polymers-logo

Journal Browser

Journal Browser

Polymers and Polymer Composites: Structure-Property Relationship, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 25 October 2025 | Viewed by 4527

Special Issue Editor


E-Mail Website
Guest Editor
Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China
Interests: polymer insulation materials; high-performance rubber nanocomposites; energy materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

We invite you to submit your research papers, communications or review articles to the Special Issue entitled “Polymer and Polymer Composites: Preparation, Structure, Properties and Application”. Polymer and polymer composite materials are widely applied in both daily life and industrial fields. Due to the significant expansion in the use of newly developed polymer and polymer composite materials, it is necessary to understand and accurately describe the relationship between material structure and properties, as only based on thorough laboratory characterization is it possible to estimate the properties for their future commercial applications. The scope of this Special Issue is to address the recent developments of structural/functional polymers and their composites, including fundamental structure–property relationships, preparation methods, synthesis routes, simulation models, basic mechanical properties, functional performance (heat, electrical, photoelectric, magnetic, etc.) and advanced application in daily/industrial fields.

We look forward to receiving your work for this Special Issue.

Dr. Shaojian He
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • composites
  • microstructure
  • preparation
  • properties
  • application
  • plastics
  • rubber
  • membrane

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3077 KiB  
Article
Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air
by Jianan Weng, Wei Wu, Minghao Qian, Jiarui Zhang, Shuhua Zhang, Zhi Geng and Bo Zhu
Polymers 2025, 17(7), 979; https://doi.org/10.3390/polym17070979 - 3 Apr 2025
Viewed by 220
Abstract
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor [...] Read more.
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor resistance to water vapor due to the intrinsic properties of these conducting polymers, likely leading to false sensor alarms. In this study, we engineered a series of water-vapor-resistant, yet organophosphate-sensitive, conducting polymers by electro-copolymerizing hexafluoroisopropanol (HFIP)-grafted 3,4-ethylenedioxythiophene (EDOT-HFIP) with EDOT comonomers bearing hydrophobic alkyl groups of varying lengths (ethyl, butyl, and hexyl). The typical results indicated that increasing the alkyl length and alkyl-bearing EDOT comonomer composition significantly enhanced the water resistance of the EDOT-HFIP copolymers and the copolymer-integrated chemiresistive sensor, but this improvement came at the unacceptable cost of compromising the organophosphate sensitivity. To address this issue, we developed a surface-driven phase-segregation strategy to enrich the alkyl chains on the surface while concentrating the HFIP groups beneath it by treating the silica substrates using oxygen plasma before polymer spin coating, thus decoupling and optimizing the two mutually competing characteristics. Finally, the chemiresistive sensor integrated with the EDOT-HFIP copolymer containing 10% hexyl-grafted EDOT comonomer exhibited an organophosphate (DMMP) resistive response 657 times higher than that to water vapor, and more than two times that of a PEDOT-HFIP sensor, while preserving the original specific sensitivity of the PEDOT-HFIP sensor. Furthermore, it demonstrated a markedly improved shelf storage stability, being directly exposed to air for 14 days without any special protection. We envision that this surface-driven phase-segregation strategy could offer a promising solution to the significant challenge of air moisture interference in highly sensitive polymer sensors, promoting their practical use in real-world applications. Full article
Show Figures

Figure 1

17 pages, 60359 KiB  
Article
Novel Design of Eco-Friendly High-Performance Thermoplastic Elastomer Based on Polyurethane and Ground Tire Rubber toward Upcycling of Waste Tires
by Maoyong He, Ruiping Li, Mingzheng Hao, Ying Tao, Peng Wang, Xiangcheng Bian, Haichun Dang, Yulong Wang, Zhenzhong Li and Tao Zhang
Polymers 2024, 16(17), 2448; https://doi.org/10.3390/polym16172448 - 29 Aug 2024
Viewed by 1473
Abstract
Waste rubber tires are an area of global concern in relation to reducing the consumption of petrochemical products and environmental pollution. Herein, eco-friendly high-performance thermoplastic polyurethane (PU) elastomers were successfully in-situ synthesized through the incorporation of ground tire rubber (GTR). The excellent wet-skid [...] Read more.
Waste rubber tires are an area of global concern in relation to reducing the consumption of petrochemical products and environmental pollution. Herein, eco-friendly high-performance thermoplastic polyurethane (PU) elastomers were successfully in-situ synthesized through the incorporation of ground tire rubber (GTR). The excellent wet-skid resistance of PU/GTR elastomer was achieved by using mixed polycaprolactone polyols with Mn = 1000 g/mol (PCL-1K) and PCL-2K as soft segments. More importantly, an efficient solution to balance the contradiction between dynamic heat build-up and wet-skid resistance in PU/GTR elastomers was that low heat build-up was realized through the limited friction between PU molecular chains, which was achieved with the help of the network structure formed from GTR particles uniformly distributed in the PU matrix. Impressively, the tanδ at 60 °C and the DIN abrasion volume (Δrel) of the optimal PU/GTR elastomer with 59.5% of PCL-1K and 5.0% of GTR were 0.03 and 38.5 mm3, respectively, which are significantly lower than the 0.12 and 158.32 mm3 for pure PU elastomer, indicating that the PU/GTR elastomer possesses extremely low rolling resistance and excellent wear resistance. Meanwhile, the tanδ at 0 °C of the above-mentioned PU/GTR elastomer was 0.92, which is higher than the 0.80 of pure PU elastomer, evidencing the high wet-skid resistance. To some extent, the as-prepared PU/GTR elastomer has effectively solved the “magic triangle” problem in the tire industry. Moreover, this novel research will be expected to make contributions in the upcycling of waste tires. Full article
Show Figures

Graphical abstract

13 pages, 5394 KiB  
Article
Natural Rubber/Styrene–Butadiene Rubber Blend Composites Potentially Applied in Damping Bearings
by Saifeng Tang, Zhanxu Li, Weichong Sun, Yangling Liu, Jian Wang, Xiong Wang and Jun Lin
Polymers 2024, 16(13), 1945; https://doi.org/10.3390/polym16131945 - 8 Jul 2024
Cited by 4 | Viewed by 2305
Abstract
Natural rubber (NR) composites have been widely applied in damping products to reduce harmful vibrations, while rubber with only a single composition barely meets performance requirements. In this study, rubber blend composites including various ratios of NR and styrene butadiene rubber (SBR) were [...] Read more.
Natural rubber (NR) composites have been widely applied in damping products to reduce harmful vibrations, while rubber with only a single composition barely meets performance requirements. In this study, rubber blend composites including various ratios of NR and styrene butadiene rubber (SBR) were prepared via the conventional mechanical blending method. The effects of the rubber components on the compression set, compression fatigue temperature rising and the thermal oxidative aging properties of the NR/SBR blend composites were investigated. Meanwhile, the dynamic mechanical thermal analyzer and rubber processing analyzer were used to characterize the dynamic viscoelasticity of the NR/SBR blend composites. It was shown that, with the increase in the SBR ratio, the vulcanization rate of the composites increased significantly, while the compression fatigue temperature rising of the composites decreased gradually from 47 °C (0% SBR ratio) to 31 °C (50% SBR ratio). The compression set of the composites remained at ~33% when the SBR ratio was no more than 20%, and increased gradually when the SBR ratio was more than 20%. Full article
Show Figures

Figure 1

Back to TopTop