PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification
Abstract
:1. Introduction
2. Classification of Piezoelectric Materials
2.1. Piezoelectric Biopolymers
2.2. Inorganic Piezoelectric Materials
2.3. Organic Piezoelectric Materials
2.3.1. Carbon-Based Piezoelectric Polymers
2.3.2. Polymer-Based Piezoelectric Materials
3. Types of Piezoelectric Polymers
Polyvinylidene Difluoride (PVDF)
4. β-Phase Induction in PVDF
4.1. Stretching
4.2. Poling
4.3. Addition of Fillers
5. Energy-Efficient β-Phase Enhancement in PVDF
6. Energy-Efficient Piezo-Catalytic Membranes
6.1. PVDF-Based Piezo-Catalytic Membranes for Water Purification
6.2. Factors Affecting Piezo-Catalytic Membranes
6.3. Mechanism of Dye Degradation by Piezo-Catalysis Membranes
7. Piezoelectric Phenomena as Net-Zero Emission Source
8. Conclusions and Future Scope
- (1)
- The development of new, stable, and cost-effective piezoelectric materials with enhanced sensitivity is essential. Exploring alternative mechanical energy resources can facilitate the creation of attractive, energy-efficient polymeric materials with specific morphologies and designs.
- (2)
- A comprehensive understanding of the underlying mechanisms through theoretical calculations is needed, including charge transfer, the electronic structure, and the kinetics of piezo-catalytic reactions under light and stress influences. Computational and experimental studies are necessary for the quantitative analysis of the relationship between the piezo potential, electronic energy levels, and intricate material interactions. Such knowledge can guide the discovery of highly efficient multifield catalytic systems by elucidating the energy shifts in metals and p-/n-type semiconductors.
- (3)
- Expanding the applications of piezo-catalysts beyond water splitting and pollutant degradation is crucial; there is a need to explore applications such as CO2 reduction, nitrogen fixation, medical treatments, and selective organic synthesis, which will contribute to practical solutions for energy and environmental challenges. Developing stable and recoverable piezoelectric materials holds promise in addressing these issues.
- (4)
- Advancements in piezo-catalysis can pave the way for sustainable approaches to wastewater treatment. Future researchers can explore smart and advanced fabrication approaches for piezoelectric membranes, enabling the capture and reuse of degraded CO2 and H2. This review not only emphasizes the utilization of natural energy sources to tackle global challenges but also highlights the potential to reuse by-products as an energy source.
- (5)
- Achieving net-zero emissions through highly efficient catalytic activity driven by multiple irradiation sources and natural activities would be a significant step forward in pollutant degradation. Further advancements in membrane design and application hold immense potential but also present open challenges and expectations for piezo-catalytic membrane technology. Continued research and innovation in this field are necessary to unlock its full capabilities.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hanjra, M.A.; Qureshi, M.E. Global Water Crisis and Future Food Security in an Era of Climate Change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Asghar, F.; Shakoor, B.; Fatima, S.; Munir, S.; Razzaq, H.; Naheed, S.; Butler, I.S. Fabrication and Prospective Applications of Graphene Oxide-Modified Nanocomposites For Wastewater Remediation. RSC Adv. 2022, 12, 11750–11768. [Google Scholar] [CrossRef]
- Nawaz, H.; Umar, M.; Ullah, A.; Razzaq, H.; Zia, K.M.; Liu, X. Polyvinylidene Fluoride Nanocomposite Super Hydrophilic Membrane Integrated with Polyaniline-Graphene Oxide Nano Fillers for Treatment of Textile Effluents. J. Hazard. Mater. 2020, 403, 123587. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Roy, A.; Bhasin, S.; Bin Emran, T.; Khusro, A.; Eftekhari, A.; Moradi, O.; Rokni, H.; Karimi, F. Nanomaterials: An Alternative Source for Biodegradation of Toxic Dyes. Food Chem. Toxicol. 2022, 164, 112996. [Google Scholar] [CrossRef]
- Raju, T.D.; Veeralingam, S.; Badhulika, S. Polyvinylidene Fluoride/ZnSnO3 Nanocube/Co3O4 Nanoparticle Thermoplastic Composites for Ultrasound-Assisted Piezo-Catalytic Dye Degradation. ACS Appl. Nano Mater. 2020, 3, 4777–4787. [Google Scholar] [CrossRef]
- Ruan, L.; Yao, X.; Chang, Y.; Zhou, L.; Qin, G.; Zhang, X. Properties and Applications of the β Phase Poly(Vinylidene Fluoride). Polymers 2018, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Hashim, N.A.; Liu, Y.; Moghareh Abed, M.R.; Li, K. Progress in the Production And Modification of PVDF Membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Królikowski, B.; Klimiec, E.; Chylińska, M.; Bajer, D. Advances in the Study of Piezoelectric Polymers. Russ. Chem. Rev. 2019, 88, 749–774. [Google Scholar] [CrossRef]
- Ma, W.; Yao, B.; Zhang, W.; He, Y.; Yu, Y.; Niu, J. Fabrication of PVDF-Based Piezocatalytic Active Membrane with Enhanced Oxytetracycline Degradation Efficiency through Embedding Few-Layer E-MoS2 Nanosheets. Chem. Eng. J. 2021, 415, 129000. [Google Scholar] [CrossRef]
- Shi, L.; Wu, P.; Yu, L.; Zhao, Y.; Li, Z.; Zhao, W.; Wang, Z.; Peng, Y.; Hua, W.; Wang, J.; et al. Enhanced Piezoelectric Properties and Phase Transition in PZT Ceramics Induced by Li+-Sm3+ ionic pairs. Ceram. Int. 2022, 48, 10024–10030. [Google Scholar] [CrossRef]
- Mao, H.; Fan, W.; Cao, H.; Chen, X.; Qiu, M.; Verweij, H.; Fan, Y. Self-Cleaning Performance of In-Situ Ultrasound Generated by Quartz-Based Piezoelectric Membrane. Sep. Purif. Technol. 2021, 282, 120031. [Google Scholar] [CrossRef]
- Persson, G.; Armiento, R.; Kozinsky, B.; Fornari, M.; Alling, B. Screening Fluoride Perovskites for Use in Piezoelectrics Using High-Throughput Calculations. Bull. Am. Phys. Soc. 2022, 14, 67. [Google Scholar]
- Sebastian; Clemens, F. Piezoelectric Application of Metal Oxide Nanofibers. In Metal Oxide-Based Nanofibers and Their Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–246. [Google Scholar]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, W.; Niu, J.; Jin, X.; Sun, Y.; Peng, L.; Li, W.; Wang, H.; Lin, T. Thermoacoustic Energy Harvesting Using Thermally-Stabilized Polyacrylonitrile Nanofibers. Nano Energy 2022, 95, 106995. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Z.; Shi, X.; Xu, Y.; Li, Y.; Wang, X.; Li, Q.; Turng, L. Eggshell Membrane and Expanded Polytetrafluoroethylene Piezoelectric-enhanced Triboelectric Bio-nanogenerators for Energy Harvesting. Int. J. Energy Res. 2021, 45, 11053–11064. [Google Scholar] [CrossRef]
- Gonzalo, B.; Vilas, J.L.; Breczewski, T.; Pérez-Jubindo, M.A.; De La Fuente, M.R.; Rodriguez, M.; León, L.M. Synthesis, Characterization, and Thermal Properties of Piezoelectric Polyimides. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 722–730. [Google Scholar] [CrossRef]
- Trogé, A.; O’leary, R.L.; Hayward, G.; Pethrick, R.A.; Mullholland, A.J. Properties of Photocured Epoxy Resin Materials for Application in Piezoelectric Ultrasonic Transducer Matching Layers. J. Acoust. Soc. Am. 2010, 128, 2704–2714. [Google Scholar] [CrossRef]
- Klimiec, E.; Kaczmarek, H.; Królikowski, B.; Kołaszczyński, G. Cellular Polyolefin Composites as Piezoelectric Materials: Properties and Applications. Polymers 2020, 12, 2698. [Google Scholar] [CrossRef]
- Sinko, K.; Huesing, N.; Zrinyi, M. Piezoelectric Property of Sol-Gel-Derived Composite Gels. In Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics; SPIE: Bellingham, WA, USA, 2001. [Google Scholar]
- Srivastava, H.P.; Arthanareeswaran, G.; Anantharaman, N.; Starov, V.M. Performance of Modified Poly(Vinylidene Fluoride) Membrane for Textile Wastewater Ultrafiltration. Desalination 2011, 282, 87–94. [Google Scholar] [CrossRef]
- Ghaffar, A.; Zhang, L.; Zhu, X.; Chen, B. Porous PVdF/GO Nanofibrous Membranes for Selective Separation and Recycling of Charged Organic Dyes from Water. Environ. Sci. Technol. 2018, 52, 4265–4274. [Google Scholar] [CrossRef]
- Bagchi, B.; Hoque, N.A.; Janowicz, N.; Das, S.; Tiwari, M.K. Re-Usable Self-Poled Piezoelectric/Piezocatalytic Films with Exceptional Energy Harvesting and Water Remediation Capability. Nano Energy 2020, 78, 105339. [Google Scholar] [CrossRef]
- Pan, T.; Liu, Y.; Li, Z.; Fan, J.; Wang, L.; Liu, J.; Shou, W. A Sm-Doped Egeria-Densa-like ZnO Nanowires@PVDF Nanofiber Membrane for High-Efficiency Water Clean. Sci. Total. Environ. 2020, 737, 139818. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.M.; Nasr, R.A. Structural Characterization of PVDF/PVA Polymer Blend Film Doped with Different Concentration of NiO NPs for Photocatalytic Degradation of Malachite Green Dye under Visible Light. J. Appl. Polym. Sci. 2021, 139, 51847. [Google Scholar] [CrossRef]
- Qian, W.; Zhao, K.; Zhang, D.; Bowen, C.R.; Wang, Y.; Yang, Y. Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the Piezo-Catalytic Effect. ACS Appl. Mater. Interfaces 2019, 11, 27862–27869. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.U.D.; Oh, W.-C. Synthesis of BiVO 4 -GO-PVDF Nanocomposite: An Excellent, Newly Designed Material for High Photocatalytic Activity towards Organic Dye Degradation by Tuning Band Gap Energies. Solid State Sci. 2018, 80, 22–30. [Google Scholar] [CrossRef]
- Mishra, H.K.; Sengupta, D.; Babu, A.; Pirzada, B.M.; Sarkar, R.; Naidu, B.S.; Kundu, T.K.; Mandal, D. PVDF/Ag2CO3 Nanocomposites for Efficient Dye Degradation and Flexible Piezoelectric Mechanical Energy Harvester. Sustain. Energy Fuels 2022, 6, 1625–1640. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, M.; Vaish, R. Flexible Ag@LiNbO3/PVDF Composite Film for Piezocatalytic Dye/Pharmaceutical Degradation and Bacterial Disinfection. ACS Appl. Mater. Interfaces 2021, 13, 22914–22925. [Google Scholar] [CrossRef] [PubMed]
- Kochervinskii, V.V. Piezoelectricity in Crystallizing Ferroelectric Polymers: Poly(Vinylidene Fluoride) and Its Copolymers (A Review). Crystallogr. Rep. 2003, 48, 649–675. [Google Scholar] [CrossRef]
- Orudzhev, F.; Ramazanov, S.; Sobola, D.; Kaspar, P.; Trčka, T.; Částková, K.; Kastyl, J.; Zvereva, I.; Wang, C.; Selimov, D.; et al. Ultrasound and Water Flow Driven Piezophototronic Effect in Self-Polarized Flexible α-Fe2O3 Containing PVDF Nanofibers Film for Enhanced Catalytic Oxidation. Nano Energy 2021, 90, 106586. [Google Scholar] [CrossRef]
- Yuan, H.; Han, P.; Tao, K.; Liu, S.; Gazit, E.; Yang, R. Piezoelectric Peptide and Metabolite Materials. Research 2019, 2019, 9025939. [Google Scholar] [CrossRef]
- Guerin, S.; Khorasani, S.; Gleeson, M.; O’donnell, J.; Sanii, R.; Zwane, R.; Reilly, A.M.; Silien, C.; Tofail, S.A.; Liu, N.; et al. A Piezoelectric Ionic Cocrystal of Glycine and Sulfamic Acid. Cryst. Growth Des. 2021, 21, 5818–5827. [Google Scholar] [CrossRef]
- Maleki, H.; Azimi, B.; Ismaeilimoghadam, S.; Danti, S. Poly(Lactic Acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Appl. Sci. 2022, 12, 3192. [Google Scholar] [CrossRef]
- Laroche, G.; Marois, Y.; Guidoin, R.; King, M.W.; Martin, L.; How, T.; Douville, Y. Polyvinylidene Fluoride (PVDF) as a Biomaterial: From Polymeric Raw Material to Monofilament Vascular Suture. J. Biomed. Mater. Res. 1995, 29, 1525–1536. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Murugavel, S.; Guin, M.; Silambarasan, T. Crystal Structure, Hirshfeld, Computational Biomolecular Investigations, and MTT Assay Studies of Amino Pyrimidine Derivative as EGFR Kinase Domain Inhibitor. J. Mol. Struct. 2022, 1254, 132416. [Google Scholar] [CrossRef]
- Wan, X.; Zhao, Y.; Li, Z.; Li, L. Emerging Polymeric Electrospun Fibers: From Structural Diversity to Application in Flexible Bioelectronics and Tissue Engineering. Exploration 2022, 2, 20210029. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Gao, X.; Zhao, S.; Liu, Y.; Zhang, D.; Zhou, K.; Khanbareh, H.; Chen, W.; Zhang, Y.; Bowen, C. Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications. Adv. Mater. 2021, 33, 2008452. [Google Scholar] [CrossRef]
- Wang, S.; Shao, H.-Q.; Liu, Y.; Tang, C.-Y.; Zhao, X.; Ke, K.; Bao, R.-Y.; Yang, M.-B.; Yang, W. Boosting Piezoelectric Response of PVDF-TrFE via MXene for Self-Powered Linear Pressure Sensor. Compos. Sci. Technol. 2020, 202, 108600. [Google Scholar] [CrossRef]
- Kholkin, A.; Amdursky, N.; Bdikin, I.; Gazit, E.; Rosenman, G. Strong Piezoelectricity in Bioinspired Peptide Nanotubes. ACS Nano 2010, 4, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fu, L.; Hu, Z.; Zhong, Y. A Mini-Review on Peptide-Based Self-Assemblies and Their Biological Applications. Nanotechnology 2021, 33, 062004. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lu, X.-M.; Zhang, M.-R.; Hu, K.; Li, Z. Peptide-Based Nanomaterials: Self-Assembly, Properties and Applications. Bioact. Mater. 2021, 11, 268–282. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zeng, Q.; He, L.; Yin, P.; Sun, Y.; Hu, W.; Yang, R. Fabrication and Application of Biocompatible Nanogenerators. iScience 2021, 24, 102274. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Waigh, T. Electronics of Peptide- and Protein-Based Biomaterials. Adv. Colloid Interface Sci. 2020, 287, 102319. [Google Scholar] [CrossRef]
- Horan, R.L.; Antle, K.; Collette, A.L.; Wang, Y.; Huang, J.; Moreau, J.E.; Volloch, V.; Kaplan, D.L.; Altman, G.H. In Vitro Degradation of Silk Fibroin. Biomaterials 2005, 26, 3385–3393. [Google Scholar] [CrossRef]
- Yuan, H.; Han, P.; Tao, Z.; Xue, B.; Guo, Y.; Levy, D.; Hu, W.; Wang, Y.; Cao, Y.; Gazit, E.; et al. Peptide Coassembly to Enhance Piezoelectricity for Energy Harvesting. ACS Appl. Mater. Interfaces 2022, 14, 6538–6546. [Google Scholar] [CrossRef]
- Fukada, E. Piezoelectric Properties of Organic Polymers. Ann. N. Y. Acad. Sci. 1974, 238, 7–25. [Google Scholar] [CrossRef]
- Yu, B.; Mao, M.; Yu, H.; Huang, T.; Zuo, W.; Wang, H.; Zhu, M. Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts. Macromol. Mater. Eng. 2017, 302, 1700214. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong Vibration-Catalysis of ZnO Nanorods for Dye Wastewater Decolorization via Piezo-Electro-Chemical Coupling. Chemosphere 2018, 193, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Chen, Y.; Zeng, L.; Ji, H.; Liu, W.; Zhu, M. Piezo-Activation of Peroxymonosulfate for Benzothiazole Removal in Water. J. Hazard. Mater. 2020, 393, 122448. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yuan, G.; Hao, G.; Wang, Y. All-Inorganic Flexible Piezoelectric Energy Harvester Enabled by Two-Dimensional Mica. Nano Energy 2018, 43, 351–358. [Google Scholar] [CrossRef]
- Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569. [Google Scholar] [CrossRef]
- Lee, J.-T.; Lin, M.-C.; Wu, J.M. High-Efficiency Cycling Piezo-Degradation of Organic Pollutants over Three Liters Using MoS2/Carbon Fiber Piezocatalytic Filter. Nano Energy 2022, 98, 107280. [Google Scholar] [CrossRef]
- Ruan, L.; Jia, Y.; Guan, J.; Xue, B.; Huang, S.; Wu, Z.; Li, G.; Cui, X. Highly Piezocatalysis of Metal-Organic Frameworks Material ZIF-8 under Vibration. Sep. Purif. Technol. 2021, 283, 120159. [Google Scholar] [CrossRef]
- Karmakar, S.; Pramanik, A.; Kole, A.K.; Chatterjee, U.; Kumbhakar, P. Syntheses of Flower and Tube-like MoSe2 Nanostructures for Ultrafast Piezocatalytic Degradation of Organic Dyes on Cotton Fabrics. J. Hazard. Mater. 2021, 424, 127702. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Li, P.; Lei, H.; Tu, C.; Wang, D.; Wang, Z.; Chen, W. Greatly Enhanced Tribocatalytic Degradation of Organic Pollutants by TiO2 Nanoparticles through Efficiently Harvesting Mechanical Energy. Sep. Purif. Technol. 2022, 289, 120814. [Google Scholar] [CrossRef]
- Ning, X.; Hao, A.; Cao, Y.; Hu, J.; Xie, J.; Jia, D. Effective Promoting Piezocatalytic Property of zinc Oxide for Degradation of Organic Pollutants and Insight into Piezocatalytic Mechanism. J. Colloid Interface Sci. 2020, 577, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-Layer Transition Metal Dichalcogenides (MoS2, WS2, and WSe2) for Water Splitting and Degradation of Organic Pollutants: Understanding the Piezocatalytic Effect. Nano Energy 2019, 66, 104083. [Google Scholar] [CrossRef]
- Biswas, A.; Saha, S.; Jana, N.R. ZnSnO3 Nanoparticle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2019, 2, 1120–1128. [Google Scholar] [CrossRef]
- Scheffler, S.; Poulin, P. Piezoelectric Fibers: Processing and Challenges. ACS Appl. Mater. Interfaces 2022, 14, 16961–16982. [Google Scholar] [CrossRef]
- McMeeking, R.M. Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials. Int. J. Fract. 2001, 108, 25–41. [Google Scholar] [CrossRef]
- Rossetti, G.A.; Cross, L.E.; Kushida, K. Stress Induced Shift of the Curie Point In Epitaxial PbTiO3 thin films. Appl. Phys. Lett. 1991, 59, 2524–2526. [Google Scholar] [CrossRef]
- Sridhar, A.; Keip, M.-A. A Phase-Field Model for Anisotropic Brittle Fracturing of Piezoelectric Ceramics. Int. J. Fract. 2019, 220, 221–242. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127. [Google Scholar] [CrossRef]
- Panwar, L.S.; Panwar, V. Development of a Carbon Nanofiber-Attached Flexible Piezoelectric Nanocomposite towards Self-Powered Wearable Devices. Mater. Today Proc. 2022, 62, 6804–6808. [Google Scholar] [CrossRef]
- Abolhasani, M.M.; Azimi, S.; Mousavi, M.; Anwar, S.; Amiri, M.H.; Shirvanimoghaddam, K.; Naebe, M.; Michels, J.; Asadi, K. Porous Graphene/Poly(Vinylidene Fluoride) Nanofibers for Pressure Sensing. J. Appl. Polym. Sci. 2021, 139, 51907. [Google Scholar] [CrossRef]
- Nazir, M.A.; Hassan, A.; Shen, Y.; Wang, Q. Research Progress on Penta-Graphene and Its Related Materials: Properties and Applications. Nano Today 2022, 44, 101501. [Google Scholar] [CrossRef]
- Shoorangiz, M.; Sherafat, Z.; Bagherzadeh, E. CNT Loaded PVDF-KNN Nanocomposite Films with Enhanced Piezoelectric Properties. Ceram. Int. 2022, 48, 15180–15188. [Google Scholar] [CrossRef]
- Kumar, V.; Manikkavel, A.; Kumar, A.; Alam, N.; Hwang, G.; Park, S. Stretchable Piezo-Electric Energy Harvesting Device with High Durability Using Carbon Nanomaterials with Different Structure and Their Synergism with Molybdenum Disulfide. J. Vinyl Addit. Technol. 2022, 28, 813–827. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Ansari, R.; Hassanzadeh-Aghdam, M. Evaluation of Effective Properties of Piezoelectric Hybrid Composites Containing Carbon Nanotubes. Mech. Mater. 2018, 129, 63–79. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, G.; Vaish, R. A Reduced Graphene Oxide/Bismuth Vanadate Composite as an Efficient Piezocatalyst for Degradation of Organic Dye. Mater. Adv. 2021, 2, 4093–4101. [Google Scholar] [CrossRef]
- Song, Y.; Wu, T.; Bao, J.; Xu, M.; Yang, Q.; Zhu, L.; Shi, Z.; Hu, G.-H.; Xiong, C. Porous Cellulose Composite Aerogel Films with Super Piezoelectric Properties for Energy Harvesting. Carbohydr. Polym. 2022, 288, 119407. [Google Scholar] [CrossRef]
- Sappati, K.K.; Bhadra, S. Piezoelectric Polymer and Paper Substrates: A Review. Sensors 2018, 18, 3605. [Google Scholar] [CrossRef]
- Roopa, J.; Geetha, K.; Satyanarayana, B. Fabrication of Polymer Based Flexible Sensors for EoG and EMG Applications. Mater. Today Proc. 2021, 48, 697–701. [Google Scholar] [CrossRef]
- Daryadel, M.; Azdast, T. Comprehensive Study of Theoretical Models for Predicting Piezoelectric Properties Parameters of Polymeric Foams. J. Polym. Res. 2022, 29, 145. [Google Scholar] [CrossRef]
- Mitsumoto, M.; Chen, C.-Y.; Chiu, W.-T.; Chang, T.-F.M.; Watanabe, Y.; Jinno, A.; Kurosu, H.; Sone, M. Supercritical Carbon Dioxide-Assisted Platinum Metallization of Polyethylene Terephthalate Textile toward Wearable Device. Micro Nano Eng. 2022, 15, 100132. [Google Scholar] [CrossRef]
- Tu, R.; Zhang, B.; Sodano, H.A. Lead Titanate Nanowires/Polyamide-Imide Piezoelectric Nanocomposites for High-Temperature Energy Harvesting. Nano Energy 2022, 97, 107175. [Google Scholar] [CrossRef]
- Petroff, C.A.; Bina, T.F.; Hutchison, G.R. Highly Tunable Molecularly Doped Flexible Poly(dimethylsiloxane) Foam Piezoelectric Energy Harvesters. ACS Appl. Energy Mater. 2019, 2, 6484–6489. [Google Scholar] [CrossRef]
- Polymers in Energy Conversion and Storage, 1st ed.; Inamuddin; Ahamed, M.I.; Boddula, R.; Altalhi, T. (Eds.) Taylor and Francis: Boca Raton, FL, USA, 2022; ISBN 978-0-367-77081-5. [Google Scholar]
- Liu, R.; Liu, Q.; He, D.; Sun, G.; Li, Z.; Zhu, Y. Enhancement of the Piezoelectric Property of Polyvinylidene Fluoride through Electroactive Phase Enrichment and the Application in Piezoelectric Generators. ACS Appl. Electron. Mater. 2021, 3, 1804–1812. [Google Scholar] [CrossRef]
- Bozorg, M.; Altomare, A.; Loos, K. Synthesis of Polyvinylidene Fluoride and Its Copolymers. In Organic Ferroelectric Materials and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 85–112. ISBN 978-0-12-821551-7. [Google Scholar]
- Kang, G.; Cao, Y. Application and Modification of Poly(Vinylidene Fluoride) (PVDF) Membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Magistris, A.; Mustarelli, P.; Parazzoli, F.; Quartarone, E.; Piaggio, P.; Bottino, A. Structure, Porosity and Conductivity of PVdF Films for Polymer Electrolytes. J. Power Sources 2001, 97–98, 657–660. [Google Scholar] [CrossRef]
- Nugraha, A.S.; Chou, C.C.; Yu, P.H.; Lin, K. Effects of Applied Voltage on the Morphology and Phases of Electrospun Poly(vinylidene Difluoride) Nanofibers. Polym. Int. 2022, 71, 1176–1183. [Google Scholar] [CrossRef]
- Ahmad, T.; Guria, C.; Shekhar, S. Effects of Inorganic Salts in the Casting Solution on Morphology of Poly(vinyl Chloride)/Bentonite Ultrafiltration Membranes. Mater. Chem. Phys. 2022, 280, 125805. [Google Scholar] [CrossRef]
- Wang, D.; Wu, H.; Gong, J.; Xiong, Y.; Wu, Q.; Zhao, Z.; Wang, L.; Wang, D.; Tang, B.Z. Unveiling the Crucial Contributions of Electrostatic and Dispersion Interactions to the Ultralong Room-Temperature Phosphorescence of H-Bond Crosslinked Poly(vinyl Alcohol) Films. Mater. Horizons 2022, 9, 1081–1088. [Google Scholar] [CrossRef]
- Tao, R.; Shi, J.; Rafiee, M.; Akbarzadeh, A.; Therriault, D. Fused Filament Fabrication of PVDF Films for Piezoelectric Sensing and Energy Harvesting Applications. Mater. Adv. 2022, 3, 4851–4860. [Google Scholar] [CrossRef]
- Miao, J.; Reneker, D.H.; Tsige, M.; Taylor, P.L. Molecular Dynamics Simulations and Morphology Analysis of TEM Imaged PVDF Nanofibers. Polymer 2017, 125, 190–199. [Google Scholar] [CrossRef]
- Gebrekrstos, A.; Muzata, T.S.; Ray, S.S. Nanoparticle-Enhanced β-Phase Formation in Electroactive PVDF Composites: A Review of Systems for Applications in Energy Harvesting, EMI Shielding, and Membrane Technology. ACS Appl. Nano Mater. 2022, 5, 7632–7651. [Google Scholar] [CrossRef]
- Dong, K.; Peng, X.; Wang, Z.L. Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Adv. Mater. 2019, 32, e1902549. [Google Scholar] [CrossRef]
- Sukumaran, S.; Chatbouri, S.; Rouxel, D.; Tisserand, E.; Thiebaud, F.; Ben Zineb, T. Recent Advances in Flexible PVDF Based Piezoelectric Polymer Devices for Energy Harvesting Applications. J. Intell. Mater. Syst. Struct. 2020, 32, 746–780. [Google Scholar] [CrossRef]
- Shin, Y.-H.; Jung, I.; Noh, M.-S.; Kim, J.H.; Choi, J.-Y.; Kim, S.; Kang, C.-Y. Piezoelectric Polymer-Based Roadway Energy Harvesting via Displacement Amplification Module. Appl. Energy 2018, 216, 741–750. [Google Scholar] [CrossRef]
- Trehern, W.; Ortiz-Ayala, R.; Atli, K.; Arroyave, R.; Karaman, I. Data-Driven Shape Memory Alloy Discovery Using Artificial Intelligence Materials Selection (AIMS) Framework. Acta Mater. 2022, 228, 117751. [Google Scholar] [CrossRef]
- ASTM D-638; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- Saxena, P.; Shukla, P. A Comprehensive Review on Fundamental Properties and Applications of Poly(Vinylidene Fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26. [Google Scholar] [CrossRef]
- ASTM D-3418; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D-696; Standard Test Method for Coefficient of Linear Thermal Expansion of Plastics Between −30 °C and 30 °C with a Vitreous Silica Dilatometer. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM D-792; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D-149; Standard Test Method for Dielectric Breakdown Voltage and Dielectric Strength of Solid Electrical Insulating Materials at Commercial Power Frequencies. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D-150; Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. ASTM International: West Conshohocken, PA, USA, 2018.
- Lee, D.W.; Jeong, D.G.; Kim, J.H.; Kim, H.S.; Murillo, G.; Lee, G.-H.; Song, H.-C.; Jung, J.H. Polarization-Controlled PVDF-Based Hybrid Nanogenerator for an Effective Vibrational Energy Harvesting from Human Foot. Nano Energy 2020, 76, 105066. [Google Scholar] [CrossRef]
- Krajewski, A.S.; Magniez, K.; Helmer, R.J.N.; Schrank, V. Piezoelectric Force Response of Novel 2D Textile Based PVDF Sensors. IEEE Sens. J. 2013, 13, 4743–4748. [Google Scholar] [CrossRef]
- Lund, A.; Gustafsson, C.; Bertilsson, H.; Rychwalski, R.W. Enhancement of β Phase Crystals Formation with the Use of Nanofillers in PVDF Films and Fibres. Compos. Sci. Technol. 2011, 71, 222–229. [Google Scholar] [CrossRef]
- RP, V.; Khakhar, D.V.; Misra, A. Studies on α to β Phase Transformations in Mechanically Deformed PVDF Films. J. Appl. Polym. Sci. 2010, 117, 3491–3497. [Google Scholar] [CrossRef]
- Wu, L.; Jin, Z.; Liu, Y.; Ning, H.; Liu, X.; Alamusi; Hu, N. Recent Advances in the Preparation of PVDF-Based Piezoelectric Materials. Nanotechnol. Rev. 2022, 11, 1386–1407. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Liu, Z.; Li, L. Preparation of High-Performance Polyvinylidene Fluoride Films by the Combination of Simultaneous Biaxial Stretching and Solid-State Shear Milling Technologies. Ind. Eng. Chem. Res. 2020, 59, 18539–18548. [Google Scholar] [CrossRef]
- Cauda, V.; Stassi, S.; Bejtka, K.; Canavese, G. Nanoconfinement: An Effective Way to Enhance PVDF Piezoelectric Properties. ACS Appl. Mater. Interfaces 2013, 5, 6430–6437. [Google Scholar] [CrossRef]
- Pusty, M.; Shirage, P.M. Insights and Perspectives on Graphene-PVDF Based Nanocomposite Materials for Harvesting Mechanical Energy. J. Alloys Compd. 2022, 904, 164060. [Google Scholar] [CrossRef]
- Furukawa, T. Ferroelectric Properties of Vinylidene Fluoride Copolymers. Phase Transit. 1989, 18, 143–211. [Google Scholar] [CrossRef]
- Mukaffa, H.; Asrofi, M.; Sujito; Asnawi; Hermawan, Y.; Sumarji; Qoryah, R.D.H.; Sapuan, S.; Ilyas, R.; Atiqah, A. Effect of Alkali Treatment of Piper Betle Fiber on Tensile Properties as Biocomposite Based Polylactic Acid: Solvent Cast-Film Method. Mater. Today Proc. 2021, 48, 761–765. [Google Scholar] [CrossRef]
- Amudhu, L.T.; Samsingh, R.V.; Gautam, R. AI modelling and Evaluation of Process Parameters of Spin Coated PVDF thin Film. Mater. Today Proc. 2022, 62, 868–875. [Google Scholar] [CrossRef]
- Sencadas, V.; Gregorio, R.; Lanceros-Méndez, S. α to β Phase Transformation and Microestructural Changes of PVDF Films Induced by Uniaxial Stretch. J. Macromol. Sci. Part B 2009, 48, 514–525. [Google Scholar] [CrossRef]
- Wu, C.M.; Chou, M.H. Polymorphism, Piezoelectricity and Sound Absorption of Electrospun PVDF Membranes with and without Carbon Nanotubes. Compos. Sci. Technol. 2016, 127, 127–133. [Google Scholar] [CrossRef]
- Ting, Y.; Suprapto; Bunekar, N.; Sivasankar, K.; Aldori, Y.R. Using Annealing Treatment on Fabrication Ionic Liquid-Based PVDF Films. Coatings 2020, 10, 44. [Google Scholar] [CrossRef]
- Mahdi, R.I.; Gan, W.C.; Majid, W.H.A. Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators. Sensors 2014, 14, 19115–19127. [Google Scholar] [CrossRef]
- Wu, J.; Sun, X.; Zhu, S.; Bai, J.; Zhu, X.; Dai, J.; Yin, L.; Song, W.; Sun, Y. Magnetic Field Induced Formation of Ferroelectric β Phase of Poly (Vinylidene Fluoride). Appl. Phys. A 2020, 126, 624. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, M.; Ma, R.; Wang, X.; Cao, W.; Liu, C.; Shen, C.; Wang, Z. High Performance Piezoelectric Polymer Film with Aligned Electroactive Phase Nanofibrils Achieved by Melt Stretching of Slightly Crosslinked Poly(vinylidene Fluoride) for Sensor Applications. Chem. Eng. J. 2022, 433, 134475. [Google Scholar] [CrossRef]
- Lei, D.; Hu, N.; Wu, L.; Huang, R.; Lee, A.; Jin, Z.; Wang, Y. Preparation of Efficient Piezoelectric PVDF–HFP/Ni Composite Films by High Electric Field Poling. Nanotechnol. Rev. 2022, 11, 452–462. [Google Scholar] [CrossRef]
- El Achaby, M.; Arrakhiz, F.; Vaudreuil, S.; Essassi, E.; Qaiss, A. Piezoelectric β-Polymorph Formation and Properties Enhancement in Graphene Oxide—PVDF Nanocomposite films. Appl. Surf. Sci. 2012, 258, 7668–7677. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Ahn, K.K. Functionalized Graphene Oxide/Polyvinylidene Fluoride Composite Membrane Acting as a Triboelectric Layer for Hydropower Energy Harvesting. Int. J. Energy Res. 2022, 46, 9549–9559. [Google Scholar] [CrossRef]
- Ghasemi, A.K.; Ghorbani, M.; Lashkenari, M.S.; Nasiri, N. Controllable Synthesis of Zinc Ferrite Nanostructure with Tunable Morphology on Polyaniline Nanocomposite for Supercapacitor Application. J. Energy Storage 2022, 51, 104579. [Google Scholar] [CrossRef]
- Venkatesan, M.; Chen, W.-C.; Cho, C.-J.; Veeramuthu, L.; Chen, L.-G.; Li, K.-Y.; Tsai, M.-L.; Lai, Y.-C.; Lee, W.-Y.; Chen, W.-C.; et al. Enhanced Piezoelectric and Photocatalytic Performance of Flexible Energy Harvester Based on CsZn0.75Pb0.25I3/CNC–PVDF Composite Nanofibers. Chem. Eng. J. 2022, 433, 151811. [Google Scholar] [CrossRef]
- Pan, J.; Li, Y.; Guo, G.; Zhao, X.; Yu, J.; Li, Z.; Xu, S.; Man, B.; Wei, D.; Zhang, C. Synergizing Piezoelectric and Plasmonic Modulation of PVDF/MoS2 Cavity/Au for Enhanced Photocatalysis. Appl. Surf. Sci. 2021, 577, 151811. [Google Scholar] [CrossRef]
- Sharma, M.; Singh, G.; Vaish, R. Piezocatalysis in Ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3/Polyvinylidene Difluoride (PVDF) Composite Film. J. Appl. Phys. 2021, 130, 085107. [Google Scholar] [CrossRef]
- Zang, C.; Han, X.; Chen, H.; Zhang, H.; Lei, Y.; Liu, H.; Wang, C.; Zhang, G.; Ge, M. In Situ Growth of ZnO/Ag2O Heterostructures on PVDF Nanofibers as Efficient Visible-Light-Driven Photocatalysts. Ceram. Int. 2022, 48, 27379–27387. [Google Scholar] [CrossRef]
- Han, S.; Chen, D.; Wang, J.; Liu, Z.; Liu, F.; Chen, Y.; Ji, Y.; Pang, J.; Liu, H.; Wang, J. Assembling Sn3O4 Nanostructures on a Hydrophobic PVDF Film through Metal-F Coordination to construct a Piezotronic Effect-Enhanced Sn3O4/PVDF Hybrid Photocatalyst. Nano Energy 2020, 72, 104688. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, L.; Zhao, W.; Chen, L.; Zhang, M.; Yang, G.; Zhang, H. Antifouling Mechanism of the Additive-Free β-PVDF Membrane in Water Purification Process: Relating the Surface Electron Donor Monopolarity to Membrane-Foulant Interactions. J. Membr. Sci. 2020, 601, 117873. [Google Scholar] [CrossRef]
- Dai, B.; Huang, H.; Wang, F.; Lu, C.; Kou, J.; Wang, L.; Xu, Z. Flowing Water Enabled Piezoelectric Potential of Flexible Composite Film for Enhanced Photocatalytic Performance. Chem. Eng. J. 2018, 347, 263–272. [Google Scholar] [CrossRef]
- Bae, J.; Baek, I.; Choi, H. Efficacy of Piezoelectric Electrospun Nanofiber Membrane for Water Treatment. Chem. Eng. J. 2017, 307, 670–678. [Google Scholar] [CrossRef]
- Darestani, M.; Coster, H.; Chilcott, T.; Fleming, S.; Nagarajan, V.; An, H. Piezoelectric Membranes for Separation Processes: Fabrication and Piezoelectric Properties. J. Membr. Sci. 2013, 434, 184–192. [Google Scholar] [CrossRef]
- Coster, H.; Farahani, T.D.; Chilcott, T. Production and Characterization of Piezo-Electric Membranes. Desalination 2011, 283, 52–57. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y.; Sun, Y.; Jin, X.; Niu, J.; Cheng, M.; Wang, H.; Shao, H.; Lin, T. High-Temperature Piezoelectric Conversion Using Thermally Stabilized Electrospun Polyacrylonitrile Membranes. J. Mater. Chem. A 2021, 9, 20395–20404. [Google Scholar] [CrossRef]
- Su, Y.P.; Sim, L.N.; Li, X.; Coster, H.G.; Chong, T.H. Anti-Fouling Piezoelectric PVDF Membrane: Effect of Morphology on Dielectric and Piezoelectric Properties. J. Membr. Sci. 2020, 620, 118818. [Google Scholar] [CrossRef]
- Zou, D.; Lee, Y.M. Design Strategy of Poly(Vinylidene Fluoride) Membranes for Water Treatment. Prog. Polym. Sci. 2022, 128, 101535. [Google Scholar] [CrossRef]
- Hattori, T.; Kanaoka, M.; Ohigashi, H. Improved Piezoelectricity in Thick Lamellar β-Form Crystals of Poly(Vinylidene Fluoride) Crystallized Under high Pressure. J. Appl. Phys. 1996, 79, 2016–2022. [Google Scholar] [CrossRef]
- Salimi, A.; Yousefi, A. Analysis Method: FTIR Studies of β-Phase Crystal Formation in Stretched PVDF Films. Polym. Test. 2003, 22, 699–704. [Google Scholar] [CrossRef]
- Ye, Y.; Jiang, Y.; Wu, Z.; Zeng, H. Phase Transitions of Poly(Vinylidene Fluoride) under Electric Fields. Integr. Ferroelectr. 2006, 80, 245–251. [Google Scholar] [CrossRef]
- Mohamadi, S.; Sharifi-Sanjani, N. Investigation of the Crystalline Structure of PVDF in PVDF/PMMA/Graphene Polymer Blend Nanocomposites. Polym. Compos. 2011, 32, 1451–1460. [Google Scholar] [CrossRef]
- Nasir, M.; Matsumoto, H.; Danno, T.; Minagawa, M.; Irisawa, T.; Shioya, M.; Tanioka, A. Control of Diameter, Morphology, and Structure of PVDF Nanofiber Fabricated by Electrospray Deposition. J. Polym. Sci. Part B Polym. Phys. 2006, 44, 779–786. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Wang, J.; Han, X.; Xu, Z. A Robust PVDF-Assisted Composite Membrane for Tetracycline Degradation in Emulsion and Oil-Water Separation. Nanomaterials 2021, 11, 3201. [Google Scholar] [CrossRef]
- Wang, R.; Xie, X.; Xu, C.; Lin, Y.; You, D.; Chen, J.; Li, Z.; Shi, Z.; Cui, Q.; Wang, M. Bi-piezoelectric Effect Assisted ZnO Nanorods/PVDF-HFP Spongy Photocatalyst for Enhanced Performance on Degrading Organic Pollutant. Chem. Eng. J. 2022, 439, 135787. [Google Scholar] [CrossRef]
- Buxton, W.G.; King, S.G.; Stolojan, V. Suppression of Self-Discharge in Aqueous Supercapacitor Devices Incorporating Highly Polar Nanofiber Separators. Energy Environ. Mater. 2022, 6, e12363. [Google Scholar] [CrossRef]
- Jiao, H.; Jin, J.; Zhao, K.; Zhou, X.R.; Zhang, X.; Song, S.; Wang, J.; Tang, Y.; Cui, G. Synthesis and Piezoelectric Photocatalytic, Mechanical, and Electrical Properties of Porous t-BaTiO3/Ag/β-PVDF Composite Material. J. Thermoplast. Compos. Mater. 2022, 36, 2031–2049. [Google Scholar] [CrossRef]
- Muduli, S.P.; Veeralingam, S.; Badhulika, S. Free-Standing, Non-Toxic and Reusable 0.67BiFeO3–0.33BaTiO3 Based Polymeric Piezo-Catalyst for Organic Dye Wastewater Treatment. J. Water Process. Eng. 2022, 48, 102934. [Google Scholar] [CrossRef]
- Bößl, F.; Tudela, I. Piezocatalysis: Can Catalysts Really Dance? Curr. Opin. Green Sustain. Chem. 2021, 32, 100537. [Google Scholar] [CrossRef]
- Bößl, F.; Comyn, T.P.; Cowin, P.I.; García-García, F.R.; Tudela, I. Piezocatalytic Degradation of Pollutants in Water: Importance of Catalyst Size, Poling and Excitation Mode. Chem. Eng. J. Adv. 2021, 7, 100133. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wang, Y.; Liu, S.; Deng, Y. Sonochemical Formation of Iron Oxide Nanoparticles in Ionic Liquids for Magnetic Liquid Marble. Phys. Chem. Chem. Phys. 2012, 14, 5132–5138. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Dong, S.; Wang, P.; Chen, W.; Lu, Z.; Ye, D.; Pan, B.; Wu, D.; Vecitis, C.D.; et al. Ultrasonic Activation of Inert Poly(Tetrafluoroethylene) Enables Piezocatalytic Generation of Reactive Oxygen Species. Nat. Commun. 2021, 12, 3508. [Google Scholar] [CrossRef] [PubMed]
- Thuy Phuong, P.T.; Zhang, Y.; Gathercole, N.; Khanbareh, H.; Hoang Duy, N.P.; Zhou, X.; Zhang, D.; Zhou, K.; Dunn, S.; Bowen, C. Demonstration of Enhanced Piezo-Catalysis for Hydrogen Generation and Water Treatment at the Ferroelectric Curie Temperature. iScience 2020, 23, 101095. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tu, S.; Zeng, C.; Zhang, T.; Reshak, A.H.; Zhang, Y. Macroscopic Polarization Enhancement Promoting Photo- and Piezoelectric-Induced Charge Separation and Molecular Oxygen Activation. Angew. Chem. Int. Ed. 2017, 56, 11860–11864. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano 2012, 6, 5164–5173. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef]
- Yang, B.; Chen, Y.; Shi, J. Nanocatalytic Medicine. Adv. Mater. 2019, 31, e1901778. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, Y.; Shi, J. Nanoenzyme-Augmented Cancer Sonodynamic Therapy by Catalytic Tumor Oxygenation. ACS Nano 2018, 12, 3780–3795. [Google Scholar] [CrossRef]
- Gusarov, B.; Gusarova, E.; Viala, B.; Gimeno, L.; Cugat, O. PVDF Piezoelectric Voltage Coefficient In Situ Measurements as a Function of Applied stress. J. Appl. Polym. Sci. 2016, 133, 43248. [Google Scholar] [CrossRef]
- Masselin, I.; Chasseray, X.; Durand-Bourlier, L.; Lain, J.M.; PSyzaret, Y.; Lemordant, D. Effect of Sonication on Polymeric Membranes. J. Membr. Sci. 2001, 181, 213–220. [Google Scholar] [CrossRef]
- Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect? Angew. Chem. 2021, 134, e202110429. [Google Scholar] [CrossRef]
- Wan, L.; Tian, W.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Hydrophilic Porous PVDF Membrane Embedded with BaTiO3 Featuring Controlled Oxygen Vacancies for Piezocatalytic Water Cleaning. Nano Energy 2022, 94, 106930. [Google Scholar] [CrossRef]
- Sahni, M.; Locke, B.R. Quantification of Hydroxyl Radicals Produced in Aqueous Phase Pulsed Electrical Discharge Reactors. Ind. Eng. Chem. Res. 2006, 45, 5819–5825. [Google Scholar] [CrossRef]
- Yang, G.; Chen, Q.; Wang, W.; Wu, S.; Gao, B.; Xu, Y.; Chen, Z.; Zhong, S.; Chen, J.; Bai, S. Cocatalyst Engineering in Piezocatalysis: A Promising Strategy for Boosting Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 15305–15314. [Google Scholar] [CrossRef]
- Chen, L.; Jia, Y.; Zhao, J.; Ma, J.; Wu, Z.; Yuan, G.; Cui, X. Strong Piezocatalysis in Barium Titanate/Carbon Hybrid Nanocomposites for Dye Wastewater Decomposition. J. Colloid Interface Sci. 2020, 586, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yin, X.; Dai, B.; Kou, J.; Ni, Y.; Lu, C. Water Flow Drived Piezo-Photocatalytic Flexible Films: Bi-Piezoelectric Integration of ZnO Nanorods and PVDF. Appl. Surf. Sci. 2020, 517, 146119. [Google Scholar] [CrossRef]
Polymer Nanocomposite Membrane Fabrication | Method of Fabrication | Shape | Dye Degradation | Ref. |
---|---|---|---|---|
PVDF/GO | Electrospinning/modified Hummer’s method | Nanofibrous membranes | 99% | [22] |
PVDF/MoS2 | Solution processing/hydrothermal process | Flat sheet with uniform distribution of nanoparticles | 90% | [23] |
PVDF/ZnO | Electrospinning | Nanofibrous membrane | 99% | [24] |
PVDF/ZnSO3, Co3O4 | Simple blending hot molding/hydrothermal | Simple blending hot molding | 99% | [5] |
PVDF/PVA blended with NiO NPs | Casting technique | Nanocomposite membrane | 95.4% | [25] |
PVDF/barium titanate (BaTiO3, BTO)–polydimethylsiloxane (PDMS) composite | Electrospinning method | Nanofibrous membrane | 94% | [26] |
PVDF/BiVO4–GO | Ultrasonic method/hydrothermal method | Resembles a human embryo embedded inside an amniotic sac | 99% | [27] |
PVDF/Ag2CO3 | Solution processing/co-precipitation method | Flat sheet with uniform distribution of nanoparticles | 80% | [28] |
Ag@LiNbO3/PVDF | Solvent casting method | Flat sheet | 90% | [29] |
Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZTO) ferroelectric ceramic particles/PVDF | Polymerization method | Flat sheet | 91% | [30] |
Inorganic Piezoelectric Material | Fabrication Method | Shape | Application | Condition | Performance | Ref. |
---|---|---|---|---|---|---|
Barium titanate (BaTiO3) NPs | Hydrothermal process | Tetragonal | Degradation of organic pollutants | Ultrasound (110 W, 40 kHz) | 67% | [52] |
Molybdenum disulfide (MoS2) nanoflowers (NFs)/carbon fibers | Hydrothermal process | Nanoflower/fibers | Degradation of organic pollutants | Ultrasound (250 W, 40 kHz) | 90% | [53] |
2-Methylimidazole zinc salt (ZIF-8) nanoparticles | Liquid phase method | Nano-diamonds | Dye degradation of rhodamine | Vibrations | 94.5% | [54] |
Flower-like to tube-like microstructures of molybdenum disulfide (MoS2) | Solvothermal reaction | 230 nm nanoflower | Dye degradation | Ultrasonic vibrations | 86% | [55] |
Molybdenum disulfide (MoS2)/graphdiyne | Ball milling | Nanosheets | Degradation of tetracycline | Piezo-catalysis | 87% | [53] |
Titanium dioxide (TiO2) nanoparticles | Hydrothermal method | Granular-shaped nanoparticles | Degradation of different dyes | Magnetic stirring | 99.7% | [56] |
Zinc oxide (ZnO) nanoparticles | Facile green solid state chemistry method at room temperature | Nanoparticles, nanorods | Degradation of methylene blue | Ultrasonic vibrations | 99% | [57] |
Few layers of tungsten sulfide/molybdenum disulfide/tungsten diselenide (WS/MoS2/WSe2) | Solvothermal method | Nanosheets | Degradation of tetracycline and rhodamine B | Ultrasonic vibrations | 90% | [58] |
Orthorhombic zinc stannate (ZnSnO3) nanoparticles | Colloidal dispersion method | 4–5 nm nanoparticles | Dye degradation | Ultrasonic vibrations | 100% | [59] |
Fabrication Method of PVDF Polymer | Physical Properties | Chemical Properties | Thermal Properties | Mechanical Properties | Applications | Ref. |
---|---|---|---|---|---|---|
Phase inversion | Colorless | Resistant to organic solvents | Melting point 169 °C | Tensile strength at 23 °C, 35–55 MPa, ASTM D-638 [94] | Sensors and actuators | [95] |
[7] | ||||||
Use of inorganic particles with polymer solution | 1.78 g/cm3 density | Resistant to alcohols | Deflection temperature (261 psi) 114–118 °C | Elongation at 23 °C, 25–500 %, ASTM D-638 | Spin valve devices | [7,95] |
Phase separation using supercritical CO2 as non-solvent | Melting point, 177 °C, ASTM D-3418 [96] | Resistant to acids and bases | Oxygen index 43% | Young’s modulus at 23 °C, 1340–2000 MPa, ASTM D-638 | Magnetoelectric materials | [7,95] |
Electrospinning | Glass transition temperature −35 °C | Resistant to oils and fats | Maximum service temperature 149 °C | Thermal expansion coefficient, ASTM D-696 [97] ~10–4 | Energy harvesting applications | [95] |
Method of fabrication depends on application | Relative density, 1.76–1.8 g/cm, (solid) ASTM D-792 [98] | Resistant to milk, glucose, vinegar, olive oil | Thermal stability 0.17–0.19 W/m−K | Dielectric strength, 260–950 kV/mm, ASTM D-149 [99] | Tissue engineering | [7,95] |
- | Heat deflection temperature (0.5 MPa) 148 °C | - | Flammability UL-94 V-O °C | Dissipation factor, 0.0163–0.019 (1 kHz), ASTM D-150 [100] | Membrane technology | [7,95] |
Method of Beta-Phase Enhancement | Mechanism Involved in Improving Piezoelectricity | Limitations of the Method | Ref |
---|---|---|---|
Stretching | Effective dipole moment alignment | Decrease in crystallinity | [112] |
Poling | Induces stress due to electric field | Electric breakdown | [109] |
Addition of nanofillers | Increases crystallinity and uniform distribution Less electricity required for poling | Filler aggregation Failure in poling process | [113] |
Heat treatment | Realignment of molecular chains by heat treatment | Crystallinity degree increases Expansion of amorphous regions, which causes defect formation | [114] [115] |
Filler alignment | Crystallinity degree increased | Suppression of crystallinity process at higher magnetic fields | [116] |
PVDF Composite Processing Method | Materials/Fillers | Improved Properties | Applications | Ref |
---|---|---|---|---|
Solution casting method | MoS2 nanoflowers | Self-poled piezoelectricity | 90% dye degradation | [23] |
Polyaniline (PANI) electrochemical/zinc ferrite nanorods/hydrothermal method–drop casting technique to prepare a ternary PVDF composite (80 mm) | PANI helps to stabilize the output voltage. It works as a dispersing agent for nanofillers and improves the homogeneity of the filler distribution in zinc ferrite nanorods to improve the mechanical and piezoelectric properties | Output piezo voltage of 4.2 V and enhanced high-power density of 3.56 mw/mm3 | To charge capacitors, self-powered devices, and sensors | [121] |
Simple hot blending technique | PVDF/zinc stannate/cobalt oxide composite | Rhodamine B (RhB) and methylene blue (MB) degradation | 100% dye degradation efficiency in 20 mints | [5] |
Electrospinning | Inorganic perovskite quantum dots (IPQDs; CsPb0.25Zn0.75I3) with eco-friendly cellulose nanocrystal (CNC) ligands in polyvinylidene fluoride (PVDF) | Pyro-catalytic RhB dye degradation | 91% RhB dye decay | [122] |
A facile approach to produce plasmonic modulated PVDF/MoS2 cavity/Au heterostructure via hydrothermal method | PVDF/MoS2 cavity/Au heterostructure | Water purification | 99.9% MB degradation within 45 min | [123] |
Solvent casting method | Polyvinylidene difluoride with LiNbO3 ceramics decorated with silver nanoparticles (AgNPs) | Cationic and anionic dye degradation, pharmaceutical pollutant degradation | 99% MB dye degradation 80% RB dye degradation 75% MO dye degradation | [29] |
Solution casting method | Ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZTO) ceramic particles were immobilized in a polymer matrix of polyvinylidene difluoride (PVDF) | Methylene blue, rhodamine B, and methyl orange | ∼91% MB degradation, ∼86% rhodamine B degradation, and 90% methyl orange degradation 180 min, sonication | [124] |
Β-Phase PVDF Piezo-Catalytic Membrane | Method of Fabrication | Application | Ref |
---|---|---|---|
PVDF/MoS2 nanosheets | Electrospinning | Oxytetracycline degradation in water | [9] |
PVDF with different morphologies | Non-solvent-induced phase separation method | Improved piezoelectric response | [127] |
PVDF composite film embedding LiNbO3 ceramics decorated with silver nanoparticles (Ag NPs) | Solvent casting method | Dye/pharmaceutical degradation and bacterial disinfection | [23] |
Fe2O3/PVDF-HFP porous film | Fenton degradation mechanism | Self-powered environment cleaning | [31] |
PVDF/MoS2 cavity/Au heterostructure | Hydrothermal method | Wastewater treatment | [123] |
Glass fiber (FG)-assisted polyvinylidene fluoride (PVDF) hybrid membrane | Solution coating method | Tetracycline degradation and oil–water separation in wastewater | [140] |
Bi-piezoelectric ZnO nanorods (NR)/PVDF–HFP spongy film | Phase inversion method | Dye degradation, can be recycled | [141] |
Polyvinylidene fluoride (PVDF) nanofiber films containing a small concentration of sodium dodecyl sulfate (SDS) | Electrospinning | Supercapacitor applications | [142] |
t-BaTiO3/Ag/β-PVDF composite material | Use of compounding powder and polymer | Dye degradation | [143] |
Reusable polyvinylidene fluoride (PVDF)–[0.67BiFeO3–0.33BaTiO3] (BF33BT) composite | Sol–gel and solvent casting method | Dye degradation | [144] |
Factor | Mechanism | Effect on Piezo-Catalysis | Role in Dye Degradation | Ref |
---|---|---|---|---|
Absorption–desorption equilibrium | Attained by dye solution in dark without sonication | Proves effect of vibration on sample | No notable changes in the concentration of the dye without ultrasonication | [5] |
Poling | Poling of material causes better charge separation | Poling of piezoelectric material causes better charge separation due to electric field generation | In undoped PVDF film, the dyes remained unchanged even after prolonged ultrasonication, indicating the piezoelectric effect in MoS2–PVDF film catalytic process | [146] |
Ultrasonic power | Piezo-catalyst excitation | Ultrasonication power has some effects on piezo-catalysis | Calorimetrically calibrated ultrasonic system should be used to determine the ‘real’ acoustic power | [148] |
Temperature | Ultrasonication causes gradual increase in temperature | Rise in temperature may affect piezo-catalytic process | Dye degradation affected by change in temperature | [149] |
Acoustic field | Acoustic field set up by ultrasonication plays role in piezo-catalysis | Controls reproducibility of the acoustic field while using sonication to excite piezo-catalysts | Better control and understanding of the acoustic field can enable its modulation to enhance piezo-catalytic activity | [145] |
Heterojunction | Mechanical deformation helps in transfer of charges | Linear voltage changes across the material | Free charges create piezo potential for dye degradation | [146] |
PVDF Composite | Dye Used | Radical Generated | Scavenger Test | Degradation Product | Net Zero | Ref |
---|---|---|---|---|---|---|
MoS2–PVDF | Acridine orange (AO), Eosin Y (EO), ethidium bromide (ET), and rhodamine B (RHO) (Lobachemie) | •OH hydroxyl radical | •OH trapping with terephthalic acid, which forms fluorescent hydroxy terephthalic acid upon reaction with •OH radical | Carbon dioxide and water (CO2 + H2O) | Reuse of carbon dioxide and water (CO2 + H2O) as fuel | [18] |
PVDF/ZnSn3 nanocube/Co3O4 nanoparticle | RhB degradation | (OH) hydroxyl radical (O−2) superoxide radical | Tert-butyl alcohol (TBA), benzoquinone (BQ), and disodium ethylenediaminetetraacetate dehydrate (EDTA) | Carbon dioxide and water (CO2 + H2O) | [5] | |
ZnO nanowire/PVDF nanofiber | RhB degradation | (OH) hydroxyl radical (O−2) superoxide radical | Isopropanol (IPA), disodium ethylenediamine tetraacetate (EDTA), and benzoquinone (BQ) | Carbon dioxide and water CO2 + H2O | Reuse of CO2 + H2O as fuel | [24] |
Bi-piezoelectric integration of ZnO nanorods and PVDF | RhB degradation | (OH) hydroxyl radical (O−2) superoxide radical | Use of scavengers | Carbon dioxide and water (CO2 + H2O) | Reuse of CO2 + H2O as fuel | [162] |
BiVO4-GO-PVDF nanocomposite | Methylene blue (MB), rhodamine B (RhB), and safranin O (SO) | (OH) hydroxyl radical (O−2) superoxide radical | Use of scavengers | Carbon dioxide and water (CO2 + H2O) | Reuse of CO2 + H2O as fuel | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddique, A.; Nawaz, H.; Razzaque, S.; Tabasum, A.; Gong, H.; Razzaq, H.; Umar, M. PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers 2024, 16, 699. https://doi.org/10.3390/polym16050699
Siddique A, Nawaz H, Razzaque S, Tabasum A, Gong H, Razzaq H, Umar M. PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers. 2024; 16(5):699. https://doi.org/10.3390/polym16050699
Chicago/Turabian StyleSiddique, Amna, Hifza Nawaz, Shumaila Razzaque, Anila Tabasum, Hugh Gong, Humaira Razzaq, and Muhammad Umar. 2024. "PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification" Polymers 16, no. 5: 699. https://doi.org/10.3390/polym16050699
APA StyleSiddique, A., Nawaz, H., Razzaque, S., Tabasum, A., Gong, H., Razzaq, H., & Umar, M. (2024). PVDF-Based Piezo-Catalytic Membranes—A Net-Zero Emission Approach towards Textile Wastewater Purification. Polymers, 16(5), 699. https://doi.org/10.3390/polym16050699