Enhancing Radiation Shielding Capabilities with Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate Fillers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Coral Processing
2.2. Composite Material Preparation Involves Blending Coral Powder with Epoxy Resin
2.3. Comprehensive Characterization of Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate
2.4. Experimental Setup and Evaluation of Radiation Shielding Effectiveness
3. Results
3.1. Elemental Composition of Coral Sample Analyzed by X-Ray Fluorescence
3.2. Particle Size Distribution (PSD) Analysis of Coral Powder
3.3. Morphological Characterization of Epoxy–Resin Composites Incorporating Coral Powder at Varying Weight Fractions
3.4. Physical Characteristics of Coral Powder SAMPLE Analyzed via SEM-EDS
3.5. Radiation Attenuation Properties of Epoxy Composites Reinforced with Coral-Derived Calcium Carbonate
3.6. Comparison of Radiation Shielding Properties Between High Filler Coral-Derived Calcium Carbonate Composite and Lead
3.7. Mechanical Properties for Epoxy-Resin COMPOSITES Incorporating Coral-Derived Calcium Carbonate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbhuiya, S.; Das, B.B.; Norman, P.; Qureshi, T. A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications. Struct. Concr. 2024. [Google Scholar] [CrossRef]
- Prasad, K.; Cole, W.; Haase, G. Radiation protection in humans: Extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br. J. Radiol. 2004, 77, 97–99. [Google Scholar] [CrossRef]
- McCaffrey, J.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2007, 34, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Z. Progress in Ionizing Radiation Shielding Materials. Adv. Eng. Mater. 2024, 26, 2400855. [Google Scholar] [CrossRef]
- Flora, S.J.; Flora, G.; Saxena, G. Environmental occurrence, health effects and management of lead poisoning. In Lead; Elsevier: Amsterdam, The Netherlands, 2006; pp. 158–228. [Google Scholar]
- Oglat, A.A.; Shalbi, S.M. An Alternative Radiation Shielding Material Based on Barium-Sulphate (BaSO4)-Modified Fly Ash Geopolymers. Gels 2022, 8, 227. [Google Scholar] [CrossRef]
- Asemi, N.N.; Aldawood, S.; AlSalhi, M.S.; Kassim, H.; Al-Qaili, A.H.; Aziz, A. Advancing gamma radiation shielding with Bitumen-WO3 composite materials. J. Radiat. Res. Appl. Sci. 2024, 17, 101143. [Google Scholar]
- Li, R.; Gu, Y.; Wang, Y.; Yang, Z.; Li, M.; Zhang, Z. Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Mater. Res. Express 2017, 4, 035035. [Google Scholar] [CrossRef]
- Maghrabi, H.A.; Vijayan, A.; Deb, P.; Wang, L. Bismuth oxide-coated fabrics for X-ray shielding. Text. Res. J. 2016, 86, 649–658. [Google Scholar] [CrossRef]
- Moonkum, N.; Pilapong, C.; Daowtak, K.; Tochaikul, G. Evaluation of silicone rubber shielding material composites enriched with BaSO4 and Bi2O3 particles for radiation shielding properties. Mater. Res. Innov. 2023, 27, 296–303. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, T.; Yuan, L.; Fang, Q.; Wang, X.; Guo, X.; Zhang, D.; Lai, C.; Wang, Q.; Liu, Y. A comparative study between pure bismuth/tungsten and the bismuth tungsten oxide for flexible shielding of gamma/X rays. Radiat. Phys. Chem. 2023, 208, 110906. [Google Scholar] [CrossRef]
- Almousa, N.; Nabil, I.M.; Issa, S.A.; Zakaly, H.M. Enhancing Radiation Shielding with Gadolinium (III) Oxide in Cerium (III) Fluoride-Doped Silica Borate Glass. Sci. Technol. Nucl. Install. 2024, 2024, 8910531. [Google Scholar] [CrossRef]
- Kalkornsuranee, E.; Intom, S.; Lehman, N.; Johns, J.; Kothan, S.; Sengloyluan, K.; Chaiphaksa, W.; Kaewkhao, J. Mechanical and gamma radiation shielding properties of natural rubber composites: Effects of bismuth oxide (Bi2O3) and lead oxide (PbO). Mater. Res. Innov. 2022, 26, 8–15. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Emsley, J. Nature’s Building Blocks: An AZ Guide to the Elements; Oxford University Press, USA: New York, NY, USA, 2011. [Google Scholar]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-z.; Ji, Y.-r.; Kang, Z.-w.; Li, F.; Ge, S.-f.; Yang, D.-P.; Ruan, J.; Fan, X.-q. Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chem. Eng. J. 2020, 395, 125098. [Google Scholar] [CrossRef]
- Tochaikul, G.; Moonkum, N. Development of Sustainable X-ray Shielding Materials: An Innovative Approach Using Epoxy Composite with Crab Shell, Eggshell, and Bone Waste. Radiat. Phys. Chem. 2024, 222, 111871. [Google Scholar] [CrossRef]
- Alrowaili, Z.; Alnairi, M.M.; Olarinoye, I.; Alhamazani, A.; Alshammari, G.S.; Al-Buriahi, M. Radiation attenuation of fly ash and rice husk ash-based geopolymers as cement replacement in concrete for shielding applications. Radiat. Phys. Chem. 2024, 217, 111489. [Google Scholar] [CrossRef]
- Kim, S.-C. Process technology for development and performance improvement of medical radiation shield made of eco-friendly oyster shell powder. Appl. Sci. 2022, 12, 968. [Google Scholar] [CrossRef]
- Pawar, P.R.; Shirgaonkar, S.S.; Patil, R.B. Plastic marine debris: Sources, distribution and impacts on coastal and ocean biodiversity. PENCIL Publ. Biol. Sci. 2016, 3, 40–54. [Google Scholar]
- Iñiguez, M.E.; Conesa, J.A.; Fullana, A. Marine debris occurrence and treatment: A review. Renew. Sustain. Energy Rev. 2016, 64, 394–402. [Google Scholar] [CrossRef]
- De, K.; Sautya, S.; Gaikwad, S.; Mitra, A.; Nanajkar, M. Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity. Environ. Pollut. 2022, 298, 118798. [Google Scholar] [CrossRef]
- Allemand, D.; Osborn, D. Ocean acidification impacts on coral reefs: From sciences to solutions. Reg. Stud. Mar. Sci. 2019, 28, 100558. [Google Scholar] [CrossRef]
- Baino, F.; Ferraris, M. Learning from Nature: Using bioinspired approaches and natural materials to make porous bioceramics. Int. J. Appl. Ceram. Technol. 2017, 14, 507–520. [Google Scholar] [CrossRef]
- He, Z.-h.; Shen, M.-l.; Shi, J.-y.; Yalçınkaya, Ç.; Du, S.-g.; Yuan, Q. Recycling coral waste into eco-friendly UHPC: Mechanical strength, microstructure, and environmental benefits. Sci. Total Environ. 2022, 836, 155424. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Niu, Y.; Chen, M.; Geng, J.; Zhang, C.; Li, X.; Yang, P. Utilization of recycled coral sand and aluminum scraps in foam concrete: Preparation, insulation of environmental noise and heat, and pore structure. J. Build. Eng. 2024, 95, 110153. [Google Scholar] [CrossRef]
- Herrán, N.; Narayan, G.R.; Reymond, C.E.; Westphal, H. Calcium carbonate production, coral cover and diversity along a distance gradient from Stone Town: A case study from Zanzibar, Tanzania. Front. Mar. Sci. 2017, 4, 412. [Google Scholar] [CrossRef]
- Karacan, I.; Cox, N.; Dowd, A.; Vago, R.; Milthorpe, B.; Cazalbou, S.; Ben-Nissan, B. The synthesis of hydroxyapatite from artificially grown Red Sea hydrozoan coral for antimicrobacterial drug delivery system applications. J. Aust. Ceram. Soc. 2021, 57, 399–407. [Google Scholar] [CrossRef]
- Corbin, C. The role of waste management in underpinning the Blue Economy. In The Caribbean Blue Economy; Routledge: London, UK, 2020; pp. 195–209. [Google Scholar]
- Nama, S.; Shanmughan, A.; Nayak, B.B.; Bhushan, S.; Ramteke, K. Impacts of marine debris on coral reef ecosystem: A review for conservation and ecological monitoring of the coral reef ecosystem. Mar. Pollut. Bull. 2023, 189, 114755. [Google Scholar] [CrossRef]
- Cao, L.; Liu, X.; Na, H.; Wu, Y.; Zheng, W.; Zhu, J. How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. J. Mater. Chem. A 2013, 1, 5081–5088. [Google Scholar] [CrossRef]
- Moonkum, N.; Pilapong, C.; Daowtak, K.; Tochaikul, G. Radiation protection device composite of epoxy resin and iodine contrast media for low-dose radiation protection in diagnostic radiology. Polymers 2023, 15, 430. [Google Scholar] [CrossRef]
- Tochaikul, G.; Tanadchangsaeng, N.; Panaksri, A.; Moonkum, N. Innovative radiation shielding material with flexible lightweight and low cost from shrimp shells waste. Radiat. Phys. Chem. 2024, 225, 112162. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium Orthophosphates: Applications in Nature, Biology, and Medicine; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Reichert, C.L.; Bugnicourt, E.; Coltelli, M.-B.; Cinelli, P.; Lazzeri, A.; Canesi, I.; Braca, F.; Martínez, B.M.; Alonso, R.; Agostinis, L. Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers 2020, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhang, Z.; Wang, J.; Li, K. Compressive properties of nano-calcium carbonate/epoxy and its fibre composites. Compos. Part B Eng. 2013, 45, 919–924. [Google Scholar] [CrossRef]
- Li, L.; Zou, H.; Shao, L.; Wang, G.; Chen, J. Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate particles. J. Mater. Sci. 2005, 40, 1297–1299. [Google Scholar] [CrossRef]
- Rudawska, A.; Frigione, M. Aging effects of aqueous environment on mechanical properties of calcium carbonate-modified epoxy resin. Polymers 2020, 12, 2541. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Heo, Y.-J.; Park, S.-J. Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Processes 2019, 7, 178. [Google Scholar] [CrossRef]
- Lee, H.L.; Lee, V.S.; Md Akil, M.A.M.; Mohammed Akib, N.A.; Gew, L.T.; Lim, T.H.; Othman, R.; Su’ait, M.S.; Tang, W.K.; Yeoh, Y.S. Malaysia’s progress in achieving the United Nations sustainable development goals (SDGs) through the lens of chemistry. Pure Appl. Chem. 2024, 97, 91–119. [Google Scholar] [CrossRef]
- Schileo, G.; Grancini, G. Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. J. Mater. Chem. C 2021, 9, 67–76. [Google Scholar] [CrossRef]
- Bruckner, A.W. Advances in management of precious corals to address unsustainable and destructive harvest techniques. Cnidaria Past Present Future World Medusa Her Sisters 2016, 747–786. [Google Scholar]
- Carter, R.B.; Kelly, K.; Tindale, N.; Beazley, H.; Worachananant, S.; Worachananant, P.; Siriwong, S. Coral reef, water quality status and community understanding of threats in the eastern gulf of Thailand. APN 2014. [Google Scholar]
- Wilkinson, C.C. Status of Coral Reefs of the World: 2004; Australian Institute of Marine Science (AIMS): Townsville, Australia, 2004. [Google Scholar]
- Trinkūnaitė-Felsen, J. Investigation of Calcium Hydroxyapatite Synthesized Using Natural Precursors. Doctoral Dissertation, Vilnius University, Vilnius, Lithuania, 2014. [Google Scholar]
- Sinclair, D.J. Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization. Geochim. Cosmochim. Acta 2005, 69, 3265–3284. [Google Scholar] [CrossRef]
- Ihsani, R.N.; Heryanto, H.; Gareso, P.L.; Tahir, D. Innovative radiation shielding: A review natural polymer-based aprons with metal nanoparticle fillers. Polym.-Plast. Technol. Mater. 2024, 63, 738–755. [Google Scholar] [CrossRef]
- Qureshi, N.; Dhand, V.; Subhani, S.; Kumar, R.S.; Raghavan, N.; Kim, S.; Doh, J. Exploring Conductive Filler-Embedded Polymer Nanocomposite for Electrical Percolation via Electromagnetic Shielding-Based Additive Manufacturing. Adv. Mater. Technol. 2024, 9, 2400250. [Google Scholar] [CrossRef]
- Putra, N.E.; Zhou, J.; Zadpoor, A.A. Sustainable Sources of Raw Materials for Additive Manufacturing of Bone-Substituting Biomaterials. Adv. Healthc. Mater. 2024, 13, 2301837. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.A.M.M.; Franco, P.A.; Azhagesan, N.; Sharun, V. Exploring seashell and rice husk waste for lightweight hybrid biocomposites: Synthesis, microstructure, and mechanical performance. Biomass Convers. Biorefinery 2023, 14, 30161–30170. [Google Scholar] [CrossRef]
Elemental Oxides | Weight Percentage (%) |
---|---|
Calcium Oxide (CaO) | 51.6 |
Magnesium Oxide (MgO) | 1.06 |
Strontium oxide (SrO) | 0.77 |
Silicon Dioxide (SiO2) | 0.66 |
Sodium Oxide (Na2O) | 0.58 |
Sulfur Trioxide (SO3) | 0.4 |
Aluminum Oxide (Al2O3) | 0.12 |
Chlorine (Cl) | 0.09 |
Phosphorus Pentoxide (P2O5) | 0.07 |
Iron Oxide (Fe2O3) | 0.06 |
Potassium Oxide (K2O) | 0.03 |
Element | Pure Epoxy (Wt%) | Coral 25% (Wt%) | Coral 50% (Wt%) |
---|---|---|---|
C | 81.24 | 52.34 | 46.69 |
O | 18.55 | 23.18 | 31.79 |
Si | 0.21 | 1.8 | 6.91 |
Mg | - | 0.26 | 1.4 |
Al | - | 0.16 | 2.19 |
S | - | 2.2 | - |
Ca | - | 7.55 | 8.28 |
Ti | - | 2.81 | - |
Fe | - | 1.13 | 1.61 |
Ba | - | 8.58 | - |
Na | - | - | 0.7 |
K | - | - | 0.43 |
Total | 100 | 100 | 100 |
Material | Coral-50% | Lead |
---|---|---|
Radiation Dose (µGy) | 321.5 | 27.75 |
Absorption dose (%) | 24.57 | 93.49 |
Linear attenuation coefficient | 0.94 | 5.46 |
Half value layer, HVL (cm) | 0.74 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tochaikul, G.; Tanadchangsaeng, N.; Panaksri, A.; Moonkum, N. Enhancing Radiation Shielding Capabilities with Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate Fillers. Polymers 2025, 17, 113. https://doi.org/10.3390/polym17010113
Tochaikul G, Tanadchangsaeng N, Panaksri A, Moonkum N. Enhancing Radiation Shielding Capabilities with Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate Fillers. Polymers. 2025; 17(1):113. https://doi.org/10.3390/polym17010113
Chicago/Turabian StyleTochaikul, Gunjanaporn, Nuttapol Tanadchangsaeng, Anuchan Panaksri, and Nutthapong Moonkum. 2025. "Enhancing Radiation Shielding Capabilities with Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate Fillers" Polymers 17, no. 1: 113. https://doi.org/10.3390/polym17010113
APA StyleTochaikul, G., Tanadchangsaeng, N., Panaksri, A., & Moonkum, N. (2025). Enhancing Radiation Shielding Capabilities with Epoxy-Resin Composites Reinforced with Coral-Derived Calcium Carbonate Fillers. Polymers, 17(1), 113. https://doi.org/10.3390/polym17010113