Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview
Abstract
:1. Introduction
2. Coffee Processing By-Products
3. Cellulose Isolation
3.1. Chemical Treatments Applied on Wastes from the Coffee Processing Industry
3.2. Mechanical Disintegration Techniques Applied to Wastes from the Coffee Processing Industry
4. Poly(butylene Adipate-Co-Terephthalate) (PBAT)
4.1. PBAT Nanocomposites Containing CNCs
4.2. PBAT Composites Containing CNFs
5. Conclusions
- -
- Isolating cellulose from coffee residues and wastes is relatively underexplored but presents a promising avenue for sustainable development. This approach not only offers a method to recycle and repurpose coffee industry by-products but also contributes to the creation of environmentally friendly materials and products. By harnessing the potential of these waste materials, we can move towards more sustainable practices in both waste management and material production;
- -
- PBAT/cellulose composites can present improved properties compared with neat PBAT, especially when combined with other fillers, and can be applied to the manufacturing of packaging;
- -
- Some challenges remain to be overcome, such as finding a combination of processes that presents less environmental impact and results in desirable cellulose morphologies, especially regarding nanometric size. It is also necessary to enhance polymer–filler compatibilization through cellulose surface modifications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PBAT | poly(butylene adipate-co-terephthalate) |
ICO | International Coffee Organization |
CNCs | cellulose nanocrystals |
CNFs | cellulose nanofibers |
TEMPO | 2,2,6,6-tetramethylpiperidine-1-oxyl |
SEM | scanning electron microscopy |
XRD | X-ray diffraction |
FTIR | Fourier transform infrared spectroscopy |
TGA | thermogravimetric analysis |
TEM | transmission electron microscopy |
PVA | polyvinyl alcohol |
DES | deep eutectic solvent |
PLA | poly(lactic acid) |
DLS | dynamic light scattering |
BDO | 1,4-butanediol |
AA | adipic acid |
PTA | terephthalic acid |
HR-TEM | high-resolution transmission electron microscopy |
AFM | atomic force microscopy |
PCL | polycaprolactone |
PHB | poly-3-hydroxybutyrate |
PBS | poly(butylene succinate) |
PBSA | poly(succinate-co-butylene adipate) |
TPS | thermoplastic starch |
DMTA | dynamic-mechanical analyses] |
DSC | differential scanning calorimetry |
DMF | dimethylformamide |
TEVS | triethoxyinylsilane |
TMPS | trimethoxyphenylsilane |
OTR | oxygen permeability |
PGMA | poly(glycidyl methacrylate) |
ADPM | admicellar polymerization |
CTP | hexadecyl pyridium chloride monohydrate |
FE-SEM | field emission scanning electron microscopy |
References
- International Coffee Organization (ICO). 2023. Available online: https://www.icocoffee.org/documents/cy2022-23/cmr-0923-p.pdf (accessed on 1 December 2023).
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rezende, T.R.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufian-Henares, J.R. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Sarasini, F.; Luzi, F.; Dominici, F.; Maffei, G.; Iannone, A.; Zuorro, A.; Lavecchia, R.; Torre, L.; Carbonell-Verdu, A.; Balart, R.; et al. Effect of Different Compatibilizers on Sustainable Composites Based on a PHBV/PBAT Matrix Filled with Coffee Silverskin. Polymers 2018, 10, 1256. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.S.; Tienne LG, P.; Souza DH, S.; Marques MF, V.; Monteiro, S.N. Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. J. Mat. Res. Technol. 2020, 9, 9412–9421. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Alves, R.C.; Rodrigues, F.; Nunes, M.A.; Vinha, A.F.; Oliveira MB, P.P. State of the art in coffee processing by-products. Handbook of Coffee Processing By-Products; Academic Press: Cambridge, MA, USA, 2017; pp. 1–26. [Google Scholar]
- Oliveira, E.R.; Silva, R.F.; Santos, P.R.; Queiroz, F. An investigation into green coffee press cake as a renewable source of bioactive compounds. Int. J. Food Sci. Technol. 2019, 54, 1187–1196. [Google Scholar] [CrossRef]
- Brito, E.B.; Tienne LG, P.; Cordeiro, S.B.; Marques MF, V.; Monteiro, S.N. The influence of steam explosion treatment of green coffee cake on the thermal and mechanical properties of reinforced polypropylene matrix composites. J. Mater. Res. Technol. 2020, 9, 4051–4061. [Google Scholar] [CrossRef]
- Tesfaye, A.; Workie, F.; Venkatesh, S.K. Production and Characterization of Coffee Husk Fuel Briquettes as an Alternative Energy Source. Adv. Mater. Sci. Eng. 2022, 2022, 9139766. [Google Scholar] [CrossRef]
- Sisti, L.; Celli, A.; Celli, A.; Totaro, G.; Cinelli, P.; Signori, F.; Lazzeri, A.; Bikaki, M.; Corvini, P.; Ferri, M.; et al. Monomers, Materials and Energy from Coffee By-products: A Review. Sustainability 2021, 13, 6921. [Google Scholar] [CrossRef]
- Niglio, S.; Procentese, A.; Russo, M.E.; Sannia, G.; Marzocchella, A. Investigation of Enzymatic Hydrolysis of Coffee Silverskin Aimed at the Production of Butanol and Succinic Acid by Fermentative Processes. BioEnergy Res. 2019, 12, 312–324. [Google Scholar] [CrossRef]
- Arancibia-Díaz, A.; Astudillo-Castro, C.; Altamirano, C.; Soto-Maldonado, C.; Vergara-Castro, M.; Córdova, A.; Zúñiga-Hansena, M.E. Development of solid-state fermentation process of spent coffee grounds for the differentiated obtaining of chlorogenic, quinic, and caffeic acids. J. Sci. Food Agric. 2023, 103, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, X.; Li, Z.; Lin, X.; Hu, X.; Liu, S.; Li, C. Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. Fermentation 2021, 7, 254. [Google Scholar] [CrossRef]
- Masino, F.; Montevecchi, G.; Calvini, R.; Foca, G.; Antonelli, A. Sensory evaluation and mixture design assessment of coffee-flavored liquor obtained from spent coffee grounds. Food Qual. Pref. 2022, 96, 104427. [Google Scholar] [CrossRef]
- Andrade, M.C.; Alves GS, C.; Fontes, P.R.; Miller RN, G.; Ferreira Filho, E.X. Hydrothermal Treatment of Coffee Residues for the Production of Pectinases by Paecilomyces Formosus. Waste Biomass Valorization 2023, 14, 2375–2388. [Google Scholar] [CrossRef]
- Melanouri, E.; Dedousi, M.; Diamantopoulou, P. Cultivating Pleurotus ostreatus and Pleurotus eryngii mushroom strains on agro-industrial residues in solid-state fermentation. Part I: Screening for growth, endoglucanase, laccase and biomass production in the colonization phase. Carbon Resour. Convers. 2023, 5, 61–70. [Google Scholar] [CrossRef]
- Maxiselly, Y.; Chiarawipa, R.; Somnuk, K.; Hamchara, P.; Cherdthong, A.; Suntara, C.; Prachumchai, R.; Chanjula, P. Digestibility, Blood Parameters, Rumen Fermentation, Hematology, and Nitrogen Balance of Goats after Receiving Supplemental Coffee Cherry Pulp as a Source of Phytochemical Nutrients. Vet. Sci. 2022, 9, 532. [Google Scholar] [CrossRef]
- Otálora, X.D.; Ruiz, R.; Goiri, I.; Rey, J.; Atxaerandio, R.; San Martin, D.; Orive, M.; Iñarra, B.; Zufia, J.; Urkiza, J.; et al. Valorisation of spent coffee grounds as functional feed ingredient improves productive performance of Latxa dairy ewes. Anim. Feed Sci. Technol. 2020, 264, 114461. [Google Scholar] [CrossRef]
- Bessada, S.M.; Alves, R.C.; Oliveira, M.B.P.P. Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Bondam, A.F.; Silveira, D.D.; Santos, J.P.; Hoffmann, J.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic Acids and Caffeine from Coffee By-products: A Review on Skincare Applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Shaghaleh, H.; Xu, X.; Wang, S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv. 2018, 8, 825. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Yang, W.; Luzi, F.; Kenny, J.; Torre, L.; Puglia, D. Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: An overview. Eur. Polym. J. 2016, 80, 295–316. [Google Scholar] [CrossRef]
- Zarrinbakhsh, N.; Wang, T.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Characterization of Wastes and Coproducts from the Coffee Industry for Composite Material Production. Bioresources 2016, 11, 7637–7653. [Google Scholar] [CrossRef]
- Alghooneh, A.; Amini, A.M.; Behrouzian, F.; Razavi SM, A. Characterisation of cellulose from coffee silverskin. Int. J. Food Prop. 2017, 20, 2830–2843. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Cividanes, L.S.; Gouveia, R.F.; Lona LM, F. An Overview on Properties and Applications of Poly(butylene adipate-co-terephthalate)–PBAT Based Composites. Polym. Eng. Sci. 2019, 59, E7–E15. [Google Scholar] [CrossRef]
- Morelli, C.L.; Belgacem, M.N.; Braciforti, M.C.; Bretas RE, S.; Crisci, A.; Bras, J. Supramolecular interactions to enhance biodegradable film properties through incorporation of functionalized cellulose nanocrystals. Compos. Part A 2016, 83, 80–88. [Google Scholar] [CrossRef]
- Moustafa, H.; Guizani, C.; Dufresne, A. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 2017, 134, 44498. [Google Scholar] [CrossRef]
- Othman, S.H. Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agric. Agric. Sci. Procedia 2014, 2, 296–303. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021, 117, 101395. [Google Scholar] [CrossRef]
- Durán, C.A.A.; Tsukui, A.; Santos, F.K.F.; Martinez, S.T.; Bizzo, H.R.; Rezende, C.M. Coffee: General Aspects and its Use beyond the Drink. Rev. Virtual Quim. 2017, 9, 107–134. [Google Scholar] [CrossRef]
- Narita, Y.; Inouye, K. Review on utilization and composition of coffee silverskin. Food Res. Int. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Oliveira, E.R.; Carvalho, G.R.; Cirillo, M.A.; Queiroz, F. Effect of ecofriendly bio-based solvents on oil extraction from green coffee bean and its industrial press cake. Braz. J. Chem. Eng. 2019, 36, 1739–1753. [Google Scholar] [CrossRef]
- Brito, E.B.; Tienne, L.G.P.; Cordeiro, S.B.; Marques, M.F.V. Development of Polypropylene Composites with Green Coffee Cake Fibers Subjected to Water Vapor Explosion. Waste Biomass Valorization 2020, 11, 6855–6867. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A review. Biotechnol. Rep. 2019, 21, e00316. [Google Scholar] [CrossRef]
- Nagarajan, K.J.; Ramanujam, N.R.; Sanjay, M.R.; Siengchin, S.; Rajan, B.S.; Basha, K.S.; Madhu, P.; Raghav, G.R. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polym. Compos. 2021, 42, 1588–1630. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Huang, J.; Lin, N.; Ahmad, I.; Mariano, M.; Dufresne, A.; Thomas, S.; Gałeski, A. Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 2018, 87, 197–227. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Ng, H.; Sin, L.T.; Tee, T.; Bee, S.; Hui, D.; Low, C.; Rahmat, A.R. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos. Part B 2015, 75, 176–200. [Google Scholar] [CrossRef]
- Khalil HP, S.A.; Davoudpour, Y.; Saurabh, C.K.; Hossain, M.S.; Adnan, A.S.; Dungani, R.; Paridah, M.T.; Sarker, M.Z.I.; Fazita, M.R.N.; Syakir, M.I.; et al. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Mondal, S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 2017, 163, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liu, X.; Chang, C.; Wang, Y. Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose 2020, 27, 2991–3011. [Google Scholar] [CrossRef]
- Cichosz, S.; Masek, A.; Rylski, A. Cellulose Modification for Improved Compatibility with the Polymer Matrix: Mechanical Characterization of the Composite Material. Materials 2020, 13, 5519. [Google Scholar] [CrossRef] [PubMed]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Boix, A.C. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 2017, 191, 205–215. [Google Scholar] [CrossRef]
- Panyamao, P.; Charumanee, S.; Ruangsuriya, J.; Saenjum, C. Efficient Isolation of Cellulosic Fibers from Coffee Parchment via Natural Acidic Deep Eutectic Solvent Pretreatment for Nanocellulose Production. ACS Sustain. Chem. Eng. 2023, 11, 13962–13973. [Google Scholar] [CrossRef]
- Rodríguez, J.E.H.; Rincón, D.E.; Rojas, D.F.H.; Orjuela, I.G.C.; Socolovsky, L.M.; Rondón, D.G.E.; Calderón, C.L.L. Effects of hydrolysis and bleaching conditions on the efficiency of cellulose microfibrils extraction from coffee parchment through a design of experiments. Cellulose 2023, 30, 10715–10731. [Google Scholar] [CrossRef]
- Malarat, S.; Khongpun, D.; Limtong, K.; Sinthuwong, N.; Soontornapaluk, P.; Sakdaronnarong, C.; Posoknistakul, P. Preparation of Nanocellulose from Coffee Pulp and Its Potential as a Polymer Reinforcement. ACS Omega 2023, 8, 25122–25133. [Google Scholar] [CrossRef]
- Rizkiansyah, R.R.; Mardiyati, Y.; Hariyanto, A.; Dirgantara, T. Arabica Coffee Pulp Cellulose: Isolation, Morphology, and its Capabilities to be Modified into Cellulose Nitrate. BIO Web Conf. 2023, 77, 01001. [Google Scholar] [CrossRef]
- Sung, S.H.; Chang, Y.; Han, J. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 2017, 169, 495–503. [Google Scholar] [CrossRef]
- Frost, B.A.; Foster, E.J. Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis. J. Renew. Mater. 2020, 8, 187–203. [Google Scholar] [CrossRef]
- Kanai, N.; Honda, T.; Yoshihara, N.; Oyama, T.; Naito, A.; Ueda, K.; Kawamura, I. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): A new non-wood source. Cellulose 2020, 27, 5017–5028. [Google Scholar] [CrossRef]
- Dutta, S.D.; Patel, D.K.; Ganguly, K.; Lim, K. Isolation and characterization of cellulose nanocrystals from coffee grounds for tissue engineering. Mater. Lett. 2021, 287, 129311. [Google Scholar] [CrossRef]
- Dominici, F.; García, D.G.; Fombuena, V.; Luzi, F.; Puglia, D.; Torre, L.; Balart, R. Bio-Polyethylene-Based Composites Reinforced with Alkali and Palmitoyl Chloride-Treated Coffee Silverskin. Molecules 2019, 24, 3113. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Kharkar, P.S.; Pethe, A.M. Biomass and waste materials as potential sources of nanocrystalline cellulose: Comparative review of preparation methods (2016–Till date). Carbohydr. Polym. 2019, 207, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.H.S.; Mothé, M.G.; Marques, M.F.V.; Mothé, C.G.; Monteiro, S.N. Steam-exploded fibers of almond tree leaves as reinforcement of novel recycled polypropylene composites. J. Mater. Res. Technol. 2020, 9, 11791–11800. [Google Scholar] [CrossRef]
- Tienne, G.P.T.; Cordeiro, S.B.; Brito, E.B.; Marques, M.F.V. Microcrystalline cellulose treated by steam explosion and used for thermo-mechanical improvement of polypropylene. J. Compos. Mater. 2020, 54, 002199832091864. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, S.; Abu-Ghannam, N.; Jaiswal, A.K. Two-step sequential pretreatment for the enhanced enzymatic hydrolysis of coffee spent waste. Bioresour. Technol. 2017, 239, 276–284. [Google Scholar] [CrossRef]
- Hamawand, I.; Seneweera, S.; Kumarasinghe, P.; Bundschuh, J. Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: A short review. Nano-Struct. Nano-Objects 2020, 24, 100601. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, S.; Abu-Ghannam, N.; Jaiswal, A.K. Evaluation of ultrasound assisted potassium permanganate pretreatment of spent coffee waste. Bioresour. Technol. 2017, 224, 680–687. [Google Scholar] [CrossRef]
- Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32–43. [Google Scholar] [CrossRef]
- Lee, H.K.; Park, Y.G.; Jeong, T.; Song, Y.S. Green nanocomposites filled with spent coffee grounds. J. Appl. Polym. Sci. 2015, 132, 42043. [Google Scholar] [CrossRef]
- Giang, H.N.; Tran, C.C.; Huynh, T.N.A.; Doan, P.T.M. Spent coffee grounds utilization for green ultraviolet filter and nanocomposite fabrication. eXPRESS Polym. Lett. 2023, 17, 900–912. [Google Scholar] [CrossRef]
- Rhim, J.; Park, H.; Ha, C. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652. [Google Scholar] [CrossRef]
- Jian, J.; Xiangbin, Z.; Xianbo, H. An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)—PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N. ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polym Adv Technol. 2017, 28, 20–27. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable compatibilized polymer blends for packaging applications: A literature review. J. Appl. Polym. Sci. 2018, 135, 45726. [Google Scholar] [CrossRef]
- Balaji, S.; Venkatesan, R.; Mugeeth, L.; Dhamodharan, R. Hydrophobic nanocomposites of PBAT with Cl-fn-POSS nanofiller as compostable food packaging films. Polym. Eng. Sci. 2021, 61, 314–326. [Google Scholar] [CrossRef]
- Pietrosanto, A.; Scarfato, P.; Maio, L.; Incarnato, L. Development of Eco-Sustainable PBAT-Based Blown Films and Performance Analysis for Food Packaging Applications. Materials 2020, 13, 5395. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol. Acta 2014, 53, 501–517. [Google Scholar] [CrossRef]
- Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos. Part B 2019, 173, 107028. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, Y.; Waterhouse, G.I.N.; Gong, R.; Xie, J.; Zhang, K.; Xu, J. Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. 2021, 334, 127487. [Google Scholar] [CrossRef]
- Zhang, T.; Han, W.; Zhang, C.; Weng, Y. Effect of chain extender and light stabilizer on the weathering resistance of PBAT/PLA blend films prepared by extrusion blowing. Polym. Degrad. Stab. 2021, 183, 109455. [Google Scholar] [CrossRef]
- Sousa, F.M.; Costa, A.R.M.; Reul, L.T.A.; Cavalcanti, F.B.; Carvalho, L.H.; Almeida, T.G.; Canedo, E.L. Rheological and thermal characterization of PCL/PBAT Blends. Polym. Bull. 2019, 76, 1573–1593. [Google Scholar] [CrossRef]
- Hoffmann, R.; Morais, D.D.S.; Braz, C.J.F.; Haag, K.; Wellen, R.M.R.; Canedo, E.L.; Carvalho, L.H.; Koschek, K. Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Compos. Part A 2019, 124, 105472. [Google Scholar] [CrossRef]
- Costa, A.R.M.; Crocitti, A.; Carvalho, L.H.; Carroccio, S.C.; Cerruti, P.; Santagata, G. Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends. Polymers 2020, 12, 2317. [Google Scholar] [CrossRef]
- Nofar, M.; Tabatabaei, A.; Sojoudiasli, H.; Park, C.B.; Carreau, P.J.; Heuzey, M.C.; Kamal, M.R. Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur. Polym. J. 2017, 90, 231–244. [Google Scholar] [CrossRef]
- Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Ind. Crops Prod. 2020, 144, 112061. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J. Effect of types of zinc oxide nanoparticles on structural, mechanical and antibacterial properties of poly(lactide)/poly(butylene adipate-co-terephthalate) composite films. Food Packag. Shelf Life 2019, 21, 100327. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N. TiO2 nanoparticles/poly(butylene adipate-co-terephthalate) bionanocomposite films for packaging applications. Polym. Adv. Technol. 2017, 28, 1699–1706. [Google Scholar] [CrossRef]
- Venkatesan, R.; Rajeswari, N. Preparation, Mechanical and Antimicrobial Properties of SiO2/Poly(butylene adipate-co-terephthalate) Films for Active Food Packaging. Silicon 2019, 11, 2233–2239. [Google Scholar] [CrossRef]
- Falcon, G.A.M.; Vitorino, M.B.C.; Almeida, T.G.; Bardi, M.A.G.; Carvalho, L.H.; Canedo, E.L. PBAT/organoclay composite films: Preparation and properties. Polym. Bull. 2017, 74, 4423–4436. [Google Scholar]
- Kashi, S.; Gupta, R.K.; Kao, N.; Bhattacharya, S.N. Electrical, thermal, and viscoelastic properties of graphene nanoplatelet/poly(butylene adipate-co terephthalate) biodegradable nanocomposites. J. Appl. Polym. Sci. 2016, 133, 43620. [Google Scholar] [CrossRef]
- Ren, P.; Liu, X.; Ren, F.; Zhong, G.; Ji, X.; Xu, L. Biodegradable graphene oxide nanosheets/poly-(butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and wáter vapor barrier properties. Polym. Test. 2017, 58, 173–180. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Pinheiro, I.F.; Mariano, M.; Cividanes, L.S.; Costa, J.C.M.; Nascimento, N.R.; Kimura, S.P.R.; Neto, J.C.M.; Lona, L.M.F. Environmentally Friendly Polymer Composites Based on PBAT Reinforced with Natural Fibers from the Amazon Forest. Polym. Compos. 2019, 40, 3351–3360. [Google Scholar] [CrossRef]
- Li, P.; Qin, Y.; Xu, Q.; Jiang, G. Biodegradable composites based on well-characterized cellulose and poly (butyleneadipate-co-terephthalate). BioResources 2023, 18, 1916–1932. [Google Scholar] [CrossRef]
- Hou, L.; Chen, J.; Liu, J. Octadecylamine Graft-modified Cellulose Nanofiber and Its Reinforcement to Poly(butylene adipate-co-terephthalate) Composites. Pap. Biomater. 2022, 7, 42–50. [Google Scholar]
- Hung, Y.; Chiang, M.; Wang, E.; Wu, T. Synthesis, Characterization, and Physical Properties of Maleic Acid-Grafted Poly(butylene adipate-co-terephthalate)/Cellulose Nanocrystal Composites. Polymers 2022, 14, 2742. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Ferreira, F.V.; Alves, G.F.; Rodolfo, A., Jr.; Morales, A.R.; Mei, L.H.I. Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties. J. Polym. Environ. 2019, 27, 757–766. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Dufresne, A.; Pinheiro, I.F.; Souza, D.H.S.; Gouveia, R.F.; Mei, L.H.I.; Lona, L.M.F. How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. Eur. Polym. J. 2018, 108, 274–285. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, P.; Zhang, Y. Structure and properties of surface-acetylated cellulose nanocrystal/poly(butylene adipate-co-terephthalate) composites. Polym. Bull. 2016, 73, 2073–2085. [Google Scholar] [CrossRef]
- Pinheiro, I.F.; Ferreira, F.V.; Souza, D.H.S.; Gouveia, R.F.; Lona, L.M.F.; Morales, A.R.; Mei, L.H.I. Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur. Polym. J. 2017, 97, 356–365. [Google Scholar] [CrossRef]
- Silva, J.B.A.; Bretas, R.E.S.; Lucas, A.A.; Marini, J.; Silva, A.B.; Santana, J.S.; Pereira, F.V.; Druzian, J.I. Rheological, mechanical, thermal, and morphological properties of blends poly(butylene adipate-co-terephthalate), thermoplastic starch, and cellulose nanoparticles. Polym. Eng. Sci. 2020, 60, 1482–1493. [Google Scholar] [CrossRef]
- Vatansever, E.; Arslan, D.; Sarul, D.S.; Kahraman, Y.; Gunes, G.; Durmus, A.; Nofar, M. Development of CNC-reinforced PBAT nanocomposites with reduced percolation threshold: A comparative study on the preparation method. J. Mater. Sci. 2020, 55, 15523–15537. [Google Scholar] [CrossRef]
- Arslan, O.N.; Güntürkün, D.; Göksu, Y.A.; Altınbay, A.; Özer, H.Ö.; Nofar, M. Poly(glycidyl methacrylate) modified cellulose nanocrystals and their PBAT-based nanocomposites. Int. J. Biol. Macromol. 2023, 253, 126851. [Google Scholar] [CrossRef] [PubMed]
- Dhali, K.; Daver, F.; Cass, P.; Field, M.R.; Adhikari, B. Development and Characterisation of Poly(butylene adipate-co-terephthalate)- Silane Modified Cellulose Nanocrystals Composite Materials and Films. J. Polym. Environ. 2023, 31, 4506–4521. [Google Scholar] [CrossRef]
- Mukherjee, T.; Czaka, M.; Kao, N.; Gupta, R.K.; Choi, H.J.; Bhattacharya, S. Dispersion study of nanofibrillated cellulose based poly(butylene adipate-co-terephthalate) composites. Carbohydr. Polym. 2014, 102, 537–542. [Google Scholar] [CrossRef]
- Edlund, U.; Lagerberg, T.; Ålander, E. Admicellar Polymerization Coating of CNF Enhances Integration in Degradable Nanocomposites. Biomacromolecules 2019, 20, 684–692. [Google Scholar] [CrossRef]
- Lai, L.; Li, J.; Liu, P.; Wu, L.; Severtson, S.J.; Wang, W. Mechanically reinforced biodegradable Poly(butylene adipate-co-terephthalate) with interactive nanoinclusions. Polymer 2020, 197, 122518. [Google Scholar] [CrossRef]
- Montero, Y.; Souza, A.G.; Oliveira, E.R.; Rosa, D.S. Nanocellulose functionalized with cinnamon essential oil: A potential application in active biodegradable packaging for strawberry. Sustain. Mater. Technol. 2021, 29, e00289. [Google Scholar] [CrossRef]
Type of Coffee Residue | Type of Cellulose | Diameter (nm) | Length (nm) | Crystallinity Index (%) | Yield (%) | Reference |
---|---|---|---|---|---|---|
Coffee husk | CNCs | 20 ± 4 | 310 ± 160 | 92 | 61.8 ± 2.6 | [47] |
Parchment | CNFs | N/A | N/A | 73.4 | 86.1 | [48] |
microfibrils | N/A | N/A | 74.5 | 20.5 | [7] | |
microfibrils | 3 | N/A | 72 | N/A | [49] | |
Coffee pulp | CNCs | 16.03 ± 4.70 | N/A | 80.5 | N/A | [50] |
microfibrils | N/A | N/A | 59.63 | N/A | [51] | |
CNCs | 7.9 ± 1.8 | 77.9 ± 13.6 | 72 | 12 | [52] | |
Spent coffee ground | CNCs | 17 ± 4 | 199 ± 27 | 74.2 | 10 | [53] |
CNFs | 25 | N/A | 72 | N/A | [54] | |
CNCs | N/A | 115 | 72 | 7 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gondim, F.F.; Rodrigues, J.G.P.; Aguiar, V.O.; de Fátima Vieira Marques, M.; Monteiro, S.N. Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers 2024, 16, 314. https://doi.org/10.3390/polym16030314
Gondim FF, Rodrigues JGP, Aguiar VO, de Fátima Vieira Marques M, Monteiro SN. Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers. 2024; 16(3):314. https://doi.org/10.3390/polym16030314
Chicago/Turabian StyleGondim, Fernanda Fabbri, João Gabriel Passos Rodrigues, Vinicius Oliveira Aguiar, Maria de Fátima Vieira Marques, and Sergio Neves Monteiro. 2024. "Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview" Polymers 16, no. 3: 314. https://doi.org/10.3390/polym16030314
APA StyleGondim, F. F., Rodrigues, J. G. P., Aguiar, V. O., de Fátima Vieira Marques, M., & Monteiro, S. N. (2024). Biocomposites of Cellulose Isolated from Coffee Processing By-Products and Incorporation in Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Matrix: An Overview. Polymers, 16(3), 314. https://doi.org/10.3390/polym16030314