Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries
Abstract
:1. Introduction
1.1. Pultrusion
1.2. Current Calculation Methods
2. Materials and Methods
2.1. Experimental Setup and Materials
2.1.1. Setup
2.1.2. Material
Fibers
Resin
2.1.3. Design of the Experiments
2.2. Modeling Approach
2.3. Simulation Model and Varied Parameters
3. Results
3.1. Experimental Results
3.2. Simulation Results and Validation
- From the point of injection towards the parallel end zone of the ii-chamber (Figure 13—2), the pressure rose significantly to about half of the maximum pressure.
- In the parallel section of the ii-chamber, the pressure continued to increase up to the parting plane.
- In the pultrusion die (Figure 13—4), the pressure continued to increase slightly, or remained at a high level and then dropped towards the end of the simulated part of the die. The pultrusion die was longer than the simulated part. However, it was decided to simulate only the part of the die that lies before the gel point.
4. Discussion
4.1. Experimental Results
4.2. Results of the Simulations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Computational Grid Study
References
- Starr, T.F. Pultrusion for Engineers; Woodhead: Cambridge, UK, 2000. [Google Scholar]
- Joshi, S.C. The Pultrusion Process for Polymer Matrix. In Manufacturing Techniques for Polymer Matrix Composites; Woodhead Publishing: Philadelphia, PA, USA, 2012; pp. 381–413. [Google Scholar]
- Swift, K.G.; Booker, J.D. Manufacturing Process Selection Handbook; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Lange, S.C. Miniaturisierung des Strangziehverfahrens am Beispiel der Herstellung von Kanülen aus kohlenfaserverstärktem Kunststoff. Ph.D Thesis, RWTH Aachen University, Aachen, Germany, 2005. [Google Scholar]
- Schmitz, S. Strangziehen von MR-sicheren Führungsdrähten aus Faserverbundkunststoffen; RWTH Aachen University: Aachen, Germany, 2010. [Google Scholar]
- Xu, X.; He, L.; Zhu, B.; Li, J.; Li, J. Advances in polymeric materials for dental applications. Polym. Chem. 2016, 8, 807–823. [Google Scholar] [CrossRef]
- Hollaway, L. The evolution of and the way forward for advanced polymer composites in the civil infrastructure. Constr. Build. Mater. 2003, 17, 365–378. [Google Scholar] [CrossRef]
- Martin, J. Pultruded composites compete with traditional construction materials. Reinf. Plast. 2006, 50, 20–27. [Google Scholar] [CrossRef]
- Geiger, R.; Pahl, J. CFK-Strukturen in der automobilen Serienfertigung. Light. Des. 2017, 10, 52–57. [Google Scholar] [CrossRef]
- Prockat, J. Developing Large Structural Parts for Railway Application Using a Fibre Reinforced Polymer Design; Freie Universität Berlin: Berlin, Germany, 2005. [Google Scholar]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Pultruded materials and structures: A review. J. Compos. Mater. 2020, 54, 4081–4117. [Google Scholar] [CrossRef]
- Bannister, M. Challenges for composites into the next millennium—A reinforcement perspective. Compos. Part A Appl. Sci. Manuf. 2001, 32, 901–910. [Google Scholar] [CrossRef]
- Goldsworthy, W.B.; Estates, P.V. Pultrusion Machine and Method. U.S. Patent 3556888, 19 January 1971. [Google Scholar]
- Engelen, H. Development and Comparison of Resin Injection and Impregnation Chambers for Pultrusion. In Proceedings of the World Pultrusion Conference, Istanbul, Turkey, 22–23 March 2012. [Google Scholar]
- Li, S.; Xu, L.; Ding, Z.; Lee, L.J.; Engelen, H. Experimental and theoretical analysis of pulling force in pultrusion and resin injection pultrusion (RIP)—Part I: Experimental. J. Compos. Mater. 2003, 37, 163–189. [Google Scholar] [CrossRef]
- Michaeli, W.; Wegener, M. Einführung in die Technologie der Faserverbundkuststoffe; Carl Hanser: München, Germany, 1989. [Google Scholar]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic Pultrusion: A Review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef]
- Rieger, M.; Senz, A.; Sauer, M. DRIFT—Drahtförmige Inserts zur Lastgerechten Faserverstärkung Spritzgegossener Thermoplastbauteile; AVK Comopsite Report: Frankfurt, Germany, 2020. [Google Scholar]
- Hopmann, C.; Schneider, P.; Neuhaus, B.; Goeschel, J.; Böttcher, A. Neue Polyurethansysteme für die Produktion von Composite-Profilen. Light. Des. 2016, 9, 52–57. [Google Scholar] [CrossRef]
- Heinz, P.; Meisenheimer, R.; Kayser, A.; Tillacker, J.; Achten, D.; Buesgen, T.; Ludwewig, M.; Tomczyk, C.; Wagner, R. Kompositewerkstoffe basierend auf Isocyanuratpolymeren mit dualer Härtung. Patent WO 2018/0873954 A1, 17 May 2018. [Google Scholar]
- Mentizi, S. Composite solutions from Covestro. In Proceedings of the UTECH Europe 2018, Maastrich, The Netherlands, 29–31 May 2018. [Google Scholar]
- Strauß, S. Flexibility in Polyurethane Injection Molding. In Proceedings of the North American Pultrusion Conference, Rosemont, IL, USA, 8–10 April 2019. [Google Scholar]
- Connolly, M.; King, J.; Shidaker, T.; Duncan, A. Pultruding Polyurethane Composite Profiles: Practical Guidelines for Injection Box Design, Component Metering Equipment and Processing. In Proceedings of the COMPOSITES 2005 Convention and Trade Show American Composites Manufacturers Association, Columbus, OH, USA, 28–30 September 2005. [Google Scholar]
- Dubé, M.G.; Batch, G.L.; Vogel, J.G.; Macosko, C.W. Reaction injection pultrusion of thermoplastic and thermoset composites. Polym. Compos. 1995, 16, 378–385. [Google Scholar] [CrossRef]
- Ding, Z.; Li, S.; Yang, H.; Lee, L.J.; Engelen, H.; Puckett, P.M. Numerical and experimental analysis of resin flow and cure in resin injection pultrusion (RIP). Polym. Compos. 2000, 21, 762–778. [Google Scholar] [CrossRef]
- Voorakaranam, S.; Joseph, B.; Kardos, J.L. Modeling and Control of an Injection Pultrusion Process. J. Compos. Mater. 1999, 33, 1173–1204. [Google Scholar] [CrossRef]
- Koppernaes, C.; Nolet, S.G.; Fanucci, J.P. Method and Apparatus for Wetting Fiber Reinforcements with Matrix Materials in The Pultrusion Process Using Continuous In-Line Degassing. U.S. Patent 5073413, 17 December 1991. [Google Scholar]
- Gauchel, J.V.; RLehmann, N. Methods for Resin Impregnated Pultrusion. U.S. Patent 6048427, 11 April 2000. [Google Scholar]
- Brown, R.J.; Kharchenko, S.; Coffee, H.D.; Huang, I. System for Producing Pultruded Components. U.S. Patent 8597016 B2, 23 November 2005. [Google Scholar]
- Luisier, A.; Bourban, P.E.; Månson, J.A. Reaction injection pultrusion of PA12 composites: Process and modelling. Compos. Part A Appl. Sci. Manuf. 2003, 34, 583–595. [Google Scholar] [CrossRef]
- Böttcher, A.; Schneider, P.; Hopmann, C. Von der Injektionsbox zum komplexen Werkzeug zur Fertigung von Hybridprofilen. Konstruktion 2015, 67, IW 6–IW 9. [Google Scholar] [CrossRef]
- Paul, M. Konstruktion einer kontinuierlichen Imprägnier- und Injektionskammer zur Pultrusion mit einer Polyurethan-Matrix, Technikerarbeit, Karlsruhe; Final thesis of an apprenticeship, unpublished; Carl-Benz-Schule: Karlsruhe, Germany, 2014. [Google Scholar]
- Wilhelm, F. Einsatz von Leistungsultraschall in der Geschlossenen Injektions-Pultrusion; TUM München: München, Germany, 2021. [Google Scholar]
- Wilhelm, F.; Wiethaler, J.; Karl, R. Power Ultrasonic in Closed Injection Pultrusion. In Proceedings of the 18th European Conference on Composite Materials, Athens, Greece, 25–28 June 2018. [Google Scholar]
- Bezerra, R. Modelling and Simulation of the Closed Injection Pultrusion; KIT Karlsruhe: Karlsruhe, Germany, 2017. [Google Scholar]
- Sandberg, M.; Hattel, J.H.; Spangenberg, J. Numerical Modelling and Optimisation of Fibre Wet-Out in Resin-Injection Pultrusion Processes. In Proceedings of the 18th European Conference on Composite Materials, Athens, Greece, 25–28 June 2018. [Google Scholar]
- Wu, H.; Joseph, B. Model based and knowledge based control of pultrusion processes. SAMPE J. 1990, 26, 59–70. [Google Scholar]
- Sumerak, J.E. Understanding pultrusion process variables. Mod. Plast. 1985, 62, 58. [Google Scholar]
- Tucci, F.; Rubino, F.; Carlone, P. Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors. In Proceedings of the 21nd International ESAFORM Conference on Material Forming, Palermo, Italy, 23–25 April 2018. [Google Scholar]
- Strauß, S.; Wilhelm, F. Development of a Flexible Injection and Impregnation Chamber for Pultrusion of High Reactive Resins. Procedia Manuf. 2020, 47, 956–961. [Google Scholar] [CrossRef]
- Strauß, S.; Boysen, S.; Senz, A.; Wilhelm, F.; Rilli, N. Analysis of the mechanical composite properties of ii-chamber variations in the closed injection pultrusion process. In Proceedings of the 4th International ESAFORM Conference on Material Forming, Liège, Belgium, 16–14 April 2021. [Google Scholar]
- Baran, I.; Akkerman, R.; Hattel, J.H. Material characterization of a polyester resin system for the pultrusion process. Compos. Part B Eng. 2014, 64, 194–201. [Google Scholar] [CrossRef]
- Wilhelm, F.; Strauß, S.; Kronseder, M. Effect of power ultrasonic on the viscosity of anhydride epoxy resin system. Results Mater. 2020, 8, 100129. [Google Scholar] [CrossRef]
- Neitzel, M.; Mitschang, P.; Breuer, U. Handbuch Verbundwerkstoffe; Carl Hanser: München, Germany, 2014. [Google Scholar]
- Sharma, D.; McCarty, T.A.; Roux, J.A.; Vaughan, J.G. Investigation of dynamic pressure behavior in a pultrusion die. J. Compos. Mater. 1998, 32, 929–950. [Google Scholar] [CrossRef]
- Sharma, D.; McCarty, T.A.; Roux, J.A.; Vaughan, J.G. Pultrusion die pressure response to changes in die inlet geometry. Polym. Compos. 1998, 19, 180–192. [Google Scholar] [CrossRef]
- Michaeli, W.; Preuss, T. Pultrusion von faserverstärkten Kunststoffprofilen. Lightweight Des. 2010, 3, 59–65. [Google Scholar] [CrossRef]
- Michaeli, W. Pultrusion of composite profiles–polyurethane (PU) as alternative matrix system. Polym. Polym. Compos. 2010, 18, 537–542. [Google Scholar] [CrossRef]
- Coffee, H.D. Pultrusion of Fast-Gel Theromoset Polyurethanes: Processing Considerations and Mechanical Properties. In Proceedings of the PMA Annual Meeting, Rancho Mirage, CA, USA, 17–19 April 2005. [Google Scholar]
- Jeswani, A.; Roux, J.; Vaughan, J. Multiple Injection Ports and Part Thickness Impact on Wetout of High Pull Speed Resin Injection Pultrusion. J. Compos. Mater. 2009, 43, 1991–2009. [Google Scholar] [CrossRef]
- Masuram, N.B.; Roux, J.A.; Jeswani, A.L. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing. Appl. Compos. Mater. 2015, 23, 421–442. [Google Scholar] [CrossRef]
- Srinivasagupta, D.; Kardos, J.L.; Joseph, B. Analysis of pull-force in injected pultrusion. J. Adv. Mater.-Covina 2006, 38, 39. [Google Scholar]
- Hopmann, L.C.; Wruck, D.; Fischer, K. Flow field dynamics in pultrusion injection boxes. JEC Compos. Mag. 2021, 58, 22–25. [Google Scholar]
- Ruiz, E.; Trochu, F. Thermomechanical Properties during Cure of Glass-Polyester RTM Composites: Elastic and Viscoelastic Modeling. J. Compos. Mater. 2005, 39, 881–916. [Google Scholar] [CrossRef]
- Johnston, A.; Vaziri, R.; Poursartip, A. A plane strain model for process-induced deformation of laminated composite structures. J. Compos. Mater. 2001, 35, 1435–1469. [Google Scholar] [CrossRef]
- Vedernikov, A.; Safonov, A.; Tucci, F.; Carlone, P.; Akhatov, I. Modeling Spring-In of L-Shaped Structural Profiles Pultruded at Different Pulling Speeds. Polymers 2021, 13, 2748. [Google Scholar] [CrossRef]
- Chen, C.-H.; Yen, C.-C. Mathematical model for the pultrusion of blocked PU-UP matrix composites. J. Appl. Polym. Sci. 2003, 90, 1996–2002. [Google Scholar] [CrossRef]
- Gorthala, R.; Roux, J.; Vaughan, J.; Donti, R. Comparison of Processing Parameters for Pultruded Graphite/Epoxy and Fiberglass/Epoxy: A Heat Transfer and Curing Model. J. Reinf. Plast. Compos. 1994, 13, 288–300. [Google Scholar] [CrossRef]
- Kamal, M.R. Thermoset characterization for moldability analysis. Polym. Eng. Sci. 1974, 14, 231–239. [Google Scholar] [CrossRef]
- Pusatcioglu, S.Y.; Fricke, A.L.; Hassler, J.C. Heats of reaction and kinetics of a thermoset polyester. J. Appl. Polym. Sci. 1979, 24, 937–946. [Google Scholar] [CrossRef]
- Loos, A.C.; Springer, G.S. Curing of epoxy matrix composites. J. Compos. Mater. 1983, 17, 135–169. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Garg, A.; Chandrashekhara, K.; Flanigan, V.; Kapila, S. Cure Characterization of Pultruded Soy-based Composites. J. Reinf. Plast. Compos. 2005, 24, 1509–1520. [Google Scholar] [CrossRef]
- Aylward, L.; Douglas, C.; Roylance, D. A transient finite element model for pultrusion processing. Polym. Process Eng. 1985, 3, 247–261. [Google Scholar]
- Carlone, P.; Palazzo, G.S.; Pasquino, R. Pultrusion manufacturing process development by computational modelling and methods. Math. Comput. Model. 2006, 44, 701–709. [Google Scholar] [CrossRef]
- Celik, A.; Bonten, C. Beiträge zum 26. Stuttgarter Kunststoffkolloquium. In Dreidimensionale Modellierung der thermoplastischen PA6 In-Situ-Pultrusion; C. Bonten and M. Kreutzbruck: Stuttgart, Germany, 2019. [Google Scholar]
- Bogetti, T.A.; Gillespie, J.W. Process-Induced Stress and Deformation in Thick-Section Thermoset Composite Laminates. J. Compos. Mater. 1992, 26, 626–660. [Google Scholar] [CrossRef]
- Hubert, P.; Johnston, A.; Poursartip, A.; Nelson, K. Cure Kinetics and Viscosity Models for Hexcel 8552 Epoxy Resin. In Proceedings of the International SAMPE symposium and exhibition, Long Beach, CA, USA, 23–27 May 1999; pp. 2341–2354. [Google Scholar]
- Cole, K.C.; Hechler, J.J.; Noel, D. A new approach to modeling the cure kinetics of epoxy/amine thermosetting resins. 2. Application to a typical system based on bis [4-(diglycidylamino) phenyl] methane and bis (4-aminophenyl) sulfone. Macromolecules 1991, 24, 3098–3110. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.R.; Sourour, S. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 1973, 13, 59–64. [Google Scholar] [CrossRef]
- Khoun, K. Process-Induced Stresses and Deformations in Woven Composites Manufactured by Resin Transfer Moulding. Ph.D Thesis, McGill University, Montréal, QC, Canada, 2009. [Google Scholar]
- Khoun, L.; Centea, T.; Hubert, P. Characterization Methodology of Thermoset Resins for the Processing of Composite Materials —Case Study: CYCOM 890RTM Epoxy Resin. J. Compos. Mater. 2009, 44, 1397–1415. [Google Scholar] [CrossRef]
- Safonov, A.A.; Carlone, P.; Akhatov, I. Mathematical simulation of pultrusion processes: A review. Compos. Struct. 2018, 184, 153–177. [Google Scholar] [CrossRef]
- Ma, C.-C.M.; Chen, C.-H. The development of a mathematical model for the pultrusion of blocked polyurethane composites. J. Appl. Polym. Sci. 1993, 50, 759–764. [Google Scholar] [CrossRef]
- Dittmann, J.; Hügle, S.; Seif, P.; Kauffmann, L.; Middendorf, P. Permeability Prediction Using Porous Yarns in a Dual-Scale Simulation with Openfoam. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Dittmann, J.; Hügele, S.; Middendorf, P. Numerical 3D Permeability Prediction Using Computational Fluid Dynamics. In Proceedings of the International Conference on Flow Processes in Composites Materials, Kyoto, Japan, 6–9 July 2016. [Google Scholar]
- Dittmann, J.; Dollinger, F.; Kaufmann, L.; Middendorf, P. Numerische Permeabilitätsvorhersage mit OpenFOAM. In Proceedings of the 25 Stuttgarter Kunststoffkolloquium, Stuttgart, Germany, 17 March 2023. [Google Scholar]
- Dittmann, J.; Middendorf, P. Experimental Validation of Numerical Dual-Scale Permeability Prediction. In Proceedings of the 14th International Conference on Flow Processes in Composite Materials, Luleå, Sweden, 30 May–1 June 2018. [Google Scholar]
- May, D.; Aktas, A.; Advani, S.; Berg, D.C.; Endruweit, A.; Fauster, E.; Lomov, S.; Long, A.; Mitschang, P.; Abaimov, S.; et al. In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise. Compos. Part A Appl. Sci. Manuf. 2019, 121, 100–114. [Google Scholar] [CrossRef]
- Yong, A.; Aktas, A.; May, D.; Endruweit, A.; Advani, S.; Hubert, P.; Abaimov, S.G.; Abliz, D.; Akhatov, I.; Ali, M.A.; et al. Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise. Compos. Part A Appl. Sci. Manuf. 2021, 148, 106480. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application des Principes a Suivre et des Formulesa Employer dans les Questions de Distribution d’Eau; Dalmont, V., Ed.; Saraswati Press: West Bengal, India, 1856; p. 647. [Google Scholar]
- Dittmann, J.; Middendorf, P. Beiträge zum 26. Stuttgarter Kunststoffkolloquium. In Permeabilitätsmessungen bei Technischen Textilien und die Durchführung von Benchmarkstudien; C. Bonten and M. Kreutzbruck: Stuttgart, Germany, 2019. [Google Scholar]
- BFedulov, B.; Antonov, F.; Safonov, A.; Ushakov, A.; Lomov, S. Influence of fibre misalignment and voids on composite laminate strength. J. Compos. Mater. 2014, 49, 2887–2896. [Google Scholar] [CrossRef]
- Bates, P.J.; Taylor, D.; Cunningham, M. Transverse Permeability of Direct Glass Rovings. J. Reinf. Plast. Compos. 2000, 19, 1217–1226. [Google Scholar] [CrossRef]
- Schell, J.S.U.; Siegrist, M.; Ermanni, P. Experimental Determination of the Transversal and Longitudinal Fibre Bundle Permeability. Appl. Compos. Mater. 2007, 14, 117–128. [Google Scholar] [CrossRef]
- Arbter, R.; Beraud, J.; Binetruy, C.; Bizet, L.; Bréard, J.; Comas-Cardona, S.; Demaria, C.; Endruweit, A.; Ermanni, P.; Gommer, F.; et al. Experimental determination of the permeability of textiles: A benchmark exercise. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1157–1168. [Google Scholar] [CrossRef]
- Strauß, S.; Meisenheimer, R.; Hecking, A.; Senz, A.; Wilhelm, F. Manufacturing of Predominatly Bio-Based Composite Profiles With Pultrusion. In Proceedings of the International Conference on Composite Materials, Melboune, VIC, Australia, 11–16 August 2019. [Google Scholar]
- OwensCoring. Pulstrand 4100 Single-End Roving—For Pultrusion Process. 2015. Available online: http://www.ocvreinforcements.com/pdf/products/162910019658_SingleEndRovings_PulStrand_4100_product_sheet_ww_01_2015_Rev0_EN_final.pdf (accessed on 20 January 2023).
- Mentizi, S.; Hecking, A.; Strauß, S.; Achten, D.; Guiteras, M.A. Alipatic Polyurethane Matrix for sustainable UV-Resistant Composites. Rev. Asoc. Esp. Mater. Compuestos 2019, 4, 28–31. [Google Scholar]
- Heinz, P.; Engelen, H.; Hermanutz, F. Biobasierte Polyurethan Verstärkungslamelle mit Cellulosefasern für Holzkonstruktionen; final report of a publicly funded project, unpublished; Covestro Deutschland AG: Leverkusen, Germany, 2017. [Google Scholar]
- Covestro Deutschland AG. Desmocomp—Raw Material Preperation for Pultruded Composites; Covestro Deutschland AG: Leverkusen, Germany, 2019. [Google Scholar]
- Covestro Deutschland AG. Desmodur eco N 7300: Sicherheitsdatenblatt; Covestro Deutschland AG: Leverkusen, Germany, 2020. [Google Scholar]
- Covestro Deutschland AG. Desmorapid AP 300: Sicherheitsdatenblatt V1.2; Covestro Deutschland AG: Leverkusen, Germany, 2018. [Google Scholar]
- Covestro Deutschland AG. Desmorapid AP 400: Sicherheitsdatenblatt V1.0; Covestro Deutschland AG: Leverkusen, Germany, 2019. [Google Scholar]
- Evonik Industries AG. Visiomer 1,4-BDDMA: Sicherheitsdatenblatt V 7.3; Evonik Industries AG: Essen, Germany, 2017. [Google Scholar]
- Evonik Industries AG. Visiomer Terra IBOMA: Sicherheitsdatenblatt V 8.0; Evonik Industries AG: Essen, Germany, 2016. [Google Scholar]
- Evonik Industries AG. Visiomer HPMA 98: Sicherheitsdatenblatt V 7.1; Evonik Industries AG: Essen, Germany, 2016. [Google Scholar]
- Sigma-Ladrich. Luperox P: Sicherheitsdatenblatt V5.11; Sigma-Ladrich: St. Louis, MO, USA, 2018. [Google Scholar]
- L. Estelle. Pultrusion PuLaCell-Formulierung; L. Estelle: Leverkusen, Germany, 2020. [Google Scholar]
- The OpenFOAM Foundation Ltd. OpenFOAM 5. Available online: https://openfoam.org/release/5-0/ (accessed on 1 August 2021).
- Strauß, S. Sensitivitätsanalyse zum Prozessdesign der Closed-Injection Pultrusion innovativer Harzsysteme. Ph.D. Thesis, Technische Universität München, München, Germany, 2022. [Google Scholar]
- Sharma, D.; McCarty, T.A.; Roux, J.A.; Vaughan, J.G. Fluid mechanics analysis of a two-dimensional pultrusion die inlet. Polym. Eng. Sci. 1998, 38, 1611–1622. [Google Scholar] [CrossRef]
- Shakya, N.; Roux, J.A.; Jeswani, A.L. Effect of Resin Viscosity in Fiber Reinforcement Compaction in Resin Injection Pultrusion Process. Appl. Compos. Mater. 2013, 20, 1173–1193. [Google Scholar] [CrossRef]
- Masuram, N.B.; Roux, J.A.; Jeswani, A.L. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing. Appl. Compos. Mater. 2017, 25, 485–506. [Google Scholar] [CrossRef]
- Gadam, S.; Roux, J.; McCarty, T.; Vaughan, J. The impact of pultrusion processing parameters on resin pressure rise inside a tapered cylindrical die for glass-fibre/epoxy composites. Compos. Sci. Technol. 2000, 60, 945–958. [Google Scholar] [CrossRef]
Commercial Name | Chemical Family | Function | Supplier |
---|---|---|---|
Desmodur eco N7300 | Isocyanate | Resin | Covestro |
Desmorapid AP 300 | - | IMR | Covestro |
Desmorapid AP 400 | Tertiary polyamine | Catalyst | Covestro |
BDDMA | Acrylic | Reactive diluent | Evonik |
IBOMA | Acrylic | Reactive diluent | Evonik |
HPMA | Acrylic | Reactive diluent | Evonik |
Luperox | Peroxide | Initiator | Sigma-Aldrich |
Parameter | Values |
---|---|
Opening angle Θ | 2.4°–3.2°–4.0° |
Opening factor Ψ | 3–4–5 |
Viscosity η | 1213 mPa·s–338 mPa·s–124 mPa·s |
Trial Number | Opening Angle Θ [°] | Opening Factor Ψ [-] | Resin Viscosity η [mPa·s] |
---|---|---|---|
2.4_4_20 | 2.4 | 4 | 1213 |
2.4_4_40 | 2.4 | 4 | 338 |
2.4_4_60 | 2.4 | 4 | 124 |
3.2_4_20 | 3.2 | 4 | 1213 |
3.2_4_40 | 3.2 | 4 | 338 |
3.2_4_60 | 3.2 | 4 | 124 |
4.0_4_20 | 4.0 | 4 | 1213 |
4.0_4_40 | 4.0 | 4 | 338 |
4.0_4_60 | 4.0 | 4 | 124 |
3.2_3_20 | 3.2 | 3 | 1213 |
3.2_3_40 | 3.2 | 3 | 338 |
3.2_3_60 | 3.2 | 3 | 124 |
3.2_5_20 | 3.2 | 5 | 1213 |
3.2_5_40 | 3.2 | 5 | 338 |
3.2_5_60 | 3.2 | 5 | 124 |
2.4_3_20 | 2.4 | 3 | 1213 |
2.4_3_40 | 2.4 | 3 | 338 |
2.4_3_60 | 2.4 | 3 | 124 |
2.4_5_20 | 2.4 | 5 | 1213 |
2.4_5_40 | 2.4 | 5 | 338 |
2.4_5_60 | 2.4 | 5 | 124 |
4.0_3_20 | 4.0 | 3 | 1213 |
4.0_3_40 | 4.0 | 3 | 338 |
4.0_3_60 | 4.0 | 3 | 124 |
4.0_5_20 | 4.0 | 5 | 1213 |
4.0_5_40 | 4.0 | 5 | 338 |
4.0_5_60 | 4.0 | 5 | 124 |
Trial Number | Opening Angle Θ [°] | Opening Factor Ψ [-] | Resin Viscosity η [mPa·s] |
---|---|---|---|
3.2_3_20 | 3.2 | 3 | 1213 |
2.4_4_20 | 2.4 | 4 | 1213 |
3.2_4_20 | 3.2 | 4 | 1213 |
3.2_4_40 | 3.2 | 4 | 338 |
3.2_4_60 | 3.2 | 4 | 124 |
4.0_4_20 | 4.0 | 4 | 1213 |
3.2_5_20 | 3.2 | 5 | 1213 |
Trial Number | Permeability in [m²] in Porous | ||||
---|---|---|---|---|---|
Orientation to Fiber | Zone 1 | Zone 2 | Zone3 | Zone 3 | Zone 4 |
3.2_3_xx parallel | 6∙10−8 | 5∙10−9 | 6∙10−9 | 1.2∙10−10 | 1.8∙10−10 |
orthogonal | 6∙10−8 | 5∙10−9 | 1.2∙10−10 | 1.8∙10−10 | 2.4∙10−10 |
2.4_4_xx parallel | 6∙10−8 | 3∙10−9 | 6∙10−9 | 1.2∙10−10 | 1.8∙10−10 |
orthogonal | 6∙10−8 | 3∙10−9 | 1.2∙10−10 | 1.8∙10−10 | 2.4∙10−10 |
3.2_4_xx parallel | 6∙10−8 | 3∙10−9 | 6∙10−9 | 1.2∙10−10 | 1.8∙10−10 |
orthogonal | 6∙10−8 | 3∙10−9 | 1.2∙10−10 | 1.8∙10−10 | 2.4∙10−10 |
4.0_4_xx parallel | 6∙10−8 | 2.1∙10−9 | 6∙10−9 | 1.2∙10−10 | 1.8∙10−10 |
orthogonal | 6∙10−8 | 2.1∙10−9 | 1.2∙10−10 | 1.8∙10−10 | 2.4∙10−10 |
3.2_5_xx parallel | 6∙10−8 | 3∙10−9 | 6∙10−9 | 1.2∙10−10 | 1.8∙10−10 |
orthogonal | 6∙10−8 | 3∙10−9 | 1.2∙10−10 | 1.8∙10−10 | 2.4∙10−10 |
Pressure | |||
---|---|---|---|
Trial Number | ii-chamber [bar] | die_1 [bar] | die_2 [bar] |
2.4_4_20 | 66.6 | 87.7 | 89.3 |
2.4_4_40 | 29.3 | 41.8 | 46.3 |
2.4_4_60 | 7.6 | 26.1 | 28.9 |
3.2_4_20 | 79.4 | 101.3 | 109.2 |
3.2_4_40 | 28.4 | 46.0 | 47.9 |
3.2_4_60 | 6.5 | 22.8 | 18.0 |
4.0_4_20 | 59.5 | 58.2 | 92.4 |
4.0_4_40 | 21.6 | 10.0 | 43.5 |
4.0_4_60 | 4.9 | -- * | 20.2 |
3.2_3_20 | 62.4 | 75.3 | 77.8 |
3.2_3_40 | 29.4 | 44.9 | 47.7 |
3.2_3_60 | 17.0 | 32.6 | 42.7 |
3.2_5_20 | 62.1 | 77.8 | 90.8 |
3.2_5_40 | 20.5 | 33.4 | 31.6 |
3.2_5_60 | 6.8 | 14.3 | 15.5 |
2.4_3_20 | 74.9 | 87.2 | 94.6 |
2.4_3_40 | 44.3 | 56.7 | 67.4 |
2.4_3_60 | 29.5 | 54.1 | 45.1 |
2.4_5_20 | 94.1 | 127.9 | 144.9 |
2.4_5_40 | 28.8 | 41.6 | 45.8 |
2.4_5_60 | 13.9 | 25.8 | 38.0 |
4.0_3_20 | 57.7 | 83.1 | 89.4 |
4.0_3_40 | 23.8 | 35.0 | 41.4 |
4.0_3_60 | 13.8 | 38.3 | 46.9 |
4.0_5_20 | 53.3 | 65.3 | 69.8 |
4.0_5_40 | 36.4 | 63.4 | 74.9 |
4.0_5_60 | 11.4 | 24.7 | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strauss, S.; Wilhelm, F.; Senz, A.; Engelen, H.; Boysen, S.; Rilli, N.; Celik, A.; Ratka, M.; Bonten, C. Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries. Polymers 2023, 15, 1544. https://doi.org/10.3390/polym15061544
Strauss S, Wilhelm F, Senz A, Engelen H, Boysen S, Rilli N, Celik A, Ratka M, Bonten C. Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries. Polymers. 2023; 15(6):1544. https://doi.org/10.3390/polym15061544
Chicago/Turabian StyleStrauss, Sebastian, Frederik Wilhelm, Andreas Senz, Herbert Engelen, Simon Boysen, Niko Rilli, Alptekin Celik, Marcel Ratka, and Christian Bonten. 2023. "Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries" Polymers 15, no. 6: 1544. https://doi.org/10.3390/polym15061544
APA StyleStrauss, S., Wilhelm, F., Senz, A., Engelen, H., Boysen, S., Rilli, N., Celik, A., Ratka, M., & Bonten, C. (2023). Experimental and Simulative Analysis of the Pressure Development in a Closed Injection Pultrusion Process with Multiple Chamber Geometries. Polymers, 15(6), 1544. https://doi.org/10.3390/polym15061544