comba, A.; Baldi, A.; Scotti, N.; Mazzoni, A.; Fehmer, V.; et al. The influence of finishing lines and margin location on enamel and dentin removal for indirect partial restorations: A micro-CT quantitative evaluation. J. Dent. 2022, 127, 104334. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Sorption and Solubility Characteristics of Self-Adhesive Resin Cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour, D.; Ferooz, R.; Ferooz, M.; Bagheri, R. Physical and Mechanical Properties of Bulk-Fill, Conventional, and Flowable Resin Composites Stored Dry and Wet. Int. J. Dent. 2022, 2022, 7946239. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Monticelli, F.; Osorio, R.; Casucci, A.; Toledano, M.; Ferrari, M. Water Sorption and Solubility of Different Self-Adhesive Cements. Dent. Mater. 2009, 25, e37. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, X.; Sun, F.; Meng, X. Surface Morphology and Mechanical Properties of Conventional and Self-Adhesive Resin Cements after Aqueous Aging. J. Appl. Oral Sci. 2018, 27, e20170449. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; André, C.B.; Ambrosano, G.M.B.; Giannini, M. The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements. Int. Sch. Res. Not. 2014, 2014, 610452. [Google Scholar] [CrossRef] [Green Version]
- Ramos, N.C.; Luz, J.N.; Valera, M.C.; Melo, R.M.; Saavedra, G.; Bresciani, E. Color Stability of Resin Cements Exposed to Aging. Oper. Dent. 2019, 44, 609–614. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/75/67596.html (accessed on 1 December 2022).
- Asmussen, E. An Accelerated Test for Color Stability of Restorative Resins. Acta Odontol. Scand. 1981, 39, 329–332. [Google Scholar] [CrossRef]
- Vichi, A.; Ferrari, M.; Davidson, C.L. Color and Opacity Variations in Three Different Resin-Based Composite Products after Water Aging. Dent. Mater. 2004, 20, 530–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado, V.E.; Cavalcante, L.M.; Moraes, R.R.; Davis, H.B.; Ferracane, J.L.; Schneider, L.F. Degradation of Optical and Surface Properties of Resin-Based Composites with Distinct Nanoparticle Sizes but Equivalent Surface Area. J. Dent. 2017, 59, 48–53. [Google Scholar] [CrossRef]
- Hatai, Y. Extreme Masking: Achieving Predictable Outcomes in Challenging Situations with Lithium Disilicate Bonded Restorations. Int. J Esthet. Dent. 2014, 9, 206–222. [Google Scholar] [PubMed]
- Chang, J.; Da Silva, J.D.; Sakai, M.; Kristiansen, J.; Ishikawa-Nagai, S. The Optical Effect of Composite Luting Cement on All Ceramic Crowns. J. Dent. 2009, 37, 937–943. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Tempesta, R.M.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers 2021, 13, 3002. [Google Scholar] [CrossRef]
- Turgut, S.; Bagis, B. Colour Stability of Laminate Veneers: An in Vitro Study. J. Dent. 2011, 39 (Suppl. 3), e57–e64. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External Gap Progression after Cyclic Fatigue of Adhesive Overlays and Crowns Made with High Translucency Zirconia or Lithium Silicate. J. Esthet. Rest. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Lemons, J.; Liu, P.-R.; Essig, M.E.; Janowski, G.M. Evaluation of the Optical Properties of CAD-CAM Generated Yttria-Stabilized Zirconia and Glass-Ceramic Laminate Veneers. J. Prosthet. Dent. 2012, 107, 300–308. [Google Scholar] [CrossRef]
- Carrabba, M.; Vichi, A.; Tozzi, G.; Louca, C.; Ferrari, M. Cement Opacity and Color as Influencing Factors on the Final Shade of Metal-Free Ceramic Restorations. J. Esthet. Restor. Dent. 2020, 34, 423–429. [Google Scholar] [CrossRef]
- Peumans, M.; De Munck, J.; Fieuws, S.; Lambrechts, P.; Vanherle, G.; Van Meerbeek, B. A prospective ten-year clinical trial of porcelain veneers. J. Adhes. Dent. 2004, 6, 65–76. [Google Scholar]
- Olley, R.C.; Andiappan, M.; Frost, P.M. An up to 50-year follow-up of crown and veneer survival in a dental practice. J. Prosthet. Dent. 2018, 119, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Josic, U.; Mazzitelli, C.; Maravic, T.; Comba, A.; Mayer-Santos, E.; Florenzano, F.; Breschi, L.; Mazzoni, A. Evaluation of Fiber Post Adhesion to Root Dentin Achieved with Different Composite Cements: 1-year In Vitro Results. J. Adhes. Dent. 2022, 24, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Falkensammer, F.; Arnetzl, G.V.; Wildburger, A.; Freudenthaler, J. Color Stability of Different Composite Resin Materials. J. Prosthet. Dent. 2013, 109, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.L.; Queiroz, A.P.V.; Foxton, R.M.; Argolo, S.; Mathias, P.; Cavalcanti, A.N. Water Sorption and Solubility of Luting Agents Used under Ceramic Laminates with Different Degrees of Translucency. Oper. Dent. 2016, 41, E141–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, L.F.J.; Ribeiro, R.B.; Liberato, W.F.; Salgado, V.E.; Moraes, R.R.; Cavalcante, L.M. Curing potential and color stability of different resin-based luting materials. Dent. Mater. 2020, 36, e309–e315. [Google Scholar] [CrossRef] [PubMed]
- Espíndola-Castro, L.F.; de Brito, O.F.F.; Araújo, L.G.A.; Santos, I.L.A.; Monteiro, G.Q.D.M. In Vitro Evaluation of Physical and Mechanical Properties of Light-Curing Resin Cement: A Comparative Study. Eur. J. Dent. 2020, 14, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilinc, E.; Antonson, S.A.; Hardigan, P.C.; Kesercioglu, A. Resin Cement Color Stability and Its Influence on the Final Shade of All-Ceramics. J. Dent. 2011, 39, e30–e36. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Mechanical Properties of Resin Cements with Different Activation Modes. J. Oral. Rehabil. 2002, 29, 257–262. [Google Scholar] [CrossRef]
- Santos, G.C.; El-Mowafy, O.; Rubo, J.H.; Santos, M.J.M.C. Hardening of Dual-Cure Resin Cements and a Resin Composite Restorative Cured with QTH and LED Curing Units. J. Can. Dent. Assoc. 2004, 70, 323–328. [Google Scholar] [PubMed]
- Mazzitelli, C.; Maravic, T.; Mancuso, E.; Josic, U.; Generali, L.; Comba, A.; Mazzoni, A.; Breschi, L. Influence of the Activation Mode on Long-Term Bond Strength and Endogenous Enzymatic Activity of Dual-Cure Resin Cements. Clin. Oral Investig. 2021, 26, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Maravic, T.; Sebold, M.; Checchi, V.; Josic, U.; Breschi, L.; Mazzoni, A. Effect of Shelf-Life of a Universal Adhesive to Dentin. Int. J. Adhes. Adhes. 2020, 102, 102673. [Google Scholar] [CrossRef]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color stability of resin-based composites: Staining procedures with liquids—A narrative review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.B.; De Lima, E.; Roscoe, M.G.; Soares, C.J.; Cesar, P.; Novais, V.R. Influence of Resin Cements on Color Stability of Different Ceramic Systems. Braz. Dent. J. 2017, 28, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Mazzitelli, C.; Maravic, T.; Josic, U.; Mancuso, E.; Generali, L.; Checchi, V.; Breschi, L.; Mazzoni, A. Effect of adhesive strategy on resin cement bonding to dentin. J. Esthet. Dent. 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Mina, N.R.; Baba, N.Z.; Al-Harbi, F.A.; Elgezawi, M.F.; Daou, M. The influence of simulated aging on the color stability of composite resin cements. J. Prosthet. Dent. 2019, 121, 306–310. [Google Scholar] [CrossRef]
- Baldissara, P.; Silvestri, D.; Pieri, G.M.; Mazzitelli, C.; Arena, A.; Maravic, T.; Monaco, C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers 2022, 14, 5301. [Google Scholar] [CrossRef]
- Gajewski, V.E.S.; Pfeifer, C.; Fróes-Salgado, N.R.G.; Boaro, L.; Braga, R.R. Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Cotugno, S.; Larobina, D.; Mensitieri, G.; Musto, P.; Ragosta, G. A Novel Spectroscopic Approach to Investigate Transport Processes in Polymers: The Case of Water–Epoxy System. Polymers 2001, 42, 6431–6438. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.S.; Labruna Moreira, A.D.; de Albuquerque, P.P.A.C.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F.J. Effect of Monomer Type on the CC Degree of Conversion, Water Sorption and Solubility, and Color Stability of Model Dental Composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar] [CrossRef]
- Ashy, L.M.; Al-Mutairi, A.; Al-Otaibi, T.; Al-Turki, L. The Effect of Thermocyclic Aging on Color Stability of High Translucency Monolithic Lithium Disilicate and Zirconia Ceramics Luted with Different Resin Cements: An in Vitro Study. BMC Oral Health 2021, 21, 587. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Pfeifer, C.S.C.; Consani, S.; Prahl, S.A.; Ferracane, J.L. Influence of Photoinitiator Type on the Rate of Polymerization, Degree of Conversion, Hardness and Yellowing of Dental Resin Composites. Dent. Mater. 2008, 24, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Alkurt, M.; Duymus, Z.Y. Comparison to Color Stability Between Amine with Benzoyl Peroxide Includes Resin Cement and Amine-Reduced, Amine-Free, Lacking of Benzoyl Peroxide Resin Cements After Thermocycle. J. Adv. Oral Res. 2018, 9, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Paolone, G.; Mazzitelli, C.; Zechini, G.; Scolavino, S.; Goracci, C.; Scotti, N.; Cantatore, G.; Gherlone, E.; Vichi, A. Influence of Modeling Liquids and Universal Adhesives Used as Lubricants on Color Stability and Translucency of Resin-Based Composites. Coatings 2023, 13, 143. [Google Scholar] [CrossRef]
- Oei, J.D.; Mishriky, M.; Barghi, N.; Rawls, H.R.; Cardenas, H.L.; Aguirre, R.; Whang, K. Development of a Low-Color, Color Stable, Dual Cure Dental Resin. Dent. Mater. 2013, 29, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Cavalcante, L.M.; Consani, S.; Ferracane, J.L. Effect of Co-Initiator Ratio on the Polymer Properties of Experimental Resin Composites Formulated with Camphorquinone and Phenyl-Propanedione. Dent. Mater. 2009, 25, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Vaidyanathan, J.; Viswanadhan, T.; Vaidyanathan, T.K. Color Stability of Dental Composites as a Function of Shade. J. Prosthet. Dent. 1998, 79, 372–377. [Google Scholar] [CrossRef]
- Khokhar, Z.A.; Razzoog, M.E.; Yaman, P. Color Stability of Restorative Resins. Quintessence Int. 1991, 22, 733–737. [Google Scholar]
- Paravina, R.D.; Ontiveros, J.C.; Powers, J.M. Accelerated Aging Effects on Color and Translucency of Bleaching-Shade Composites. J. Esthet. Restor. Dent. 2004, 16, 117–126; discussion 126–127. [Google Scholar] [CrossRef] [PubMed]
- Ural, Ç.; Duran, İ.; Tatar, N.; Öztürk, Ö.; Kaya, İ.; Kavut, İ. The Effect of Amine-Free Initiator System and the Polymerization Type on Color Stability of Resin Cements. J. Oral Sci. 2016, 58, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noie, F.; O’Keefe, K.L.; Powers, J.M. Color Stability of Resin Cements after Accelerated Aging. Int. J. Prosthet. 1995, 8, 51–55. [Google Scholar]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef]
- Shiozawa, M.; Takahashi, H.; Asakawa, Y.; Iwasaki, N. Color Stability of Adhesive Resin Cements after Immersion in Coffee. Clin. Oral Investig. 2015, 19, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.E.; Cavalcante, L.M.; Silikas, N.; Schneider, L.F.J. The Influence of Nanoscale Inorganic Content over Optical and Surface Properties of Model Composites. J. Dent. 2013, 41, e45–e53. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.E.; Albuquerque, P.P.A.C.; Cavalcante, L.M.; Pfeifer, C.S.; Moraes, R.R.; Schneider, L.F.J. Influence of Photoinitiator System and Nanofiller Size on the Optical Properties and Cure Efficiency of Model Composites. Dent. Mater. 2014, 30, e264–e271. [Google Scholar] [CrossRef]
- Karabela, M.M.; Sideridou, I.D. Effect of the Structure of Silane Coupling Agent on Sorption Characteristics of Solvents by Dental Resin-Nanocomposites. Dent. Mater. 2008, 24, 1631–1639. [Google Scholar] [CrossRef]
- Lemon, M.T.; Jones, M.S.; Stansbury, J.W. Hydrogen Bonding Interactions in Methacrylate Monomers and Polymers. J. Biomed. Mater. Res. A 2007, 83, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of Curing Modes on Monomer Elution, Sorption and Solubility of Dual-Cure Resin-Cements. Dent. Mater. 2022, 38, 978–988. [Google Scholar] [CrossRef]
Material | Shade | Adhesion Mode | Resin |
---|---|---|---|
Maxcem Elite Universal Resin cement MCU (Kerr Corp., Orange, CA, USA) | Clear | Universal | Base: UDMA—Catalyst: Bis-GMA, glycerol dimethacrylate, GPDM. Base: Fluoroalminosilicate glass—Catalyst: Barium aluminoborosilicate glass. Average particle size: 3.5 µm. |
RelyX Universal RXU (3M, Seefeld, Germany) | Translucent | Universal | Base: phosphorus oxide, silane, terimethoxyctyl-,hydrolysis product with silica, t-Amyl hydroxiperoxide, n2,6-di-tert-butyl-p-cresol, 2-HEMA, methyl methacylate, acetic acid, copper salt, monohydrate. Catalyst: diurethanedimethacrylate, ytterbium fluoride, glass powder, surface modified with 2-propenoic acid, 2 methyl-3-(trimethoxysilyl)propyl ester and phenyltrimethoxy silane, TEGDMA, L-ascorbic acid, 6-hexadecanoate, hydrate, silane, trimethoxyoctyl, hydrolisis product with silica, 2-HEMA, titanium dioxide, triphenyl phosphite. |
Calibra Ceram CAL (Dentsply Sirona, Bernsheim Germany) | Translucent | Self-adhesive | UDMA, di- and tri-methacrylate resins, acrylic resin modified with phosphoric acid, bariumboron- fluoroaluminosilicate glass, organic peroxide as initiator, camphorquinone –(CQ)-photo initiator, phosphine oxide photo initiator, accelerator, butylhydroxytoluene, UV stabilizer, titanium dioxide, iron oxide, hydrophobic amorphous silica. Particle size of the inorganic filler: 16 nm–7 µm; average particle size: 3.8 µm; filler content: 48.7 vol%. |
Multilink N MUL (Ivoclar, Schaan, Liechtenstein) | Transparent | Self-adhesive | Multilink Primer A: aqueous solution of initiators Multilink Primer B: HEMA, phosphonic acid monomer, methacrylate monomers cement: dimethacrylate, HEMA, barium glass, ytterbium trifluoride, spheroid mixed oxide (particle size: 0.25–3.0 m; mean filler size: 0.9 m; 40 vol%). |
Panavia V5 PAN (Kuraray Noritake, Tokyo, Japan) | Clear | Self-adhesive | Bis-GMA, TEGDMA, new chemical polymerization accelerator, dl-camphorquinone, silanated barium glass filler, silanated aluminum oxide filler, silanated fluoroalminosilicate glass filler (0.01–12 μm average particle size). |
Calibra Universal CUN (Dentsply Sirona, Bernsheim Germany) | Translucent | Self-adhesive | Bonding agent: PENTA, 10-MDP, multifunctional acrylate, bifunctional acrylate, camphorquinone /tertiary amine, isopropanol (10–24.5 %), water (5− 24.5 %).—Paste: HEMA, GDM, UDMA, 1,1,3,3-tetramethylbutyl hydroperoxide, TEGDMA, fluoroaluminosilicate glass, GPDM, barium glass filler, fumed silica (69 wt %). |
Speed Cem Plus SCP (Ivoclar, Schaan, Liechtenstein) | Transparent | Self-adhesive | UDMA, TEGDMA, PEGDMA, phosphoric acid ester, dibenzoyl peroxide, ytterbium trifluoride, barium glass, silicon dioxide (0.1–7 μm average particle size). |
Panavia SA PSA (Kuraray Noritake, Tokyo, Japan) | Translucent | Self-adhesive | Bis-GMA, TEGDMA, MDP, HEMA, dl-camphorquinone, silanated barium glass filler, surface treated sodium fluoride (0.02–20 μm average particle size). |
Color Difference | ||
---|---|---|
Material | ΔEab | Significance p < 0.05 |
MCU | 4.3 ± 0.7 | a |
RXU | 16.9 ± 1.6 | e |
CAL | 7.9 ± 1 | c |
MUL | 14.1 ± 0.7 | d |
PAN | 6 ± 0.7 | b |
CUN | 7.8 ± 1.3 | c |
SCP | 7.5 ± 0.8 | c |
PSA | 16.8 ± 1.2 | e |
Materials | Before Aging | After Aging | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAX | L* | a* | b* | L* | a* | b* | ΔL* | Δa* | Δb* | ΔEab | |
75.40 | −1.10 | 4.20 | 80.80 | −1.50 | 3.00 | −5.40 | 0.40 | 1.20 | 5.5 | ||
76.30 | −0.80 | 4.40 | 80.40 | −1.30 | 4.10 | −4.10 | 0.50 | 0.30 | 4.1 | ||
76.90 | −0.80 | 4.40 | 79.70 | −1.00 | 2.80 | −2.80 | 0.20 | 1.60 | 3.2 | ||
76.10 | −0.80 | 4.30 | 80.10 | −1.10 | 2.80 | −4.00 | 0.30 | 1.50 | 4.3 | ||
76.40 | −0.80 | 4.70 | 80.30 | −1.30 | 3.80 | −3.90 | 0.50 | 0.90 | 4.0 | ||
75.80 | −0.80 | 4.90 | 79.20 | −1.30 | 3.30 | −3.40 | 0.50 | 1.60 | 3.8 | ||
74.40 | −0.90 | 5.00 | 79.30 | −1.40 | 4.20 | −4.90 | 0.50 | 0.80 | 5.0 | ||
74.80 | −0.60 | 4.30 | 79.90 | −1.20 | 4.00 | −5.10 | 0.60 | 0.30 | 5.1 | ||
76.80 | −0.70 | 4.10 | 80.20 | −1.30 | 3.60 | −3.40 | 0.60 | 0.50 | 3.5 | ||
76.50 | −0.70 | 4.10 | 80.70 | −1.20 | 3.40 | −4.20 | 0.50 | 0.70 | 4.3 | ||
Mean | −4.12 | 0.46 | 0.94 | 4.3 | |||||||
RXU | 89.10 | −2.20 | 9.20 | 89.10 | −4.40 | 23.90 | 0.00 | 2.20 | −14.70 | 14.9 | |
90.30 | −2.50 | 10.60 | 88.00 | −4.70 | 31.00 | 2.30 | 2.20 | −20.40 | 20.6 | ||
89.60 | −2.30 | 12.10 | 88.50 | −4.00 | 27.00 | 1.10 | 1.70 | −14.90 | 15.0 | ||
88.40 | −1.90 | 10.30 | 87.60 | −3.30 | 27.30 | 0.80 | 1.40 | −17.00 | 17.1 | ||
89.30 | −2.20 | 10.50 | 89.10 | −4.20 | 27.70 | 0.20 | 2.00 | −17.20 | 17.3 | ||
89.50 | −1.60 | 10.00 | 88.70 | −2.70 | 27.60 | 0.80 | 1.10 | −17.60 | 17.7 | ||
88.40 | −3.30 | 11.50 | 86.50 | −4.80 | 28.10 | 1.90 | 1.50 | −16.60 | 16.8 | ||
88.90 | −2.70 | 11.90 | 87.30 | −4.60 | 28.10 | 1.60 | 1.90 | −16.20 | 16.4 | ||
89.10 | −2.50 | 11.10 | 88.50 | −4.40 | 27.10 | 0.60 | 1.90 | −16.00 | 16.1 | ||
89.00 | −2.00 | 12.10 | 88.70 | −4.00 | 28.70 | 0.30 | 2.00 | −16.60 | 16.7 | ||
Mean | 0.96 | 1.79 | −16.72 | 16.9 | |||||||
CAL | 55.70 | 4.60 | 23.80 | 60.50 | 2.20 | 18.50 | −4.80 | 2.40 | 5.30 | 7.5 | |
55.90 | 4.30 | 23.10 | 60.20 | 2.00 | 17.70 | −4.30 | 2.30 | 5.40 | 7.3 | ||
55.00 | 4.40 | 23.40 | 62.30 | 1.70 | 18.30 | −7.30 | 2.70 | 5.10 | 9.3 | ||
57.30 | 4.20 | 23.40 | 63.50 | 1.80 | 17.30 | −6.20 | 2.40 | 6.10 | 9.0 | ||
55.60 | 4.30 | 23.30 | 61.10 | 1.40 | 17.80 | −5.50 | 2.90 | 5.50 | 8.3 | ||
55.70 | 4.60 | 23.90 | 61.30 | 2.00 | 20.40 | −5.60 | 2.60 | 3.50 | 7.1 | ||
55.00 | 4.60 | 24.00 | 60.60 | 1.30 | 18.60 | −5.60 | 3.30 | 5.40 | 8.5 | ||
55.70 | 4.80 | 23.30 | 60.60 | 2.30 | 20.50 | −4.90 | 2.50 | 2.80 | 6.2 | ||
55.50 | 4.30 | 22.10 | 60.40 | 2.00 | 17.90 | −4.90 | 2.30 | 4.20 | 6.9 | ||
55.40 | 4.70 | 23.70 | 60.40 | 2.20 | 17.10 | −5.00 | 2.50 | 6.60 | 8.6 | ||
Mean | −5.41 | 2.59 | 4.99 | 7.9 | |||||||
MUL | 77.00 | −2.60 | 21.80 | 67.70 | 5.10 | 29.20 | 9.30 | −7.70 | −7.40 | 14.2 | |
78.30 | −3.20 | 20.70 | 67.00 | 3.50 | 25.70 | 11.30 | −6.70 | −5.00 | 14.1 | ||
77.80 | −2.80 | 22.00 | 69.00 | 4.60 | 29.20 | 8.80 | −7.40 | −7.20 | 13.6 | ||
76.00 | −2.10 | 20.40 | 66.90 | 4.40 | 26.60 | 9.10 | −6.50 | −6.20 | 12.8 | ||
76.20 | −2.50 | 20.90 | 66.10 | 4.70 | 27.40 | 10.10 | −7.20 | −6.50 | 14.0 | ||
76.80 | −3.10 | 20.40 | 66.90 | 4.80 | 26.90 | 9.90 | −7.90 | −6.50 | 14.2 | ||
76.10 | −3.20 | 20.70 | 66.00 | 4.60 | 26.40 | 10.10 | −7.80 | −5.70 | 14.0 | ||
75.60 | −3.00 | 20.60 | 65.20 | 5.20 | 29.00 | 10.40 | −8.20 | −8.40 | 15.7 | ||
76.30 | −3.30 | 21.40 | 66.90 | 4.90 | 29.30 | 9.40 | −8.20 | −7.90 | 14.8 | ||
74.60 | −3.30 | 20.10 | 65.60 | 4.70 | 27.30 | 9.00 | −8.00 | −7.20 | 14.0 | ||
Mean | 9.74 | −7.56 | −6.80 | 14.1 | |||||||
PAN | 72.50 | −1.40 | 1.00 | 75.40 | −3.10 | 5.70 | −2.90 | 1.70 | −4.70 | 5.8 | |
−1.50 | 1.50 | 76.90 | −3.20 | 6.50 | −4.90 | 1.70 | −5.00 | 7.2 | |||
72.30 | −1.40 | 1.00 | 75.00 | −2.80 | 5.10 | −2.70 | 1.40 | −4.10 | 5.1 | ||
71.90 | −1.50 | 1.10 | 75.20 | −3.20 | 6.30 | −3.30 | 1.70 | −5.20 | 6.4 | ||
73.20 | −1.50 | 1.50 | 76.90 | −3.60 | 7.00 | −3.70 | 2.10 | −5.50 | 7.0 | ||
71.70 | −1.40 | 1.50 | 74.50 | −3.20 | 5.40 | −2.80 | 1.80 | −3.90 | 5.1 | ||
73.30 | −0.70 | 0.80 | 76.10 | −3.60 | 4.70 | −2.80 | 2.90 | −3.90 | 5.6 | ||
71.60 | −1.00 | 1.60 | 74.90 | −3.80 | 6.00 | −3.30 | 2.80 | −4.40 | 6.2 | ||
71.60 | −1.70 | 1.80 | 74.80 | −3.60 | 6.30 | −3.20 | 1.90 | −4.50 | 5.8 | ||
71.40 | −1.40 | 1.60 | 74.70 | −3.50 | 6.20 | −3.30 | 2.10 | −4.60 | 6.0 | ||
Mean | −3.29 | 2.01 | −4.58 | 6.0 | |||||||
CUN | 42.50 | 5.80 | 21.70 | 47.20 | 3.50 | 18.40 | −4.70 | 2.30 | 3.30 | 6.2 | |
47.00 | 6.60 | 27.60 | 53.20 | 4.30 | 21.60 | −6.20 | 2.30 | 6.00 | 8.9 | ||
47.70 | 6.30 | 25.10 | 54.40 | 4.90 | 20.40 | −6.70 | 1.40 | 4.70 | 8.3 | ||
46.70 | 5.70 | 21.60 | 54.50 | 3.80 | 18.60 | −7.80 | 1.90 | 3.00 | 8.6 | ||
45.50 | 5.80 | 23.50 | 51.40 | 4.20 | 20.10 | −5.90 | 1.60 | 3.40 | 7.0 | ||
45.00 | 5.40 | 22.70 | 51.60 | 3.80 | 19.10 | −6.60 | 1.60 | 3.60 | 7.7 | ||
41.00 | 5.80 | 21.00 | 46.40 | 4.30 | 17.50 | −5.40 | 1.50 | 3.50 | 6.6 | ||
43.50 | 5.80 | 23.70 | 52.00 | 3.90 | 21.00 | −8.50 | 1.90 | 2.70 | 9.1 | ||
43.40 | 5.20 | 22.50 | 48.80 | 3.80 | 19.70 | −5.40 | 1.40 | 2.80 | 6.2 | ||
44.70 | 5.50 | 24.50 | 52.40 | 3.00 | 19.20 | −7.70 | 2.50 | 5.30 | 9.7 | ||
Mean | −6.49 | 1.84 | 3.83 | 7.8 | |||||||
SCP | 88.50 | 0.00 | 12.90 | 90.90 | −1.70 | 19.20 | −2.40 | 1.70 | −6.30 | 7.0 | |
88.00 | −0.30 | 12.90 | 90.20 | −2.20 | 21.00 | −2.20 | 1.90 | −8.10 | 8.6 | ||
88.80 | −0.20 | 11.90 | 89.90 | −1.40 | 18.30 | −1.10 | 1.20 | −6.40 | 6.6 | ||
88.60 | −0.60 | 12.80 | 90.10 | −1.90 | 20.10 | −1.50 | 1.30 | −7.30 | 7.6 | ||
88.20 | −0.60 | 12.00 | 89.80 | −1.90 | 19.10 | −1.60 | 1.30 | −7.10 | 7.4 | ||
88.60 | −0.80 | 11.90 | 89.60 | −2.30 | 19.40 | −1.00 | 1.50 | −7.50 | 7.7 | ||
85.80 | −0.60 | 12.60 | 88.10 | −2.10 | 20.90 | −2.30 | 1.50 | −8.30 | 8.7 | ||
85.80 | −0.30 | 12.90 | 87.00 | −1.90 | 19.00 | −1.20 | 1.60 | −6.10 | 6.4 | ||
86.10 | −0.60 | 12.10 | 87.90 | −2.00 | 19.90 | −1.80 | 1.40 | −7.80 | 8.1 | ||
86.90 | −0.50 | 12.30 | 88.40 | −1.90 | 18.90 | −1.50 | 1.40 | −6.60 | 6.9 | ||
Mean | −1.66 | 1.48 | −7.15 | 7.5 | |||||||
PSA | 84.40 | −5.00 | 9.70 | 82.90 | −4.90 | 27.80 | 1.50 | −0.10 | −18.10 | 18.2 | |
85.60 | −4.90 | 10.20 | 81.70 | −3.00 | 27.80 | 3.90 | −1.90 | −17.60 | 18.1 | ||
85.20 | −5.10 | 10.60 | 85.10 | −4.90 | 25.10 | 0.10 | −0.20 | −14.50 | 14.5 | ||
85.20 | −4.90 | 10.50 | 83.10 | −3.10 | 26.10 | 2.10 | −1.80 | −15.60 | 15.8 | ||
85.20 | −4.80 | 9.80 | 82.40 | −3.80 | 27.60 | 2.80 | −1.00 | −17.80 | 18.0 | ||
85.20 | −4.90 | 10.40 | 82.90 | −4.00 | 26.80 | 2.30 | −0.90 | −16.40 | 16.6 | ||
85.30 | −5.10 | 9.80 | 83.70 | −4.00 | 25.80 | 1.60 | −1.10 | −16.00 | 16.1 | ||
84.80 | −4.80 | 10.30 | 82.90 | −3.70 | 26.50 | 1.90 | −1.10 | −16.20 | 16.3 | ||
85.00 | −4.80 | 9.50 | 83.10 | −4.30 | 26.00 | 1.90 | −0.50 | −16.50 | 16.6 | ||
84.90 | −5.00 | 10.10 | 81.40 | −4.40 | 26.90 | 3.50 | −0.60 | −16.80 | 17.2 | ||
Mean | 2.16 | −0.92 | −16.55 | 16.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzitelli, C.; Paolone, G.; Sabbagh, J.; Scotti, N.; Vichi, A. Color Stability of Resin Cements after Water Aging. Polymers 2023, 15, 655. https://doi.org/10.3390/polym15030655
Mazzitelli C, Paolone G, Sabbagh J, Scotti N, Vichi A. Color Stability of Resin Cements after Water Aging. Polymers. 2023; 15(3):655. https://doi.org/10.3390/polym15030655
Chicago/Turabian StyleMazzitelli, Claudia, Gaetano Paolone, Joseph Sabbagh, Nicola Scotti, and Alessandro Vichi. 2023. "Color Stability of Resin Cements after Water Aging" Polymers 15, no. 3: 655. https://doi.org/10.3390/polym15030655
APA StyleMazzitelli, C., Paolone, G., Sabbagh, J., Scotti, N., & Vichi, A. (2023). Color Stability of Resin Cements after Water Aging. Polymers, 15(3), 655. https://doi.org/10.3390/polym15030655