Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of the UV-Photografted Filters
2.3. Characterization of the UV-Photografted Filters
2.4. Evaluation of Dye Adsorption Abilities
3. Results and Discussion
3.1. Characterization of the Fabricated Filters
3.2. Dye Adsorption Abilities of Fabricated Filters
3.3. Dye Adsorption Abilities According to Initial Concentration of Dye Solution
3.4. Dye Adsorption Abilities of the Fabricated Filters by Dosage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Arora, S. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. Crit. Rev. Environ. Sci. Technol. 2011, 41, 807–878. [Google Scholar] [CrossRef]
- Juang, T.A.N.-S. Treatment of waters and wastewaters containing sulfur dyes: A review. Chem. Eng. J. 2013, 219, 109–117. [Google Scholar] [CrossRef]
- El-Geundi, M.S.; Ismail, H.M.; Attyia, K.M.E. Activated Clay as an Adsorbent for Cationic Dyestuffs. Adsorpt. Sci. Technol. 1995, 12, 109–117. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Ouasif, H.; Yousfi, S.; Bouamrani, M.L.; Kouali, M.E.; Benmokhtar, S.; Talbi, M. Removal of a cationic dye from wastewater by adsorption onto natural adsorbents. J. Mater. Environ. Sci 2012, 4, 1–10. [Google Scholar]
- Khan, S.; Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res. 2018, 14, 4446–4458. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Aziz, A.A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Mittal, A.; Mittal, J.; Malviya, A.; Gupta, V. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 2009, 340, 16–26. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Liu, W.; Lou, T.; Wang, X. Enhanced dye adsorption with conductive polyaniline doped chitosan nanofibrous membranes. Int. J. Biol. Macromol. 2023, 242, 124711. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, T.; Shi, W.; Tian, Y.; Liu, J.; Qin, X. Dye adsorption properties of poly(p-phenylene terephthalamide)-embedded hollow fiber composite membranes. React. Funct. Polym. 2022, 170, 105135. [Google Scholar] [CrossRef]
- Jabbar, N.M.; Salman, S.D.; Rashid, I.M.; Mahdi, Y.S. Removal of an anionic Eosin dye from aqueous solution using modified activated carbon prepared from date palm fronds. Chem. Data Collect. 2022, 42, 100965. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Wu, L.; Huang, S.; Zheng, J.; Qiu, Z.; Lin, X.; Qin, Y. Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int. J. Biol. Macromol. 2019, 140, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cui, Y.; Zhou, S.; Ye, J.; Sun, J.; Liu, X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J. Mol. Struct. 2022, 1261, 132954. [Google Scholar] [CrossRef]
- Ma, H.; Kong, A.; Ji, Y.; He, B.; Song, Y.; Li, J. Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J. Clean. Prod. 2019, 214, 89–94. [Google Scholar] [CrossRef]
- Liu, M.; Xie, Z.; Ye, H.; Li, W.; Shi, W.; Liu, Y. Magnetic cross-linked chitosan for efficient removing anionic and cationic dyes from aqueous solution. Int. J. Biol. Macromol. 2021, 193, 337–346. [Google Scholar] [CrossRef]
- Hua, J.; Meng, R.; Wang, T.; Gao, H.; Luo, Z.; Jin, Y.; Liu, L.; Yao, J. Highly Porous Cellulose Microbeads and their Adsorption for Methylene Blue. Fibers Polym. 2019, 20, 794–803. [Google Scholar] [CrossRef]
- Farahani, S.K.; Hosseini, S.M. A highly promoted nanofiltration membrane by incorporating of aminated Zr-based MOF for efficient salts and dyes removal with excellent antifouling properties. Chem. Eng. Res. Des. 2022, 188, 764–778. [Google Scholar] [CrossRef]
- Thakkar, H.; Bhatt, M.; Thakore, S. Barbituric Acid Derived Covalent Organic Framework and its CNT composite as high-performance adsorbents for organic dye removal. J. Environ. Chem. Eng. 2023, 1, 109890. [Google Scholar] [CrossRef]
- Gao, L.; Gao, T.; Zhang, Y.; Hu, T. A bifunctional 3D porous Zn-MOF: Fluorescence recognition of Fe3+ and adsorption of congo red/methyl orange dyes in aqueous medium. Dyes Pigments 2022, 197, 109945. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, H.; Song, M.; Xu, Z.; Sun, Z.; Xu, Q.; Chen, Y.; Liao, X. Interface engineering of Ti-MOFs: Adsorption of anionic, cationic and neutral dyes in wastewater. J. Mol. Struct. 2023, 1283, 135268. [Google Scholar] [CrossRef]
- Tian, X.; Yang, R.; Chen, T.; Cao, Y.; Deng, H.; Zhang, M.; Jiang, X. Removal of both anionic and cationic dyes from wastewater using pH-responsive adsorbents of L-lysine molecular-grafted cellulose porous foams. J. Hazard. Mater. 2022, 426, 128121. [Google Scholar] [CrossRef]
- Ke, P.; Zeng, D.; Xu, K.; Cui, J.; Li, X.; Wang, G. Preparation of Quaternary Ammonium Salt-Modified Chitosan Microspheres and Their Application in Dyeing Wastewater Treatment. ACS Omega 2020, 5, 24700–24707. [Google Scholar] [CrossRef]
- Bu, R.; Luo, S.; Xu, W.; Meng, R.; He, D.; Mao, K.; Huang, J.; Xiao, Y.; Li, C. Characterization of the UV-visible absorption spectra of commonly used photoinitiators. Mech. Control Eng. 2017, 1, 18–20. [Google Scholar] [CrossRef]
- Guo, X.; Yao, J.; Ji, F.; Wang, R.; Hao, L. UV curable PUA ink with polymerizable surfactant-enhanced Ag@PPy for fabricating flexible and durable conductive coating on the surface of cotton fabric. Prog. Org. Coat. 2023, 174, 107239. [Google Scholar] [CrossRef]
- Mendes-Felipe, C.; Oliveira, J.; Etxebarria, I.; Vilas-Vilela, J.L.; Lanceros-Mendez, S. State-of-the-Art and Future Challenges of UV Curable Polymer-Based Smart Materials for Printing Technologies. Adv. Mater. Technol. 2019, 4, 1800618. [Google Scholar] [CrossRef]
- Decker, C. The use of UV irradiation in polymerization. Polym. Int. 1999, 45, 133–141. [Google Scholar] [CrossRef]
- Park, Y.K.; Oh, H.J.; Lee, H.D.; Lee, J.J.; Kim, J.H.; Lee, W. Facile and eco-friendly fabrication of a colorimetric textile sensor by UV-induced photografting for acidic gas detection. J. Environ. Chem. Eng. 2022, 10, 108508. [Google Scholar] [CrossRef]
- Iwamoto, R.; Murase, H. Infrared spectroscopic study of the interactions of nylon-6 with water. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 1722–1729. [Google Scholar] [CrossRef]
- Glasing, J.; Bouchard, J.; Jessop, P.; Champagne, P.; Cunningham, M. Grafting well-defined CO2-responsive polymers to cellulose nanocrystals via nitroxide-mediated polymerisation: Effect of graft density and molecular weight on dispersion behaviour. Polym. Chem. 2017, 8, 6000–6012. [Google Scholar] [CrossRef]
- Burkinshaw, S.M. Chemical Principles of Synthetic Fibre Dyeing, 1st ed.; Springer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- van de Wetering, P.; Moret, E.E.; Schuurmans-Nieuwenbroek, N.M.; van Steenbergen, M.J.; Hennink, W.E. Structure–activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem. 1999, 10, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Suzawa, T.; Saito, T. Studies of the ζ-Potential of Natural and Synthetic Fibers in Dye Solutions. XVIII. ζ-Potential and Surface Dyeability of Heat-Set Nylon 6 Fiber in an Acid Dye Solution. Bull. Chem. Soc. Jpn. 1968, 41, 539–542. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Pejčić, M.; Pašti, I.; Lazarević-Pašti, T. Spent Coffee Grounds as an Adsorbent for Malathion and Chlorpyrifos—Kinetics, Thermodynamics, and Eco-Neurotoxicity. Foods 2023, 12, 2397. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.S.d.; Bergna, D.; Grimm, A.; Lima, E.C.; Hu, T.; Naushad, M.; Lassi, U. Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids Surf. A Physicochem. Eng. Asp. 2023, 669, 131493. [Google Scholar] [CrossRef]
- Najafi, M.; Bastami, T.R.; Binesh, N.; Ayati, A.; Emamverdi, S. Sono-sorption versus adsorption for the removal of congo red from aqueous solution using NiFeLDH/Au nanocomposite: Kinetics, thermodynamics, isotherm studies, and optimization of process parameters. J. Ind. Eng. Chem. 2022, 116, 489–503. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Gasser, M.S. Adsorption study of anionic reactive dye from aqueous solution to Mg–Fe–CO3 layered double hydroxide (LDH). Appl. Surf. Sci. 2012, 259, 650–656. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; DasGupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef]
- Hu, H.; Wageh, S.; Al-Ghamdi, A.A.; Yang, S.; Tian, Z.; Cheng, B.; Ho, W. NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Appl. Surf. Sci. 2020, 511, 145570. [Google Scholar] [CrossRef]
- Abbas, M.; Trari, M. Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Saf. Environ. Prot. 2015, 98, 424–436. [Google Scholar] [CrossRef]
- Tian, C.; Feng, C.; Wei, M.; Wu, Y. Enhanced adsorption of anionic toxic contaminant Congo Red by activated carbon with electropositive amine modification. Chemosphere 2018, 208, 476–483. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Sun, J.; Jin, X.; Chen, Q.; Wu, X.; Tian, F.; Zhang, X.; Li, P.; Sheng, H. Adsorption enhancement of Congo red dye from wastewater based on edamame shell originated activated carbon by the cations: Experimental and theoretical studies. Diam. Relat. Mater. 2023, 136, 109930. [Google Scholar] [CrossRef]
Composition | Weave | Yarn | Yarn Count | Density | Mass/Unit Area (g/m2) |
---|---|---|---|---|---|
Nylon 6 100% | Plain | 500 D/96 F | 59 | 51 × 38 | 205 |
Concentration (%) | Parameter | |||
---|---|---|---|---|
qe(exp) (mg g−1) | qe(cal) (mg g−1) | k2 (g mg−1 h−1) | R2 | |
1 | 27.59 | 13.91 | 1.568 | 0.667 |
5 | 49.44 | 32.82 | 0.441 | 0785 |
10 | 78.73 | 60.01 | 0.281 | 0.943 |
15 | 77.34 | 74.66 | 0.205 | 0.983 |
20 | 62.86 | 78.79 | 0.150 | 0.816 |
Concentration (%) | Parameter | |||
---|---|---|---|---|
qe(exp) (mg g−1) | qe(cal) (mg g−1) | k2 (g mg−1 h−1) | R2 | |
1 | 27.59 | 17.08 | 0.008 | 0.999 |
5 | 49.44 | 36.28 | 0.016 | 0.998 |
10 | 78.73 | 89.82 | 0.990 | 0.997 |
15 | 77.34 | 81.71 | 0.004 | 0.991 |
20 | 62.86 | 64.76 | 0.007 | 0.973 |
Concentration (%) | Parameter | ||
---|---|---|---|
α (mg g−1 h−1) | β | R2 | |
1 | 67.91 | 0.408 | 0.974 |
5 | 89.00 | 0.175 | 0.984 |
10 | 86.05 | 0.055 | 0.961 |
15 | 88.13 | 0.073 | 0.978 |
20 | 116.24 | 0.098 | 0.971 |
Step | Parameter | ||
---|---|---|---|
C (mg g−1) | kid (mg g−1 h−0.5) | R2 | |
I | 0.00 | 19.67 | 0.988 |
II | 25.64 | 7.327 | - |
III | 30.60 | 0.765 | 0.960 |
Isotherm Model | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Parameter | KL | aL (mg g−1) | R2 | KF (L mg−1) | N | R2 |
0.067 | 86.96 | 0.96 | 0.013 | 2.38 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Park, Y.K.; Shim, J.; Lim, S.; Kim, M. Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation. Polymers 2024, 16, 15. https://doi.org/10.3390/polym16010015
Ryu S, Park YK, Shim J, Lim S, Kim M. Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation. Polymers. 2024; 16(1):15. https://doi.org/10.3390/polym16010015
Chicago/Turabian StyleRyu, Sujin, Young Ki Park, Jaeyun Shim, Seungju Lim, and Minsuk Kim. 2024. "Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation" Polymers 16, no. 1: 15. https://doi.org/10.3390/polym16010015
APA StyleRyu, S., Park, Y. K., Shim, J., Lim, S., & Kim, M. (2024). Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation. Polymers, 16(1), 15. https://doi.org/10.3390/polym16010015