Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of EDOT-HFIP and EDOT-Cn
2.3. Fabrication of the Chemiresistive Sensor
2.4. Materials and Interface Characterization
2.5. Evaluation of Chemiresistive Sensors
2.6. Calculation of the Selectivity Coefficient
3. Results and Discussion
3.1. Synthesis of P(EDOT-HFIP-Co-EDOT-Cn)s
3.2. Surface-Driven Nano-Assembly and Phase Segregation
3.3. Specific Sensing and Water Resistance of P(EDOT-HFIP-Co-EDOT-Cn) Sensors
3.4. Shelf Storage Stability of P(EDOT-HFIP-Co-EDOT-Cn) Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vallero, D.A. Fundamentals of Air Pollution—Fifth Edition; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Yang, L.; Qin, M.; Zhang, G.; Yang, J.; Yang, J.; Zhao, J. Progress of sensitive materials in chemiresistive sensors for detecting chemical warfare agent simulants: A review. Rev. Anal. Chem. 2023, 42, 20220052. [Google Scholar] [CrossRef]
- Najafi, P.; Ghaemi, A. Chemiresistor gas sensors: Design, Challenges, and Strategies: A comprehensive review. Chem. Eng. J. 2024, 498, 154999–155046. [Google Scholar] [CrossRef]
- Patil, L.A.; Deo, V.V.; Shinde, M.D.; Bari, A.R.; Kaushik, M.P. Sensing of 2-chloroethyl ethyl sulfide (2-CEES)—A CWA simulant—Using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique. Sens. Actuators B Chem. 2011, 160, 234–243. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Zhao, L.; Fei, T.; Liu, S.; Zhang, T. The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing. J. Colloid Interface Sci. 2022, 608, 2703–2717. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Duan, G.; Cheng, Z.; Xu, L.; Li, T.; Liu, G.; Zhang, H.; Li, Y.; Cai, W. Janus gas: Reversible redox transition of Sarin enables its selective detection by an ethanol modified nanoporous SnO2 chemiresistor. Chem. Commun. 2015, 51, 8193–8196. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, K.; Ren, X.; Yan, W.; Zhu, C.; Zhao, Y.; Zeng, W.; Chen, Z.; Wang, S. A highly selective gas sensor based on the WO3/WS2 van der Waals heterojunction for the 2-chloroethyl ethyl sulfide (2-CEES) sensing application. J. Mater. Chem. C Mater. Opt. Electron. Devices 2021, 9, 17496–17503. [Google Scholar] [CrossRef]
- Yoo, R.; Cho, S.; Song, M.-J.; Lee, W. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant. Sens. Actuators B Chem. 2015, 221, 217–223. [Google Scholar] [CrossRef]
- Jiang, W.; Jiang, M.; Wang, T.; Chen, X.; Zeng, M.; Yang, J.; Zhou, Z.; Hu, N.; Su, Y.; Yang, Z. Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Adv. 2021, 11, 14805–14813. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.; Liu, W.; Dong, L.; Chen, D.; Peng, C. Gas sensors based on assembled porous graphene multilayer frameworks for DMMP detection. J. Mater. Chem. C Mater. Opt. Electron. Devices 2019, 7, 9248–9256. [Google Scholar] [CrossRef]
- Hu, N.; Wang, Y.; Chai, J.; Gao, R.; Yang, Z.; Kong, E.S.-W.; Zhang, Y. Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B Chem. 2012, 163, 107–114. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Lee, S.; Park, S.; Lee, C.Y. Graphene chemiresistors modified with functionalized triphenylene for highly sensitive and selective detection of dimethyl methylphosphonate. RSC Adv. 2019, 9, 33976–33980. [Google Scholar] [CrossRef]
- Wiederoder, M.S.; Nallon, E.C.; Weiss, M.; McGraw, S.K.; Schnee, V.P.; Bright, C.J.; Polcha, M.P.; Paffenroth, R.; Uzarski, J.R. Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants. ACS Sens. 2017, 2, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Han, H.; Jang, J.; Cho, S. Fabrication and Optimization of Conductive Paper Based on Screen-Printed Polyaniline/Graphene Patterns for Nerve Agent Detection. ACS Omega 2019, 4, 5586–5594. [Google Scholar] [CrossRef]
- Saetia, K.; Schnorr, J.M.; Mannarino, M.M.; Kim, S.Y.; Rutledge, G.C.; Swager, T.M.; Hammond, P.T. Spray-Layer-by-Layer Carbon Nanotube/Electrospun Fiber Electrodes for Flexible Chemiresistive Sensor Applications. Adv. Funct. Mater. 2014, 24, 492–502. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.-L.; Zhang, Y.; Sonkusale, S.R.; Wang, M.L.; Dokmeci, M.R. SWNT based nanosensors for wireless detection of explosives and chemical warfare agents. IEEE Sens. J. 2013, 13, 202–210. [Google Scholar] [CrossRef]
- Kong, L.; Wang, J.; Luo, T.; Meng, F.; Chen, X.; Li, M.; Liu, J. Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. Analyst 2010, 135, 368–374. [Google Scholar] [CrossRef]
- Wang, F.; Gu, H.; Swager, T.M. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J. Am. Chem. Soc. 2008, 130, 5392–5393. [Google Scholar] [CrossRef]
- Yoo, R.; Kim, J.; Song, M.-J.; Lee, W.; Noh, J.S. Nano-composite sensors composed of single-walled carbon nanotubes and polyaniline for the detection of a nerve agent simulant gas. Sens. Actuators B Chem. 2015, 209, 444–448. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Gui, R.; Jin, H.; Xia, Y. Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron. 2016, 79, 136–149. [Google Scholar] [CrossRef]
- Wong, Y.C.; Ang, B.C.; Haseeb, A.S.M.A.; Baharuddin, A.A.; Wong, Y.H. Review—Conducting polymers as chemiresistive gas sensing materials: A review. J. Electrochem. Soc. 2020, 167, 37503–37518. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas sensors based on conducting polymers. Sensors 2007, 7, 267–307. [Google Scholar] [CrossRef]
- Luo, B.; Weng, J.; Geng, Z.; Pan, Q.; Pei, X.; He, Y.; Chen, C.; Zhang, H.; Wei, R.; Yuan, Y.; et al. Solution-processed wafer-scale nanoassembly of conducting polymers enables selective ultratrace nerve agent detection at low power. Nano Res. 2022, 16, 5653–5664. [Google Scholar] [CrossRef]
- Grate, J.W.; Klusty, M.; Barger, W.R.; Snow, W. Role of selective sorption in chemiresistor sensors for organophosphorus detection. Anal. Chem. 1990, 62, 1927–1934. [Google Scholar] [CrossRef]
- Chahal, M.K.; Sumita, M.; Labuta, J.; Payne, D.T.; Hill, J.P.; Yamauchi, Y.; Nakanishi, T.; Tanaka, T.; Kataura, H.; Koga, K.; et al. Selective Detection of Toxic C1 Chemicals Using a Hydroxylamine-Based Chemiresistive Sensor Array. ACS Sens. 2023, 8, 1585–1592. [Google Scholar] [CrossRef]
- Tiggemann, L.; Ballen, S.C.; Bocalon, C.M.; Graboski, A.M.; Manzoli, A.; Steffens, J.; Valduga, E.; Steffens, C. Electronic nose system based on polyaniline films sensor array with different dopants for discrimination of artificial aromas. Innov. Food Sci. Emerg. 2017, 43, 112–116. [Google Scholar] [CrossRef]
- Rath, R.J.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. Chemiresistive Sensor Arrays for Gas/Volatile Organic Compounds Monitoring: A Review. Adv. Energy Mater. 2022, 25, 2200830–2200851. [Google Scholar] [CrossRef]
- Lin, H.A.; Luo, S.C.; Zhu, B.; Chen, C.; Yamashita, Y.; Yu, H.H. Molecular or Nanoscale Structures? The Deciding Factor of Surface Properties on Functionalized Poly(3,4-ethylenedioxythiophene) Nanorod Arrays. Adv. Funct. Mater. 2013, 23, 3212–3219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, J.; Wu, W.; Qian, M.; Zhang, J.; Zhang, S.; Geng, Z.; Zhu, B. Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air. Polymers 2025, 17, 979. https://doi.org/10.3390/polym17070979
Weng J, Wu W, Qian M, Zhang J, Zhang S, Geng Z, Zhu B. Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air. Polymers. 2025; 17(7):979. https://doi.org/10.3390/polym17070979
Chicago/Turabian StyleWeng, Jianan, Wei Wu, Minghao Qian, Jiarui Zhang, Shuhua Zhang, Zhi Geng, and Bo Zhu. 2025. "Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air" Polymers 17, no. 7: 979. https://doi.org/10.3390/polym17070979
APA StyleWeng, J., Wu, W., Qian, M., Zhang, J., Zhang, S., Geng, Z., & Zhu, B. (2025). Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air. Polymers, 17(7), 979. https://doi.org/10.3390/polym17070979