Recycling Technologies for Biopolymers: Current Challenges and Future Directions
Abstract
:1. Introduction
2. Overview of Biopolymers
2.1. Definition and Types of Biopolymers
2.2. Applications of Bipolymers
3. Current Recycling Technologies for Biopolymers
4. Challenges in Recycling Biopolymers
4.1. Technical Challenges
4.2. Economic Challenges
4.3. Regulatory and Policy Challenges
4.4. Chemical Breakdown Pathways
4.4.1. Molecular-Level Recycling of Polyhydroxyalkanoates (PHAs)
4.4.2. Chemical Depolymerization of Polylactic Acid (PLA)
4.4.3. Enzymatic Degradation of Polyethylene Terephthalate (PET)
5. Case Studies and Success Stories
5.1. Case Studies
5.1.1. NatureWorks LLC and PLA Recycling
5.1.2. PHA Applications in the Medical and Agricultural Sectors
5.1.3. Recycling of Starch-Based Polymers in Packaging
5.1.4. Chemical Recycling of Biopolymers
5.1.5. Biological Recycling through Composting and Enzymatic Degradation
5.1.6. Public-Private Partnerships in Biopolymer Recycling
5.2. Success Stories: Global and Local Initiatives
5.2.1. Germany’s BioCycle Initiative
5.2.2. Japan’s Biomass Town Concept
5.2.3. US-Based Closed Loop Partners
Brazil’s Sugarcane-Based Plastics
5.2.4. US-Based Compostable Biopolymers in Commercial Food Service
5.2.5. Starch-Based Bioplastics for Food Preservation
5.2.6. US-Based Municipal Solid Waste Management and Composting
6. Future Directions in Biopolymer Recycling
6.1. Innovative Recycling Technologies
6.2. Integration with Circular Economy Models
6.3. Collaborations and Partnerships
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Ford, H.V.; Jones, N.H.; Davies, A.J.; Godley, B.J.; Jambeck, J.R.; Napper, I.E.; Koldewey, H.J. The fundamental links between climate change and marine plastic pollution. Sci. Total Environ. 2022, 806, 150392. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Kibria, M.G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic waste: Challenges and opportunities to mitigate pollution and effective management. Int. J. Environ. Res. 2023, 17, 20. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential health impact of microplastics: A review of environmental distribution, human exposure, and toxic effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Horton, A.A. Plastic pollution: When do we know enough? J. Hazard. Mater. 2022, 422, 126885. [Google Scholar] [CrossRef] [PubMed]
- Babaremu, K.; Oladijo, O.P.; Akinlabi, E. Biopolymers: A suitable replacement for plastics in product packaging. Adv. Ind. Eng. Polym. Res. 2023, 6, 333–340. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A sustainable material for food and medical applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym. Bull. 2023, 80, 7247–7312. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Environmental impact of bioplastic use: A review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef] [PubMed]
- Javaid, H.; Khan, M.; Mustafa, K.; Musaddiq, S. Biodegradable Plastics as a Solution to the Challenging Situation of Plastic Waste Management. In Handbook of Biodegradable Materials; Springer International Publishing: Cham, Germany, 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Thomas, A.P.; Kasa, V.P.; Dubey, B.K.; Sen, R.; Sarmah, A.K. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Sci. Total Environ. 2023, 904, 167243. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Yadav, H.; Shah, V.G.; Shah, G.; Dhaka, G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res. JCDR 2015, 9, ZE21–ZE25. [Google Scholar] [CrossRef] [PubMed]
- Osswald, T.A.; García-Rodríguez, S. History of sustainable bio-based polymers. In A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications; RSC Publishing: Philadelphia, PA, USA, 2011. [Google Scholar] [CrossRef]
- Veettil, U.T.; Olza, S.; Brugerolle de Fraissinette, N.; Bascans, E.; Castejón, N.; Adrien, A.; Fernandes, S.C. Contributions of Women in Recent Research on Biopolymer Science. Polymers 2022, 14, 1420. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.L.; Kumar, S.; Jeslin, J.; Dubey, N.K. Microbial production of biopolymers with potential biotechnological applications. In Biopolymer-Based Formulations; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–137. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, S.; Sharma, B.; Jain, P.; Chauhan, K.D. Biopolymers and their classifications. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–44. [Google Scholar] [CrossRef]
- Ibrahim, S.; Riahi, O.; Said, S.M.; Sabri, M.F.; Rozali, S. Biopolymers from crop plants. Ref. Modul. Mater. Sci. Mater. Eng. 2019. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers 2021, 13, 158. [Google Scholar] [CrossRef]
- Bhatia, S.K. Microbial Biopolymers: Trends in Synthesis, Modification, and Applications. Polymers 2023, 15, 1364. [Google Scholar] [CrossRef] [PubMed]
- Moradali, M.F.; Rehm, B.H. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 2020, 18, 195–210. [Google Scholar] [CrossRef]
- Wankhade, V. Animal-derived biopolymers in food and biomedical technology. In Biopolymer-Based Formulations; Elsevier: Amsterdam, The Netherlands, 2020; pp. 139–152. [Google Scholar] [CrossRef]
- Flórez, M.; Cazón, P.; Vázquez, M. Selected biopolymers’ processing and their applications: A review. Polymers 2023, 15, 641. [Google Scholar] [CrossRef] [PubMed]
- Naser, A.Z.; Deiab, I.; Defersha, F.; Yang, S. Expanding poly (lactic acid)(PLA) and polyhydroxyalkanoates (PHAs) applications: A review on modifications and effects. Polymers 2021, 13, 4271. [Google Scholar] [CrossRef]
- Acharjee, S.A.; Bharali, P.; Gogoi, B.; Sorhie, V.; Walling, B.; Alemtoshi. PHA-based bioplastic: A potential alternative to address microplastic pollution. Water Air Soil Pollut. 2023, 234, 21. [Google Scholar] [CrossRef]
- Gheorghita, R.; Anchidin-Norocel, L.; Filip, R.; Dimian, M.; Covasa, M. Applications of biopolymers for drugs and probiotics delivery. Polymers 2021, 13, 2729. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Pal, A. Application of biopolymers as a new age sustainable material for surfactant adsorption: A brief review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100145. [Google Scholar] [CrossRef]
- Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng. 2021, 9, 105322. [Google Scholar] [CrossRef]
- Opriș, O.; Mormile, C.; Lung, I.; Stegarescu, A.; Soran, M.L.; Soran, A. An overview of biopolymers for drug delivery applications. Appl. Sci. 2024, 14, 1383. [Google Scholar] [CrossRef]
- Gardikiotis, I.; Cojocaru, F.D.; Mihai, C.T.; Balan, V.; Dodi, G. Borrowing the features of biopolymers for emerging Wound Healing Dressings: A review. Int. J. Mol. Sci. 2022, 23, 8778. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.Z.A.; Islam, M.D.; Mobarak, M.H. The Development of Eco-Friendly Biopolymers for Use in Tissue Engineering and Drug Delivery. J. Nanomater. 2023, 2023, 9270064. [Google Scholar] [CrossRef]
- Perera, K.Y.; Jaiswal, A.K.; Jaiswal, S. Biopolymer-based sustainable food packaging materials: Challenges, solutions, and applications. Foods 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Gupta, I.; Cherwoo, L.; Bhatia, R.; Setia, H. Biopolymers: Implications and application in the food industry. Biocatal. Agric. Biotechnol. 2022, 46, 102534. [Google Scholar] [CrossRef]
- Tariq, Z.; Iqbal, D.N.; Rizwan, M.; Ahmad, M.; Faheem, M.; Ahmed, M. Significance of biopolymer-based hydrogels and their applications in agriculture: A review in perspective of synthesis and their degree of swelling for water holding. RSC Adv. 2023, 13, 24731–24754. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.; Sarkar, C.; Saha, S. Biodegradable Polymers for Agriculture. In Biodegradable Polymers and Their Emerging Applications. Materials Horizons: From Nature to Nanomaterials; Saha, S., Sarkar, C., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Ragina, V.; Edison, L.K. Safety issues, environmental impacts, and health effects of biopolymers. In Handbook of Biopolymers; Springer: Singapore, 2022; pp. 1–27. [Google Scholar] [CrossRef]
- Merchan, A.L.; Fischöder, T.; Hee, J.; Lehnertz, M.S.; Osterthun, O.; Pielsticker, S.; Palkovits, R. Chemical recycling of bioplastics: Technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 2022, 24, 9428–9449. [Google Scholar] [CrossRef]
- Babaremu, K.; Adediji, A.; Olumba, N.; Okoya, S.; Akinlabi, E.; Oyinlola, M. Technological Advances in Mechanical Recycling Innovations and Corresponding Impacts on the Circular Economy of Plastics. Environments 2024, 11, 38. [Google Scholar] [CrossRef]
- Zaborowska, M.; Bernat, K. The development of recycling methods for bio-based materials—A challenge in the implementation of a circular economy: A review. Waste Manag. Res. 2023, 41, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of bioplastics: Routes and benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Nomadolo, N.; Mtibe, A.; Ofosu, O.; Mekoa, C.; Letwaba, J.; Muniyasamy, S. The Effect of Mechanical Recycling on the Thermal, Mechanical, and Chemical Properties of Poly (Butylene Adipate-Co-Terephthalate)(PBAT), Poly (Butylene Succinate)(PBS), Poly (Lactic Acid)(PLA), PBAT-PBS Blend and PBAT-TPS Biocomposite. J. Polym. Environ. 2024, 32, 2644–2659. [Google Scholar] [CrossRef]
- Samir, A.; Ashour, F.H.; Hakim, A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. Npj Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Klotz, M.; Oberschelp, C.; Salah, C.; Subal, L.; Hellweg, S. The role of chemical and solvent-based recycling within a sustainable circular economy for plastics. Sci. Total Environ. 2024, 906, 167586. [Google Scholar] [CrossRef]
- Zeller, M.; Netsch, N.; Richter, F.; Leibold, H.; Stapf, D. Chemical recycling of mixed plastic wastes by pyrolysis-pilot scale investigations. Chem. Ing. Tech. 2021, 93, 1763–1770. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Reddy-Chaganti, S.; Morales-Gamez, L.; Kenny, S.; De Wilde, B.; O’Connor, K. Biodegradable plastic blends create new possibilities for end-of-life management of plastics but they are not a panacea for plastic pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E.; Patel, M. Open-loop recycling: A LCA case study of PET bottle-to-fibre recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Song, J.; Murphy, R.; Narayan, R.; Davies, G. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Klemes, J.; Van Fan, Y.; Tan, R.; Jiang, P. Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renew. Sustain. Energy Rev. 2020, 127, 109883. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R.; Nilsson, L.; Zhang, B.; Rehnberg, N.; Lundmark, S. Designing biobased recyclable polymers for plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; García, J. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Tournier, V.; Topham, C.M.; Gilles, A.; David, B.; Folgoas, C.; Moya-Leclair, E.; Kamionka, E.; Desrousseaux, M.L.; Texier, H.; Gavalda, S.; et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020, 580, 216–219. [Google Scholar] [CrossRef]
- NatureWorks LLC. 2024. Available online: https://www.natureworksllc.com (accessed on 15 September 2024).
- Total Corbion PLA. 2024. Available online: https://www.totalenergies-corbion.com (accessed on 15 September 2024).
- Brigham, C.; Sinskey, A. Applications of polyhydroxyalkanoates in the medical industry. Int. J. Biotechnol. Wellness Ind. 2012, 1, 52. [Google Scholar] [CrossRef]
- Hussain, A. Recycling of Food Packaging Materials. In Advances in Food Science and Nutrition; Scripown Publications: New Delhi, India, 2021; Chapter 4. [Google Scholar]
- Joseph, B.; James, J.; Kalarikkal, N.; Thomas, S. Recycling of medical plastics. Adv. Ind. Eng. Polym. Res. 2021, 4, 199–208. [Google Scholar] [CrossRef]
- Kakadellis, S.; Muranko, Z.; Harris, Z.; Aurisicchio, M. Closing the loop: Enabling circular biodegradable bioplastic packaging flow through a systems-thinking framework. Clean. Responsible Consum. 2024, 12, 100183. [Google Scholar] [CrossRef]
- Meeks, D.; Hottle, T.; Bilec, M.; Landis, A. Compostable biopolymer use in the real world: Stakeholder interviews to better understand the motivations realities of use disposal in the US. Resour. Conserv. Recycl. 2015, 105, 134–142. [Google Scholar] [CrossRef]
- Gonçalves, E.; Silva, M.; Andrade, L.; Pinheiro, J. From Fields to Films: Exploring Starch from Agriculture Raw Materials for Biopolymers in Sustainable Food Packaging. Agriculture 2024, 14, 453. [Google Scholar] [CrossRef]
- Everyday Recycler. Innovative Recycling Trends of 2023: What’s Shaping the Future? 2023. Available online: https://everydayrecycler.com/innovative-recycling-trends-of-2023-whats-shaping-the-future/ (accessed on 31 July 2024).
- Geueke, B.; Wagner, C.; Muncke, J. Food contact substances and chemicals of concern: A comparison of inventories. Food Addit. Contam. Part A 2014, 31, 1438–1450. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; Calderón-Santoyo, M.; Ascanio, G.; Ragazzo-Calderón, F.; Parra-Saldívar, R.; Ragazzo-Sánchez, J. Harnessing emerging technologies to obtain biopolymer from agro-waste: Application into the food industry. Biomass Convers. Biorefinery 2023, 3, 1–18. [Google Scholar] [CrossRef]
- Business Wire. Braskem Announces REMADE Institute Grant Award to Develop New Recycling Process Technology. 2023. Available online: https://www.businesswire.com/news/home/20231120122424/en/Braskem-Announces-REMADE-Institute-Grant-Award-to-Develop-New-Recycling-Process-Technology-to-Extract-Pure-Polypropylene-from-PCR (accessed on 31 July 2024).
- TechXplore. Breakthrough in Separating Plastic Waste: Machines Can Now Distinguish 12 Different Types of Plastic. 2022. Available online: https://techxplore.com/news/2022-01-breakthrough-plastic-machines-distinguish.html (accessed on 31 July 2024).
- Ellen MacArthur Foundation. New Plastics Economy: Rethinking the Future of Plastics and Global Commitment 2019. 2019. Available online: https://www.ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics (accessed on 31 July 2024).
Source/Method of Production | Types of Biopolymers | Examples | References |
---|---|---|---|
Synthesis by microorganisms | Polyesters, Polysaccharides, Polyamides, and Polyphosphates | PHA | [19,20,21] |
Derived from animal and plant biomass | Polysaccharides, proteins, and polyesters | Silk, collagen, gelatin, chitosan | [22] |
Biotechnology | Polyesters | PLA | [24] |
Biopolymer | Properties | Sources | Applications | Industry | |
---|---|---|---|---|---|
Chitosan | Low molecular weight, biocompatibility, biodegradability, antimicrobial properties | Crab, shrimp, lobster | Wound healing, tissue engineering, food packaging, bone regeneration, and drug delivery | Food, agriculture, and pharmaceutical | [9,26,27] |
Cellulose | High mechanical strength, renewability, insolubility in water and various organic solvents | Plant cell walls | Drug delivery and packaging | Pharmaceutical, pulp and paper, and food | [8,26,27] |
PHA | Biodegradability, biocompatibility, renewability, high volume-to-surface ratio, good tensile strength, insolubility, and ease of processing | Microbial fermentation of sugar and lipids | Biodegradable packaging, films, laminates, bottles, and containers | Food, agriculture, aerospace, and cosmetics | [19,20,21,32] |
Collagen | High molecular weight, biodegradability, and biocompatibility | Animal protein | Wound management, drug delivery, tissue engineering | Pharmaceutical | [13,22,29] |
Gelatin | High surface activity, bioavailability, and ease of modification | Animal bones, hides, and skin | Emulsifiers, drug delivery, food stabilization | Food, pharmaceutical | [13,22] |
PLA | Biodegradability, high mechanical strength, rigidity, good barrier properties, and light transmission | Microbial fermentation of sugar from plants such as sugar cane, corn, and tapioca | Food packaging, shopping and waste bags, agriculture films, diapers, sanitary towels, and drug delivery systems | Agriculture, food, packaging, and pharmaceutical | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinsemolu, A.A.; Idowu, A.M.; Onyeaka, H.N. Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers 2024, 16, 2770. https://doi.org/10.3390/polym16192770
Akinsemolu AA, Idowu AM, Onyeaka HN. Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers. 2024; 16(19):2770. https://doi.org/10.3390/polym16192770
Chicago/Turabian StyleAkinsemolu, Adenike A., Adetola M. Idowu, and Helen N. Onyeaka. 2024. "Recycling Technologies for Biopolymers: Current Challenges and Future Directions" Polymers 16, no. 19: 2770. https://doi.org/10.3390/polym16192770
APA StyleAkinsemolu, A. A., Idowu, A. M., & Onyeaka, H. N. (2024). Recycling Technologies for Biopolymers: Current Challenges and Future Directions. Polymers, 16(19), 2770. https://doi.org/10.3390/polym16192770