In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Preparation of PQDs/PAN Nanofibers
2.3. Fabrication of WLED
2.4. Characterizations
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Akkerman, Q.A.; Gandini, M.; Di Stasio, F.; Rastogi, P.; Palazon, F.; Bertoni, G.; Ball, J.M.; Prato, M.; Petrozza, A.; Manna, L. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy 2016, 2, 16194. [Google Scholar] [CrossRef]
- Lin, J.; Lu, Y.; Li, X.; Huang, F.; Yang, C.; Liu, M.; Jiang, N.; Chen, D. Perovskite Quantum Dots Glasses Based Backlit Displays. ACS Energy Lett. 2021, 6, 519–528. [Google Scholar] [CrossRef]
- Swarnkar, A.; Chulliyil, R.; Ravi, V.K.; Irfanullah, M.; Chowdhury, A.; Nag, A. Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. Angew. Chem. Int. Ed. 2015, 54, 15424–15428. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Miao, Y.; Hu, Z.; Xu, W.; Kuang, C.; Pan, K.; Liu, P.; Lai, J.; Sun, B.; Wang, J.; et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 2019, 10, 2818. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.; Biju, A.; Sona, C.P.; Peediyekkal, J. Recent trends in synthesis, properties, and applications of CsPbX3 quantum dots: A review. J. Lumin. 2024, 269, 120462. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Z.; Gaponenko, N.V.; Da, Z.; Zhang, C.; Wang, J.; Ji, Y.; Ding, Y.; Yao, Q.; Xu, Y.; et al. Stability Enhancement in All-Inorganic Perovskite Light Emitting Diodes via Dual Encapsulation. Small 2024, 23, 10478. [Google Scholar] [CrossRef] [PubMed]
- Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A.H.; Comin, R.; Sargent, E.H. Materials Processing Routes to Trap-Free Halide Perovskites. Nano Lett. 2014, 14, 6281–6286. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, S.-H.; Lee, J.H.; Hong, K.-H. The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. J. Phys. Chem. Lett. 2014, 5, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Lv, Y.; Cao, B.; Wang, W. Surface Modification Strategy Synthesized CsPbX3 Perovskite Quantum Dots with Excellent Stability and Optical Properties in Water. Adv. Funct. Mater. 2023, 33, 2300493. [Google Scholar] [CrossRef]
- Yu, X.; Wu, L.; Yang, D.; Cao, M.; Fan, X.; Lin, H.; Zhong, Q.; Xu, Y.; Zhang, Q. Hydrochromic CsPbBr3 Nanocrystals for Anti-Counterfeiting, Angew. Chem. Int. Ed. 2020, 59, 14527–14532. [Google Scholar] [CrossRef]
- Qiao, G.-Y.; Guan, D.; Yuan, S.; Rao, H.; Chen, X.; Wang, J.-A.; Qin, J.-S.; Xu, J.-J.; Yu, J. Perovskite Quantum Dots Encapsulated in a Mesoporous Metal–Organic Framework as Synergistic Photocathode Materials. J. Am. Chem. Soc. 2021, 143, 14253–14260. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Tan, D.; Fang, X.; Xia, X.; Lin, D.; Song, J.; Lin, Y.; Liu, Z.; Gu, M.; Yue, Y.; et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 2022, 375, 307–310. [Google Scholar] [CrossRef]
- Chang, H.; Liu, C.; Chen, W. Flexible Nonvolatile Transistor Memory Devices Based on One-Dimensional Electrospun P3HT:Au Hybrid Nanofibers. Adv. Funct. Mater. 2013, 23, 4960–4968. [Google Scholar] [CrossRef]
- Chen, J.Y.; Wu, H.C.; Chiu, Y.C.; Chen, W.C. Plasmon-Enhanced Polymer Photovoltaic Device Performance Using Different Patterned Ag/PVP Electrospun Nanofibers. Adv. Energy Mater. 2014, 4, 1301665. [Google Scholar] [CrossRef]
- Chen, W.; Chen, L.; Liu, F.; Tsai, W.; Tung, B.; Venkatesan, M.; Tsai, M.; Lin, J.; Kuo, C. Perovskite-Nanocrystal-Doped Cellulose Nanocrystal Ligands for Electrospun Nanofibers with Excellent Stability. Small 2023, 19, e2207685. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, H.; Liu, S.; Wang, H.; Zeng, Q.; Liu, Z.; Xiong, Q.; Fan, H.J. Air Stable Organic–Inorganic Perovskite Nanocrystals@Polymer Nanofibers and Waveguide Lasing. Small 2020, 16, 2004409. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Chen, J.-Y.; Ercan, E.; Chueh, C.-C.; Tung, S.-H.; Chen, W.-C. Uniform Luminous Perovskite Nanofibers with Color-Tunability and Improved Stability Prepared by One-Step Core/Shell Electrospinning. Small 2018, 14, e1704379. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, W.; Tański, T.; Jarka, P.; Nowak, M.; Kępińska, M.; Szperlich, P. Comparison of optical properties of PAN/TiO2, PAN/Bi2O3, and PAN/SbSI nanofibers. Opt. Mater. 2018, 83, 145–151. [Google Scholar] [CrossRef]
- Razavi, N.; Neisiany, R.E.; Ayatollahi, M.R.; Ramakrishna, S.; Khorasani, S.N.; Berto, F. Fracture assessment of polyacrylonitrile nanofiber-reinforced epoxy adhesive. Theor. Appl. Fract. Mech. 2018, 97, 448–453. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Y.; Zheng, X.; Zhao, C.; Jin, X.; Wang, W.; Lin, T. A review: Polyacrylonitrile as high-performance piezoelectric materials. Nano Energy 2023, 118, 108987. [Google Scholar] [CrossRef]
- Cheng, R.; Liang, Z.; Zhu, L.; Li, H.; Zhang, Y.; Wang, C.; Chen, S. Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand-Free Perovskite Quantum Dots. Angew. Chem. Int. Ed. 2022, 61, e202204371. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Zhang, L.; Xia, S.; Zhao, Y.; Yan, J.; Yu, J.; Ding, B. Synthesizing Superior Flexible Oxide Perovskite Ceramic Nanofibers by Precisely Controlling Crystal Nucleation and Growth. Small 2021, 18, 2106500. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, X.; Wan, Z.; Fang, G. Full-Spectral Fine-Tuning Visible Emissions from Cation Hybrid Cs1–mFAmPbX3 (X = Cl, Br, and I, 0 ≤ m ≤ 1) Quantum Dots. ACS Appl. Mater. Interfaces 2017, 9, 20671–20678. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Yue, G.; Zhou, Z.; Li, H.; Hou, L.; Sun, C.; Li, X.; Kang, L.; Wang, N.; Zhao, Y.; et al. Phase Transition Induced Thermal Reversible Luminescent of Perovskite Quantum Dots Fibers. Adv. Funct. Mater. 2023, 33, 2300607. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Gong, Z.; Tu, D.; Xu, J.; Zou, Q.; Li, R.; You, W.; Bunzli, J.-C.G.; Chen, X. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018, 9, 3462. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Wang, S.; Zhang, C.; Luo, H.; Li, X.; Wang, H.; Cao, F.; Shen, P.; Zhang, J.; Yang, X. Ten-Gram-Scale Synthesis of FAPbX3 Perovskite Nanocrystals by a High-Power Room-Temperature Ultrasonic-Assisted Strategy and Their Electroluminescence. Adv. Mater. Technol. 2020, 5, 1901089. [Google Scholar] [CrossRef]
- Levchuk, I.; Osvet, A.; Tang, X.; Brandl, M.; Perea, J.D.; Hoegl, F.; Matt, G.J.; Hock, R.; Batentschuk, M.; Brabec, C.J. Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals. Nano Lett. 2017, 17, 2765–2770. [Google Scholar] [CrossRef]
- Minh, D.N.; Kim, J.; Hyon, J.; Sim, J.H.; Sowlih, H.H.; Seo, C.; Nam, J.; Eom, S.; Suk, S.; Lee, S.; et al. Room-Temperature Synthesis of Widely Tunable Formamidinium Lead Halide Perovskite Nanocrystals. Chem. Mater. 2017, 29, 5713–5719. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, N.; Shao, B.; Yao, C.; Ouyang, R.; Miao, Y. Adjustable photoluminescence of Bi3+ and Eu3+ in solid solution constructed by isostructural end components through composition and excitation-driven strategy. Chem. Eng. J. 2020, 421, 127735. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, D.; Yadav, R.S.; Singh, A.K. Recent progress on optical properties of double perovskite phosphors. Prog. Solid State Chem. 2023, 69, 100391. [Google Scholar] [CrossRef]
- Zhang, L.; Li, P.; Zhao, A.; Li, X.; Tang, J.; Zhang, F.; Jia, G.; Zhang, C. Synthesis, structure, and color-tunable luminescence properties of lanthanide activator ions doped bismuth silicate as single-phase white light emitting phosphors. J. Alloys Compd. 2020, 816, 152546. [Google Scholar] [CrossRef]
- Wang, H.; Qian, X.; An, X. Introducing lanthanide metal–organic framework and perovskite onto pulp fibers for fluorescent anti-counterfeiting and encryption. Cellulose 2022, 29, 1115–1127. [Google Scholar] [CrossRef]
- Tian, T.; Yang, M.; Fang, Y.; Zhang, S.; Chen, Y.; Wang, L.; Wu, W.-Q. Large-area waterproof and durable perovskite luminescent textiles. Nat. Commun. 2023, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lou, S.; Xia, C.; Xuan, T.; Li, H. Controllable synthesis of all inorganic lead halide perovskite nanocrystals and white light-emitting diodes based on CsPbBr3 nanocrystals. J. Lumin. 2020, 222, 117132. [Google Scholar] [CrossRef]
- Yang, C.; Niu, W.; Chen, R.; Pang, T.; Lin, J.; Zheng, Y.; Zhang, R.; Wang, Z.; Huang, P.; Huang, F.; et al. In Situ Growth of Ultrapure Green-Emitting FAPbBr3-PVDF Films via a Synergetic Dual-Additive Strategy for Wide Color Gamut Backlit Display. Adv. Mater. Technol. 2022, 7, 2200100. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, H.; Zhang, J.; Wang, L.; An, M.; Wang, Y.; Zhang, X.; Liu, Y. Luminescent perovskite nanocrystal-epoxy resin composite with high stability against water and air. J. Alloys Compd. 2019, 789, 209–214. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, M.; Zhang, J.; Liao, J.; Sun, H.; Ji, D.; Pang, R.; Zhang, H.; Liu, J.; Liu, S. Highly Luminescent and Stable Perovskite Quantum Dots Films for Light-Emitting Devices and Information Encryption. Adv. Funct. Mater. 2024, 23, 16717. [Google Scholar] [CrossRef]
- Hu, X.; Xu, Y.; Wang, J.; Ma, J.; Wang, L.; Jiang, W. In Situ Fabrication of Superfine Perovskite Composite Nanofibers with Ultrahigh Stability by One-Step Electrospinning Toward White Light-Emitting Diode. Adv. Fiber Mater. 2022, 5, 183–197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Su, X.; Wang, X.; Ding, M. In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs. Polymers 2024, 16, 1568. https://doi.org/10.3390/polym16111568
Shi Y, Su X, Wang X, Ding M. In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs. Polymers. 2024; 16(11):1568. https://doi.org/10.3390/polym16111568
Chicago/Turabian StyleShi, Yinbiao, Xiaojia Su, Xiaoyan Wang, and Mingye Ding. 2024. "In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs" Polymers 16, no. 11: 1568. https://doi.org/10.3390/polym16111568
APA StyleShi, Y., Su, X., Wang, X., & Ding, M. (2024). In Situ Synthesis of CsPbX3/Polyacrylonitrile Nanofibers with Water-Stability and Color-Tunability for Anti-Counterfeiting and LEDs. Polymers, 16(11), 1568. https://doi.org/10.3390/polym16111568