Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SBA-15 Support
2.2. Synthesis of Ru-ZnO/SBA-15 Composites
2.3. Characterization
2.3.1. Textural Analysis
2.3.2. Structural Characterization
2.3.3. Morphology and Elemental Composition Analysis
2.4. Photocatalytic Study
3. Results
3.1. Characterization of the Materials
3.1.1. Morphology and Elemental Microanalysis
3.1.2. FTIR Measurements
3.1.3. Sorption Measurements
3.1.4. X-ray Diffraction
3.1.5. Photodegradation of MB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reddy, D.A.; Choi, J.; Lee, S.; Ma, R.; Kim, T.K. Self-assembled macro porous ZnS–graphene aerogels for photocatalytic degradation of contaminants in water. RSC Adv. 2015, 5, 18342–18351. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Li, X.; Mei, C.; Zheng, J.; E, S.; Duan, G.; Liu, K.; Jiang, S. Liquid Transport and Real-Time Dye Purification via Lotus Petiole-Inspired Long-Range-Ordered Anisotropic Cellulose Nanofibril Aerogels. ACS Nano 2021, 15, 20666–20677. [Google Scholar] [CrossRef] [PubMed]
- Jian, S.; Chen, Y.; Shi, F.; Liu, Y.; Jiang, W.; Hu, J.; Han, X.; Jiang, S.; Yang, W. Template-Free Synthesis of Magnetic La-Mn-Fe Tri-Metal Oxide Nanofibers for Efficient Fluoride Remediation: Kinetics, Isotherms, Thermodynamics and Reusability. Polymers 2022, 14, 5417. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. E-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Wang, Q.; Wu, J.; Duan, G.; Xu, W.; Jian, S. Magnetically separable and recyclable Fe3O4@PDA covalent grafted by l-cysteine core-shell nanoparticles toward efficient removal of Pb2+. Vacuum 2021, 189, 110229. [Google Scholar] [CrossRef]
- Zhang, D.; Wei, A.; Zhang, J.; Qiu, R. The photocatalytic interaction of Cr(VI) ions and phenol on polymer-modified TiO2 under visible light irradiation. Kinet. Catal. 2015, 56, 569–573. [Google Scholar] [CrossRef]
- Hashmi, S.S.; Shah, M.; Muhammad, W.; Ahmad, A.; Ullah, M.A.; Nadeem, M.; Abbasi, B.H. Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. J. Indian Chem. Soc. 2021, 98, 100019. [Google Scholar] [CrossRef]
- Jun, L.Y.; Yon, L.S.; Mubarak, N.; Bing, C.H.; Pan, S.; Danquah, M.K.; Abdullah, E.; Khalid, M. An overview of immobilized enzyme technologies for dye and phenolic removal from wastewater. J. Environ. Chem. Eng. 2019, 7, 102961. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, A.; Sahoo, S.C.; Zangrando, E.; Saini, V.; Kataria, R.; Mehta, S.K. Metal organic framework as “turn-on” fluorescent sensor for Zr (IV) ions and selective adsorbent for organic dyes. Microchem. J. 2021, 171, 106824. [Google Scholar] [CrossRef]
- Chowdhury, M.F.; Khandaker, S.; Sarker, F.; Islam, A.; Rahman, M.T.; Awual, M.R. Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review. J. Mol. Liq. 2020, 318, 114061. [Google Scholar] [CrossRef]
- Mir, N.U.D.; Ahmad, M.S.; Khan, S.; Khan, M.Y.; Vakil, F.; Saraswat, S.; Shahid, M. Simpler is better: A heterometallic (Mn-Na) metal organic framework (MOF) with a rare myc topology synthesized from bench chemicals for selective adsorption and separation of organic dyes. Inorg. Chem. Commun. 2022, 146, 110046. [Google Scholar] [CrossRef]
- Xie, K.; Fang, J.; Li, L.; Deng, J.; Chen, F. Progress of graphite carbon nitride with different dimensions in the photo-catalytic degradation of dyes: A review. J. Alloys Compd. 2022, 901, 163589. [Google Scholar] [CrossRef]
- Andrade, J.G.D.S.; Porto, C.E.; Moreira, W.M.; Batistela, V.R.; Scaliante, M.H.N.O. Production of hydrochars from Pinus caribaea for biosorption of methylene blue and tartrazine yellow dyes. Clean. Chem. Eng. 2023, 5, 100092. [Google Scholar] [CrossRef]
- Muhamad, N.; Sinchai, P.S.; Tansom, U. Banana peel as bioremediation agent in textile dyes decolorization for wastewater management. Biochem. Syst. Ecol. 2023, 106, 104582. [Google Scholar] [CrossRef]
- Moradi, O.; Pudineh, A.; Sedaghat, S. Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem. Toxicol. 2022, 169, 113412. [Google Scholar] [CrossRef]
- Dardouri, S.; Sghaier, J. Adsorptive removal of methylene blue from aqueous solution using different agricultural wastes as adsorbents. Korean J. Chem. Eng. 2017, 34, 1037–1043. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Reghioua, A.; Yaseen, Z.M. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int. J. Biol. Macromol. 2020, 163, 756–765. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Hoang, N.T.; Manh, T.D.; Nguyen, V.T.; Nga, N.T.T.; Mwazighe, F.M.; Nhi, B.D.; Hoang, H.Y.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Kinetic study on methylene blue removal from aqueous solution using UV/chlorine process and its combination with other advanced oxidation processes. Chemosphere 2022, 308, 136457. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Liu, H.; Zhu, E.; Yang, K.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Application of inorganic materials as heterogeneous cocatalyst in Fenton/Fenton-like processes for wastewater treatment. Sep. Purif. Technol. 2022, 295, 121293. [Google Scholar] [CrossRef]
- Ihaddaden, S.; Aberkane, D.; Boukerroui, A.; Robert, D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process. Eng. 2022, 49, 102952. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.H.; Bassyouni, M.I.; Zoromba, M.S.; Alshehri, A.A. Removal of Dyes from Waste Solutions by Anodic Oxidation on an Array of Horizontal Graphite Rods Anodes. Ind. Eng. Chem. Res. 2019, 58, 1004–1018. [Google Scholar] [CrossRef]
- Subrahmanya, T.; Widakdo, J.; Mani, S.; Austria, H.F.M.; Hung, W.-S.; Makari, H.K.; Nagar, J.K.; Hu, C.-C.; Lai, J.-Y. An eco-friendly and reusable syringe filter membrane for the efficient removal of dyes from water via low pressure filtration assisted self-assembling of graphene oxide and SBA-15/PDA. J. Clean. Prod. 2022, 349, 131425. [Google Scholar] [CrossRef]
- Bustos-Terrones, Y.A.; Hermosillo-Nevárez, J.J.; Ramírez-Pereda, B.; Vaca, M.; Rangel-Peraza, J.G.; Bustos-Terrones, V.; Rojas-Valencia, M.N. Removal of BB9 textile dye by biological, physical, chemical, and electrochemical treatments. J. Taiwan Inst. Chem. Eng. 2021, 121, 29–37. [Google Scholar] [CrossRef]
- Singh, A.; Pal, D.B.; Mohammad, A.; Alhazmi, A.; Haque, S.; Yoon, T.; Srivastava, N.; Gupta, V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2021, 343, 126154. [Google Scholar] [CrossRef]
- Khammar, S.; Bahramifar, N.; Younesi, H. Preparation and surface engineering of CM-β-CD functionalized Fe3O4@TiO2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil. J. Hazard. Mater. 2020, 394, 122422. [Google Scholar] [CrossRef]
- Abdelrahman, E.A.; Hegazey, R.; Ismail, S.H.; El-Feky, H.H.; Khedr, A.M.; Khairy, M.; Ammar, A.M. Facile synthesis and characterization of β-cobalt hydroxide/hydrohausmannite/ramsdellitee/spertiniite and tenorite/cobalt manganese oxide/manganese oxide as novel nanocomposites for efficient photocatalytic degradation of methylene blue dye. Arab. J. Chem. 2022, 15, 104372. [Google Scholar] [CrossRef]
- Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. [Google Scholar] [CrossRef]
- Usman, A.K.; Cursaru, D.-L.; Brănoiu, G.; Şomoghi, R.; Manta, A.-M.; Matei, D.; Mihai, S. A Modified Sol–Gel Synthesis of Anatase {001}-TiO2/Au Hybrid Nanocomposites for Enhanced Photodegradation of Organic Contaminants. Gels 2022, 8, 728. [Google Scholar] [CrossRef] [PubMed]
- Bibi, S.; Ahmad, A.; Anjum, M.A.R.; Haleem, A.; Siddiq, M.; Shah, S.S.; Al Kahtani, A. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Orthman, J.A.; Li, J.-Y.; Zhao, J.-C.; Churchman, G.J.; Vansant, E.F. Novel Composites of TiO2 (Anatase) and Silicate Nanoparticles. Chem. Mater. 2002, 14, 5037–5044. [Google Scholar] [CrossRef]
- Liu, C.; Lin, X.; Li, Y.; Xu, P.; Li, M.; Chen, F. Enhanced photocatalytic performance of mesoporous TiO2 coated SBA-15 nanocomposites fabricated through a novel approach: Supercritical deposition aided by liquid-crystal template. Mater. Res. Bull. 2015, 75, 25–34. [Google Scholar] [CrossRef]
- Conceição, D.; Graça, C.; Ferreira, D.; Ferraria, A.; Fonseca, I.; Rego, A.B.D.; Teixeira, A.; Ferreira, L.V. Photochemical insights of TiO2 decorated mesoporous SBA-15 materials and their influence on the photodegradation of organic contaminants. Microporous Mesoporous Mater. 2017, 253, 203–214. [Google Scholar] [CrossRef]
- Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Functionalized mesoporous SBA-15 silica: Recent trends and catalytic applications. Nanoscale 2020, 12, 11333–11363. [Google Scholar] [CrossRef]
- Nakahira, A.; Hamada, T.; Yamauchi, Y. Synthesis and properties of dense bulks for mesoporous silica SBA-15 by a modified hydrothermal method. Mater. Lett. 2010, 64, 2053–2055. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett. 2009, 185, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Dworschak, D.; Brunnhofer, C.; Valtiner, M. Photocorrosion of ZnO Single Crystals during Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 51530–51536. [Google Scholar] [CrossRef]
- Kumar, S.; Kaur, P.; Chen, C.; Thangavel, R.; Dong, C.; Ho, Y.; Lee, J.; Chan, T.; Chen, T.; Mok, B.; et al. Structural, optical and magnetic characterization of Ru doped ZnO nanorods. J. Alloys Compd. 2014, 588, 705–709. [Google Scholar] [CrossRef]
- Dong, H.-D.; Zhao, J.-P.; Peng, M.-X.; Zhang, Y.-H.; Xu, P.-Y. Au-modified spindle ZnO for high efficiency H2 sensors. Vacuum 2023, 207, 111597. [Google Scholar] [CrossRef]
- Roy, T.S.; Akter, S.; Fahim, M.R.; Gafur, A.; Ferdous, T. Incorporation of Ag-doped ZnO nanorod through Graphite hybridization: Effective approach for degradation of Ciprofloxacin. Heliyon 2023, 9, 13130. [Google Scholar] [CrossRef]
- Kumar, S.; Lawaniya, S.D.; Agarwal, S.; Yu, Y.-T.; Nelamarri, S.R.; Kumar, M.; Mishra, Y.K.; Awasthi, K. Optimization of Pt nanoparticles loading in ZnO for highly selective and stable hydrogen gas sensor at reduced working temperature. Sens. Actuators B Chem. 2023, 375, 132943. [Google Scholar] [CrossRef]
- Liu, X.; Lu, Z.; Jia, Z.; Chen, Z.; Wang, X. Sandwich-structured ZnO-MnO2-ZnO thin film varistors prepared via magnetron sputtering. J. Eur. Ceram. Soc. 2023. [Google Scholar] [CrossRef]
- Sharma, A.K.; Vishwakarma, A.K.; Yadava, L. Optical and structural properties of CdS-ZnO thick film. Mater. Lett. X 2023, 17, 100180. [Google Scholar] [CrossRef]
- Lu, S.; Song, H.; Xiao, Y.; Qadir, K.; Li, Y.; Li, Y.; He, G. Promoted catalytic activity of CO oxidation at low temperatures by tuning ZnO morphology for optimized CuO/ZnO catalysts. Colloid Interface Sci. Commun. 2023, 52, 100698. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Wan, J.; Huang, J.; Yu, H.; Liu, L.; Shi, Y.; Liu, C. Fabrication of self-assembled 0D-2D Bi2MoO6-g-C3N4 photocatalytic composite membrane based on PDA intermediate coating with visible light self-cleaning performance. J. Colloid Interface Sci. 2021, 601, 229–241. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Komchoo, N.; Senasu, T.; Piriyanon, J.; Youngme, S.; Hemavibool, K.; Nanan, S. Silver decorated ZnO photocatalyst for effective removal of reactive red azo dye and ofloxacin antibiotic under solar light irradiation. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 626, 127034. [Google Scholar] [CrossRef]
- Bloh, J.Z.; Dillert, R.; Bahnemann, D.W. Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: The nature and reactivity of photoactive centres. Phys. Chem. Chem. Phys. 2014, 16, 5833–5845. [Google Scholar] [CrossRef] [Green Version]
- Calzada, L.A.; Castellanos, R.; García, L.A.; Klimova, T.E. TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2019, 285, 247–258. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.N.K.; Yen, N.T.; Hau, N.D.; Tran, H.L. Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards. J. Chem. 2020, 2020, 8456194. [Google Scholar] [CrossRef]
- Okal, J.; Zawadzki, M.; Kraszkiewicz, P.; Adamska, K. Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: Effect of preparation method and metal salt precursors. Appl. Catal. A: Gen. 2018, 549, 161–169. [Google Scholar] [CrossRef]
- Thi, T.P.T.; Nguyen, D.T.; Duong, T.Q.; Luc, H.H.; Vo, V. Facile Postsynthesis of N-Doped TiO2-SBA-15 and Its Photocatalytic Activity. Adv. Mater. Sci. Eng. 2013, 2013, 638372. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, M.; Cui, Y.; Zhang, R.; Zhao, Z.; Wang, X.; Guo, S. Effect of SBA-15-CEO on properties of potato starch film modified by low-temperature plasma. Food Biosci. 2023, 51, 102313. [Google Scholar] [CrossRef]
- Babu, K.S.; Reddy, A.R.; Sujatha, C.; Reddy, K.V.; Mallika, A.N. Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2013, 2, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Calzaferri, G.; Gallagher, S.H.; Lustenberger, S.; Walther, F.; Brühwiler, D. Multiple equilibria description of type H1 hysteresis in gas sorption isotherms of mesoporous materials. Mater. Chem. Phys. 2023, 296, 127121. [Google Scholar] [CrossRef]
- Abelniece, Z.; Kampars, V.; Piirsoo, H.-M.; Mändar, H.; Tamm, A. The influence of Zn content in Cu/ZnO/SBA-15/kaolinite catalyst for methanol production by CO2 hydrogenation. Energy Rep. 2022, 8, 625–629. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, L.; Han, Y.; Li, S.; Hu, J.; Shi, F. Thick pore wall and strong stability of mesoporous silica supported HPW materials: Highly efficient catalysts for cellulose hydrolysis reaction. Mater. Lett. 2021, 282, 128841. [Google Scholar] [CrossRef]
- Al Abdullah, K.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia 2017, 119, 565–570. [Google Scholar] [CrossRef]
- Fekri, M.H.; Soleymani, S.; Mehr, M.R.; Akbari-Adergani, B. Synthesis and characterization of mesoporous ZnO/SBA-16 nanocomposite: Its efficiency as drug delivery system. J. Non-Cryst. Solids 2022, 591, 121512. [Google Scholar] [CrossRef]
- Biswas, A.; Paul, S.; Banerjee, A. Carbon nanodots, Ru nanodots and hybrid nanodots: Preparation and catalytic properties. J. Mater. Chem. A 2015, 3, 15074–15081. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | VT (cm3/g) | VP (cm3/g) | DP (nm) | ST (m2/g) | VM (cm3/g) |
---|---|---|---|---|---|---|
SBA-15 | 734 | 0.3941 | 0.766 | 7.3 | 8.3 | 0.015 |
ZnO/SBA-15 | 313 | 0.4726 | 0.472 | 4.1 | - | - |
Ru-ZnO/SBA-15 | 252 | 0.3852 | 0.388 | 4.1 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, D.; Katsina, A.U.; Mihai, S.; Cursaru, D.L.; Şomoghi, R.; Nistor, C.L. Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers 2023, 15, 1210. https://doi.org/10.3390/polym15051210
Matei D, Katsina AU, Mihai S, Cursaru DL, Şomoghi R, Nistor CL. Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers. 2023; 15(5):1210. https://doi.org/10.3390/polym15051210
Chicago/Turabian StyleMatei, Dănuţa, Abubakar Usman Katsina, Sonia Mihai, Diana Luciana Cursaru, Raluca Şomoghi, and Cristina Lavinia Nistor. 2023. "Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye" Polymers 15, no. 5: 1210. https://doi.org/10.3390/polym15051210
APA StyleMatei, D., Katsina, A. U., Mihai, S., Cursaru, D. L., Şomoghi, R., & Nistor, C. L. (2023). Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers, 15(5), 1210. https://doi.org/10.3390/polym15051210