Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Poly(B5AMA)–CNC Nanocomposites
2.3. Extraction of Anthocyanin Dye
2.4. Quantification and Evaluation of Dye Extract
2.5. Dye Loading
2.6. Scanning Electron Microscopy (SEM)
2.7. X-Ray Photoelectron Spectroscopy (XPS) Analysis
2.8. Transmission Electron Microscopy (TEM) Analysis
2.9. Fourier Transform Infrared Spectroscopy
2.10. Scratch Assay
2.11. NMR
2.12. Colour Change upon Bacterial Burden in Solution
2.13. Colour Change upon Bacterial Burden in Films
2.14. Quantification of Colour Change Using Image J
3. Results and Discussion
3.1. Poly(B5AMA)–CNC Composite Synthesis and Characterization
3.2. Anthocyanin Extraction and Solution Properties of Dye-Loaded CNCs and Composites
3.3. Polymeric Composite-Coated Surfaces
4. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Doyle, C.; Ahmed, M. Antifouling Coatings Inspired by Biological Templates. Macromol. Rapid Commun. 2025, 46, e2400932. [Google Scholar] [CrossRef] [PubMed]
- Faÿ, F.; Champion, M.; Guennec, A.; Moppert, X.; Simon-Colin, C.; Elie, M. Biobased Anti-Adhesive Marine Coatings from Polyhydroxyalkanoates and Polysaccharides. Coatings 2023, 13, 766. [Google Scholar] [CrossRef]
- Xie, X.; Liu, J.; Li, G.; Zhang, K.; Wang, X.; Zheng, Z.; Wang, X.; Kaplan, D.L. Silk Fibroin Catheter with Stable Bioinspired Inner-Surfaces for Inhibition of Bioadhesion. Int. J. Biol. Macromol. 2024, 274, 133271. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.S.; Elsherif, M.; Moreddu, R.; Rashid, I.; Hassan, M.U.; Yetisen, A.K.; Butt, H. Anthocyanin-Functionalized Contact Lens Sensors for Ocular pH Monitoring. ACS Omega 2019, 4, 21792–21798. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, C.; Niu, J.; Ren, J.; Qu, X. Colorimetric Band-Aids for Point-of-Care Sensing and Treating Bacterial Infection. ACS Cent. Sci. 2020, 6, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Asha, A.B.; Ounkaew, A.; Peng, Y.-Y.; Gholipour, M.R.; Ishihara, K.; Liu, Y.; Narain, R. Bioinspired Antifouling and Antibacterial Polymer Coating with Intrinsic Self-Healing Property. Biomater. Sci. 2023, 11, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, Y.; Xu, M.; Shao, W.; Zhang, L.; Liu, C. Bioinspired Superwettable Catheters with Tunable Structural Color for Efficient Drug Release Monitoring. Adv. Mater. Interfaces 2023, 10, 2202047. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, S.; Tiwari, P.; Dev, K.; Ghosh, K.; Maji, P.K. Recent Advances in Nanocrystals Based Sensors. Mater. Adv. 2024, 5, 2622. [Google Scholar] [CrossRef]
- Butchosa, N.; Brown, C.; Larsson, P.T.; Berglund, L.A.; Bulone, V.; Zhou, Q. Nanocomposites of Bacterial Cellulose Nanofibers and Chitin Nanocrystals: Fabrication, Characterization and Bactericidal Activity. Green Chem. 2013, 15, 3404. [Google Scholar] [CrossRef]
- Huang, S.; Li, S.; Lu, X.; Wang, Y. Modification of Cellulose Nanocrystals as Antibacterial Nanofillers to Fabricate Rechargeable Nanocomposite Films for Active Packaging. ACS Sustain. Chem. Eng. 2022, 10, 9265–9274. [Google Scholar] [CrossRef]
- Georgouvelas, D.; Jalvo, B.; Valencia, L.; Papawassiliou, W.; Pell, A.J.; Edlund, U.; Mathew, A.P. Residual Lignin and Zwitterionic Polymer Grafts on Cellulose Nanocrystals for Antifouling and Antibacterial Applications. ACS Appl. Polym. Mater. 2020, 2, 3060. [Google Scholar] [CrossRef]
- Morandi, G.; Heath, L.; Thielemans, W. Cellulose Nanocrystals Grafted with Polystyrene Chains Through Surface Initiated Atom Transfer Radical Polymerization. Langmuir 2009, 25, 8280–8286. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Pan, M.; Zhang, J.; Zhang, L.; Lin, F.; Liu, X.; Huang, C.; Chen, X.-C.; Wang, J.; Yan, B.; et al. A Universal Strategy for Constructing Robust and Antifouling Cellulose Nanocrystal Coating. Adv. Funct. Mater. 2022, 32, 2109989. [Google Scholar] [CrossRef]
- Wu, W.; Huang, F.; Pan, S.; Mu, W.; Meng, X.; Yang, H.; Xu, Z.; Ragauskas, A.J.; Deng, Y. Thermoresponsive and Fluorescent Nanocrystals Grafted with Polymer Brushes. J. Mater. Chem. A 2015, 3, 1995. [Google Scholar] [CrossRef]
- Kinose, Y.; Fujimoto, S.; Sakakibara, K.; Tsujii, Y. Synthesis and Two Dimensional Ordering of Asymetrically Polymer-Brush Decorated Cellulose Nanocrystals. Polym. J. 2025, 57, 269–277. [Google Scholar] [CrossRef]
- Ameri, M.; Ajji, A.; Kessler, S. Characterization of a Food-Safe Colorimetric Indicator Based on Black Rice Anthocyanin/PET Films for Visual Analysis of Fish Spoilage. Packag. Technol. Sci. 2024, 37, 769. [Google Scholar] [CrossRef]
- Razack, S.A.; Maknuna, L.; Kang, H.W. A rapid colorimetric sensing methodology for urinary tract bacterial pathogens as a point-of-care approach using natural anthocyanin loaded nanosilver. Microchem. J. 2024, 199, 109943. [Google Scholar] [CrossRef]
- Dunlop, M.J.; Clemons, C.; Reiner, R.; Sabo, R.; Agarwal, U.P.; Bissessur, R.; Acharya, B. Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci. Rep. 2020, 10, 19090. [Google Scholar] [CrossRef] [PubMed]
- Combita, D.; Pamunuwegedara, H.; Ahmed, M. Photo-Iniferter RAFT Polymerization of Optically Active Hydrophilic Vitamin B5 Analogous Methacrylamide. ACS Appl. Polym. Mater. 2023, 5, 2289–2297. [Google Scholar] [CrossRef]
- Chen, M.; Yan, T.; Huang, J.; Zhou, Y.; Hu, Y. Fabrication of Halochromic Smart Films by Immobilizing Red Cabbage Anthocyanins into Chitosan/Oxidized-Chitin Nanocrystals Composites for Real-Time Hairtail and Shrimp Freshness Monitoring. Int. J. Biol. Macromol. 2021, 179, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S.; ImageJ, U.S. National Institutes of Health: Bethesda, Maryland, USA, 1997–2018. Available online: https://imagej.net/ij/ (accessed on 1 September 2024).
- Weston, M.; Phan, M.A.; Arcot, J.; Chandrawati, R. Anthocyanin-Based Sensors Derived from Food Waste as an Active Use-by Date Indicator for Milk. Food Chem. 2020, 326, 127017. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.S.; Sibley, C.E. The intramolecular Cannizzaro reaction of o-Phthalaldehyde. J. Chem. Soc. Perkin Trans. II 1990, 12, 2089–2092. [Google Scholar] [CrossRef]
- Abitbol, A.; Kloser, E.; Gray, D. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 2013, 20, 785–794. [Google Scholar] [CrossRef]
- Boruta, T.; Foryś, M.; Pawlikowska, W.; Englart, G.; Bizukojć, M. Initial pH determines the morphological characteristics and secondary metabolite production in Aspergillus terreus and Streptomyces rimosus cocultures. Arch. Microbiol. 2024, 206, 452. [Google Scholar] [CrossRef] [PubMed]
- Combita, D.; Nazeer, N.; Bhayo, A.; Ahmed, M. Biomimetic and Hydrophilic Vitamin B5 Analogous Methacrylamide Polymers Prevent Surface Fouling. ACS Appl. Polym. Mater. 2022, 4, 575–585. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric Ph Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. [Google Scholar] [CrossRef]
- Plate, S.; Diekmann, S.; Steinhauser, U.; Dursch, S. Determination of Degree of Substitution of Octenylsuccinate-Derivatized Hydrolyzed Starch. LWT Food Sci. Tech. 2012, 46, 580–582. [Google Scholar] [CrossRef]
- Kavand, A.; Blanck, C.; Przybilla, F.; Mély, Y.; Anton, N.; Vandamme, T.; Serra, C.A.; Chan-Seng, D. Investigating the Growth of Hyperbranched Polymers by Self-Condensing Vinyl Raft Copolymerization from the Surface of Upconversion Nanoparticles. Polym. Chem. 2020, 11, 4313–4325. [Google Scholar] [CrossRef]
- Kuswandi, B.; Asih, N.P.N.; Pratoko, D.K.; Kristiningrum, N.; Moradi, M. Edible pH Sensor Based on Immobilized Red Cabbage Anthocyanins into Bacterial Cellulose Membrane for Intelligent Food Packaging. Packag. Technol. Sci. 2020, 33, 321–332. [Google Scholar] [CrossRef]
- Khili, F.; Borges, J.; Almeida, P.L.; Boukherroub, R.; Omrani, A.D. Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste Biomass Valor 2019, 10, 1913–1927. [Google Scholar] [CrossRef]
- Wulandari, W.T.; Rochliadi, A.; Arcana, I.M. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Mater. Sci. Eng. 2016, 107, 012045. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Salleh, W.N.W.; Jaafar, J.; Ismail, A.F.; Mutalib, M.A.; Mohamad, A.B.; Zain, M.F.M.; Awang, N.A.; Mohd Hir, Z.A. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydr. Polym. 2017, 157, 1892–1902. [Google Scholar] [CrossRef] [PubMed]
- Prathapan, R.; Tabor, R.F.; Garnier, G.; Hu, J. Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS Appl. Bio Mater. 2020, 3, 1828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lu, Y.; Fan, M.; Jiang, P.; Dong, Y. Modified Cellulose Nanocrystals Enhancement to Mechanical Properties and Water Resistance of Vegetable Oil-Based Waterborne Polyurethane. J. Appl. Polym. Sci. 2019, 136, 48228. [Google Scholar] [CrossRef]
- Umeno, T.; Fujihara, M.; Matsumoto, S.; Iizuka, N.; Usui, K.; Karasawa, S. Quantitative and Nondestructive Colorimetric Amine Detection Method for the Solid-Phase Peptide Synthesis as an Alternative to the Kaiser Test. Anal. Chem. 2023, 95, 15803. [Google Scholar] [CrossRef] [PubMed]
- Barlow, T.R.; Brendel, J.C.; Perrier, S. Poly(bromoethyl acrylate): A reactive precursor for the synthesis of functional RAFT materials. Macromolecules 2016, 49, 6203–6212. [Google Scholar] [CrossRef]
- Chen, J.; Liu, M.; Huang, H.; Deng, F.; Mao, L.; Wen, Y.; Huang, L.; Tian, J.; Zhang, X.; Wei, Y. Facile Preparation of Thermoresponsive Fluorescent Silica Nanopaprticles Based Composites Through the Oxygen Tolerance Light-Induced Raft Polymerization. J. Mol. Liq. 2018, 259, 179–185. [Google Scholar] [CrossRef]
Samples | Targeted Molecular Weight (Da) | DS of APTES | DS of CTA | B5AMA Conversion (%) | Anthocyanin (µg/mg of CNCs) |
---|---|---|---|---|---|
w-CNCs | - | - | - | - | 2.7 ± 0.3 |
P(B5AMA)–CNCs | 2600 | 0.01 | 0.0004 | 12 ± 4 | 3.7 ± 0.3 |
Glass Surface Coated with | Surface Hardness Pencil Scale Scratch Gouge | |
---|---|---|
w-CNCs | 3B | 2B |
Poly(B5AMA)–CNCs | HB | F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, C.; Combita, D.; Dunlop, M.J.; Ahmed, M. Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities. Polymers 2025, 17, 2007. https://doi.org/10.3390/polym17152007
Doyle C, Combita D, Dunlop MJ, Ahmed M. Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities. Polymers. 2025; 17(15):2007. https://doi.org/10.3390/polym17152007
Chicago/Turabian StyleDoyle, Catherine, Diego Combita, Matthew J. Dunlop, and Marya Ahmed. 2025. "Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities" Polymers 17, no. 15: 2007. https://doi.org/10.3390/polym17152007
APA StyleDoyle, C., Combita, D., Dunlop, M. J., & Ahmed, M. (2025). Antifouling Polymer-Coated Anthocyanin-Loaded Cellulose Nanocrystals Demonstrate Reduced Bacterial Detection Capabilities. Polymers, 17(15), 2007. https://doi.org/10.3390/polym17152007