The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Material Preparation
2.3. Characterization
2.3.1. Crystallization Behavior Test
2.3.2. Rheological Behavior Test
2.3.3. Characterization of Cell Structure
2.3.4. Mechanical Performance Test
3. Results and Discussion
3.1. Crystallization Behavior
3.2. Rheological Behavior
3.3. Elastomer Distribution
3.4. Cell Structure
3.5. Toughening Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohebbi, A.; Mighri, F.; Ajji, A.; Rodrigue, D. Current Issues and Challenges in Polypropylene Foaming: A Review. Cell. Polym. 2015, 34, 299–338. [Google Scholar] [CrossRef]
- Merz, E.H.; Claver, G.C.; Baer, M. Studies on heterogeneous polymeric systems. J. Polym. Sci. 1956, 22, 325–341. [Google Scholar] [CrossRef]
- Pearson, R.A.; Yee, A.F. Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 1989, 24, 2571–2580. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Qiu, G. Study on the mechanical and morphological properties of toughened polypropylene blends for automobile bumpers. Polym. Bull. 2013, 70, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Das, V.; Gautam, S.S.; Pandey, A.K. Effect of SBS content on low temperature impact strength, morphology and rheology of PP-cp/SBS blends. Polym. Plast. Technol. Eng. 2011, 50, 825–832. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, Y.; Guo, W.; Meng, Z.; Wei, W.; Hua, L.; Yang, Q. Effect of POE on mechanical properties and cellular structure of PP/Nano-CaCO3 composites in IMD/MIM process. Mater. Res. Express 2020, 7, 095308. [Google Scholar] [CrossRef]
- Parameswaranpillai, J.; Pulikkalparambil, H.; Sanjay, M.R.; Siengchin, S. Polypropylene/high-density polyethylene based blends and nanocomposites with improved toughness. Mater. Res. Express 2019, 6, 075334. [Google Scholar] [CrossRef]
- Ma, L.F.; Wang, W.K.; Bao, R.Y.; Yang, W.; Xie, B.H.; Yang, M.B. Toughening of polypropylene with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene–propylene–diene rubber blends. Mater. Des. 2013, 51, 536–543. [Google Scholar] [CrossRef]
- Abreu, F.O.M.S.; Forte, M.M.C.; Liberman, S.A. SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J. Appl. Polym. Sci. 2005, 95, 254–263. [Google Scholar] [CrossRef]
- Gupta, A.K.; Purwar, S.N. Crystallization of PP in PP/SEBS blends and its correlation with tensile properties. J. Appl. Polym. Sci. 1984, 29, 1595–1609. [Google Scholar] [CrossRef]
- Gupta, A.K.; Purwar, S.N. Tensile yield behavior of PP/SEBS blends. J. Appl. Polym. Sci. 1984, 29, 3513–3531. [Google Scholar] [CrossRef]
- Gupta, A.K.; Purwar, S.N. Dynamic mechanical and impact properties of PP/SEBS blend. J. Appl. Polym. Sci. 1986, 31, 535–551. [Google Scholar] [CrossRef]
- Bassani, A.; Pessan, L.A.; Hage, E. Toughening of polypropylene with styrene/ethylene-butylene/styrene tri-block copolymer: Effects of mixing condition and elastomer content. J. Appl. Polym. Sci. 2001, 82, 2185–2193. [Google Scholar] [CrossRef]
- Sharma, R.; Maiti, S.N. Effects of Crystallinity of PP and Flexibility of SEBS-g-MA Copolymer on the Mechanical Properties of PP/SEBS-g-MA Blends. Polym. Plast. Technol. Eng. 2014, 53, 229–238. [Google Scholar] [CrossRef]
- Tjong, S.C.; Bao, S.P.; Liang, G.D. Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA: Structure-property relationship. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 3112–3126. [Google Scholar] [CrossRef]
- Monti, M.; Scrivani, M.T.; Gianotti, V. Effect of SEBS and OBC on the Impact Strength of Recycled Polypropylene/Talc Composites. Recycling 2020, 5, 9. [Google Scholar] [CrossRef]
- Schaefgen, J.R. Estimation of the heat and entropy of fusion of some polyhydrocarbons. J. Polym. Sci. 1959, 38, 549–552. [Google Scholar] [CrossRef]
- Sangeetha, V.; Varghese, T.; Nayak, S. Toughening of polylactic acid using styrene ethylene butylene styrene: Mechanical, thermal, and morphological studies. Polym. Eng. Sci. 2016, 56, 669–675. [Google Scholar] [CrossRef]
- Shaayegan, V.; Wang, C.; Costa, F.; Han, S.; Park, C.B. Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening. Eur. Polym. J. 2017, 92, 314–325. [Google Scholar] [CrossRef]
- Denac, M.; Šmit, I.; Musil, V. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 1. Structure. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1094–1101. [Google Scholar] [CrossRef]
- Denac, M.; Musil, V.; Šmit, I. Structure and mechanical properties of talc-filled blends of polypropylene and styrenic block copolymers. J. Polym. Sci. B Polym. Phys. 2004, 42, 1255–1264. [Google Scholar] [CrossRef]
- Ohlsson, B.; Törnell, B. Blends and interpenetrating polymer networks of polypropylene and polystyrene-block-poly (ethylene-stat-butylene)-block-polystyrene. 2: Melt flow and injection molding properties. Polym. Eng. Sci. 1998, 38, 108–118. [Google Scholar] [CrossRef]
- Huang, H.-X.; Wang, J.-K.; Sun, X.-H. Improving of Cell Structure of Microcellular Foams Based on Polypropylene/High-density Polyethylene Blends. J. Cell. Plast. 2008, 44, 69–85. [Google Scholar] [CrossRef]
- Avinash, G.; Harika, V.; Sandeepika, C.; Gupta, N. Pore size control in aluminium foam by standardizing bubble rise velocity and melt viscosity. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 7th National Conference on Processing and Characterization of Materials (NCPCM 2017), Rourkela, India, 8–9 December 2017; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Tomacheski, D.; Pittol, M.; Ermel, C.E.; Simões, D.N.; Ribeiro, V.F.; Santana, R. Influence of processing conditions on the mechanical properties of SEBS/PP/oil blends. Polym. Bull. 2017, 74, 4841–4855. [Google Scholar] [CrossRef]
- Mao, H.; Li, H.; Guo, W.; Wu, M.; Zeng, F. Effect of olefin block copolymer on the toughness of microcellular polypropylene composite. Mater. Res. Express 2022, 9, 035301. [Google Scholar] [CrossRef]
- Wu, S. Chain structure, phase morphology, and toughness relationships in polymers and blends. Polym. Eng. Sci. 1990, 30, 753–761. [Google Scholar] [CrossRef]
- Colton, J.S.; Suh, N.P. Nucleation of microcellular foam: Theory and practice. Polym. Eng. Sci. 1987, 27, 500–503. [Google Scholar] [CrossRef]
- Colton, J.S.; Suh, N. The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polym. Eng. Sci. 1987, 27, 485–492. [Google Scholar] [CrossRef]
- Newman, S.; Strella, S. Stress-Strain Behavior of Rubber-Reinforced Glassy Polymers. J. Appl. Polym. Sci. 1965, 9, 2297–2310. [Google Scholar] [CrossRef]
- Marsavina, L.; Linul, E. Fracture toughness of rigid polymeric foams: A review. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 2483–2514. [Google Scholar] [CrossRef]
Components | PP | PP-g-MAH | SEBS |
---|---|---|---|
MPP | 95 wt% | 5 wt% | 0 wt% |
MPP/5%SEBS | 90 wt% | 5 wt% | 5 wt% |
MPP/10%SEBS | 85 wt% | 5 wt% | 10 wt% |
MPP/15%SEBS | 80 wt% | 5 wt% | 15 wt% |
MPP/20%SEBS | 75 wt% | 5 wt% | 20 wt% |
Sample | (°C) | (°C) | ||
---|---|---|---|---|
MPP | 114.5 | 68 | 173.3 | 34.2 |
MPP/5%SEBS | 116.7 | 73.2 | 177.6 | 38.9 |
MPP/10%SEBS | 115.8 | 65 | 177.3 | 37 |
MPP/15%SEBS | 115.3 | 61.9 | 178.6 | 36.5 |
MPP/20%SEBS | 114.7 | 58.5 | 180.9 | 35.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Zheng, Z.; Li, W.; Li, H.; Zeng, F.; Mao, H. The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams. Polymers 2023, 15, 1503. https://doi.org/10.3390/polym15061503
Guo W, Zheng Z, Li W, Li H, Zeng F, Mao H. The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams. Polymers. 2023; 15(6):1503. https://doi.org/10.3390/polym15061503
Chicago/Turabian StyleGuo, Wei, Zicheng Zheng, Wei Li, Hao Li, Fankun Zeng, and Huajie Mao. 2023. "The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams" Polymers 15, no. 6: 1503. https://doi.org/10.3390/polym15061503
APA StyleGuo, W., Zheng, Z., Li, W., Li, H., Zeng, F., & Mao, H. (2023). The Cellular Structure and Toughness of Hydrogenated Styrene-Butadiene Block Copolymer Reinforced Polypropylene Foams. Polymers, 15(6), 1503. https://doi.org/10.3390/polym15061503