Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Polymer Interface Design
2.3. Preparation of Cu@LCP Fibers by ELD
2.4. Characterizations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Strategy for Fabricating Flexible Electrical Heaters
3.2. Characterization of Interface Design and Surface Modification
3.3. Characterization of Fiber Coating Quality
3.4. Electrical Heating Performance of Cu@LCP Fibers
3.5. Applications of Cu@LCP Fiber-Based Heaters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Ye, H.; He, J.; Ge, Q.; Xiong, Y. Electrothermally Controlled Origami Fabricated by 4D Printing of Continuous Fiber-Reinforced Composites. Nat. Commun. 2024, 15, 2322. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Liu, Y.; Yu, H. High-Performance Electric Heating Yarns Based on Graphene-Coated Cotton Fibers. J. Appl. Polym. Sci. 2022, 139, e53014. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Y.; Wang, S.; Wang, X.; Yu, J.; Zhang, S.; Ding, B. Energy-Harvesting Carbon Aerogel Nanofiber Metafabric for High-Efficiency Thermoregulation. Adv. Funct. Mater. 2025, 35, 2414229. [Google Scholar] [CrossRef]
- Ma, Z.; Kang, S.; Ma, J.; Shao, L.; Wei, A.; Liang, C.; Gu, J.; Yang, B.; Dong, D.; Wei, L.; et al. High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers. ACS Nano 2019, 13, 7578–7590. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhou, M.; Liao, X.; Wang, P.; Yu, Y.; Yuan, J.; Wang, Q. Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS Appl. Mater. Interfaces 2021, 13, 43414–43425. [Google Scholar] [CrossRef]
- Sun, Z.; Yu, H.; Feng, Y.; Feng, W. Application and Development of Smart Thermally Conductive Fiber Materials. Nanomaterials 2024, 14, 154. [Google Scholar] [CrossRef]
- Lima, R.M.A.P.; Alcaraz-Espinoza, J.J.; Da Silva, F.A.G.; De Oliveira, H.P. Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2018, 10, 13783–13795. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Huang, J.; Zhang, S.; Zhang, R.; Ye, D.; Cai, G.; Yang, H.; Gu, S.; Xu, W. Multi-Functional and Water-Resistant Conductive Silver Nanoparticle-Decorated Cotton Textiles with Excellent Joule Heating Performances and Human Motion Monitoring. Cellulose 2021, 28, 7483–7495. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Dong, Y.; Wu, Y.; Yu, L.; Bai, Y. Interfacial Modulation of Polydopamine–Reduced Graphene Oxide for Achieving Highly Conductive and Strong Graphene/Cotton Composite Yarn Toward Smart Wearable Devices. Adv. Fiber Mater. 2024, 6, 1798–1812. [Google Scholar] [CrossRef]
- Wang, B.; Peng, J.; Yang, K.; Cheng, H.; Yin, Y.; Wang, C. Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Appl. Mater. Interfaces 2022, 14, 22497–22509. [Google Scholar] [CrossRef]
- Yu, X.; Ye, J.; Li, C.; Yu, Y.; Yang, H.; Wen, L.; Huang, J.; Xu, W.; Wu, Y.; Zhou, Q.; et al. Superhydrophobic, Highly Conductive, and Trilayered Fabric with Connected Carbon Nanotubes for Energy-Efficient Electrical Heating. ACS Appl. Mater. Interfaces 2024, 16, 26932–26942. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Sun, R.; Pan, Y.; Wang, X.; Zhai, Z.; Min, Z.; Zheng, G.; Liu, C.; Shen, C.; Liu, X. Flexible and Thin Multifunctional Waterborne Polyurethane/Ag Film for High-Efficiency Electromagnetic Interference Shielding, Electro-Thermal and Strain Sensing Performances. Compos. B Eng. 2021, 210, 108668. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Song, P.; Sang, M.; Fan, Z.; Xu, Y.; Wang, X.; Liu, S.; Li, Z.; Xuan, S.; et al. Asymmetric Aramid Aerogel Composite with Durable and Covert Thermal Management via Janus Heat Transfer Structure. Nano Lett. 2024, 24, 14020–14027. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, X.; Wang, H.; Wang, Q.; Zhang, M.; Yang, B. Highly Efficient and Durable Aramid Nanofibers/Carbon Nanotubes-Coated Electrothermal Paper. ACS Appl. Polym. Mater. 2024, 6, 7612–7620. [Google Scholar] [CrossRef]
- Xu, Z.; Tang, D.; Shen, W.; Jiang, R.; Lu, M. Flexible, High Temperature Resistant and Highly Efficient E-Heating Graphene/Polyimide Film. AIP Adv. 2024, 14, 015041. [Google Scholar] [CrossRef]
- Won, P.; Park, J.J.; Lee, T.; Ha, I.; Han, S.; Choi, M.; Lee, J.; Hong, S.; Cho, K.-J.; Ko, S.H. Stretchable and Transparent Kirigami Conductor of Nanowire Percolation Network for Electronic Skin Applications. Nano Lett. 2019, 19, 6087–6096. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Ma, J.; He, J.; Ye, H.; Song, J.; Chen, Y.; Xu, L. Efficient, Robust, and Flame-Retardant Electrothermal Coatings Based on a Polyhedral Oligomeric Silsesquioxane-Functionalized Graphene/Multiwalled Carbon Nanotube Hybrid with a Dually Cross-Linking Structure. ACS Appl. Mater. Interfaces 2023, 15, 4430–4440. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Shan, M.; Lan, L.; Hu, M.; Li, J.; Xuan, W.; Wang, F.; Wang, L.; Mao, J. Durable Flexible Conductive Fiber Based on Cross-Linking Network Tannic Acid/Polypyrrole for Wearable Thermotherapy Monitoring System. ACS Appl. Mater. Interfaces 2024, 16, 48329–48341. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Y.; Ying, B.; Hu, Y.; Gao, Y.; Luo, S.; Liu, X. Kirigami-Enabled Stretchable Laser-Induced Graphene Heaters for Wearable Thermotherapy. Mater. Horiz. 2024, 11, 2010–2020. [Google Scholar] [CrossRef]
- Song, H.; Nie, B.; Zhu, Y.; Qi, G.; Zhang, Y.; Peng, W.; Li, X.; Shao, J.; Wei, R. Flexible Grid Graphene Electrothermal Films for Real-Time Monitoring Applications. Langmuir 2024, 40, 6940–6948. [Google Scholar] [CrossRef]
- Xie, H.; Li, X.; Hu, J.; Pazuki, M.-M.; Salimi, M.; Li, H.; Zhang, L.; Amidpour, M.; Chen, Z. Honeycomb-Inspired Design of Double-Layer Photothermal/Electrothermal Fabric for All-Weather Steam Generation. Desalination 2025, 601, 118579. [Google Scholar] [CrossRef]
- Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Liu, Y.; Gao, W.; Gao, C. Highly Stretchable Graphene Fibers with Ultrafast Electrothermal Response for Low-Voltage Wearable Heaters. Adv. Electron. Mater. 2017, 3, 1600425. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Y.; Mei, J.; Qiu, Z.; Pan, K.; Jiang, J.; Zheng, F.; Huang, Y.; Wang, H.; Li, Q. Superior Instant Heating and Electrothermal Performances of Interconnected Graphene-Expanded Graphite-Based Electric Heating Composite. ACS Appl. Nano Mater. 2024, 7, 12579–12591. [Google Scholar] [CrossRef]
- Zhou, B.; Aouraghe, M.A.; Chen, W.; Jiang, Q.; Xu, F. Highly Responsive Soft Electrothermal Actuator with High-Output Force Based on Polydimethylsiloxane (PDMS)-Coated Carbon Nanotube (CNT) Sponge. Nano Lett. 2023, 23, 6504–6511. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, K.; Hao, X.; Pan, J.; Zhuang, T.; Dai, X.; Wang, J.; Chen, B.; Chong, D. Capillary Compression Induced Outstanding N-Type Thermoelectric Power Factor in CNT Films towards Intelligent Temperature Controller. Nat. Commun. 2024, 15, 5617. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, H.; Zhang, C.; Zhao, G. Super Photothermal/Electrothermal Response and Anti-Icing/Deicing Capability of Superhydrophobic Multi-Walled Carbon Nanotubes/Epoxy Coating. Chem. Eng. J. 2024, 497, 154383. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, C.; Zhang, S.; Zhang, K.; Huang, F. Novel Sulfur-Containing Carbon Nanotubes with Graphene Nanoflaps for Stretchable Sensing, Joule Heating, and Electro-Thermal Actuating. Adv. Funct. Mater. 2023, 33, 2300517. [Google Scholar] [CrossRef]
- Sadi, M.d.S.; Yang, M.; Luo, L.; Cheng, D.; Cai, G.; Wang, X. Direct Screen Printing of Single-Faced Conductive Cotton Fabrics for Strain Sensing, Electrical Heating and Color Changing. Cellulose 2019, 26, 6179–6188. [Google Scholar] [CrossRef]
- Ju, X.; Kong, J.; Qi, G.; Hou, S.; Diao, X.; Dong, S.; Jin, Y. A Wearable Electrostimulation-Augmented Ionic-Gel Photothermal Patch Doped with MXene for Skin Tumor Treatment. Nat. Commun. 2024, 15, 762. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Qi, J.; Liu, T.; Feng, Y.; Liu, C.; Shen, C. Eco-Friendly Bacterial Cellulose/MXene Aerogel with Excellent Photothermal and Electrothermal Conversion Capabilities for Efficient Separation of Crude Oil/Seawater Mixture. Carbohydr. Polym. 2024, 336, 122140. [Google Scholar] [CrossRef]
- Zhao, G.; Sui, C.; Zhao, C.; Zhao, Y.; Cheng, G.; Li, J.; Wen, L.; Hao, W.; Sang, Y.; Zhou, Y.; et al. Supertough MXene/Sodium Alginate Composite Fiber Felts Integrated with Outstanding Electromagnetic Interference Shielding and Heating Properties. Nano Lett. 2024, 24, 8098–8106. [Google Scholar] [CrossRef]
- Li, W.; Sang, M.; Liu, S.; Wang, B.; Cao, X.; Liu, G.; Gong, X.; Hao, L.; Xuan, S. Dual-Mode Biomimetic Soft Actuator with Electrothermal and Magneto-Responsive Performance. Compos. B Eng. 2022, 238, 109880. [Google Scholar] [CrossRef]
- Ming, M.; Zhang, Y.; He, C.; Zhao, L.; Niu, S.; Fan, G.; Hu, J. Room-Temperature Sustainable Synthesis of Selected Platinum Group Metal (PGM = Ir, Rh, and Ru) Nanocatalysts Well-Dispersed on Porous Carbon for Efficient Hydrogen Evolution and Oxidation. Small 2019, 15, 1903057. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; He, G.; Shi, Y.; Wu, Y.; Yu, Y.; Liu, X. Robust Metallized Liquid Crystal Elastomer Fiber Arrays Toward a Machine Learning-Assisted Artificial Neuromuscular System with Perceptual Function. Adv. Funct. Mater. 2025, 35, 2413845. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Wang, L.; Ng, P.F.; Hu, H.; Chen, F.; Huang, Q.; Zheng, Z. Destructive-Treatment-Free Rapid Polymer-Assisted Metal Deposition for Versatile Electronic Textiles. ACS Appl. Mater. Interfaces 2022, 14, 56193–56202. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zheng, Z. Polymer-Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Adv. Mater. 2019, 31, 1902987. [Google Scholar] [CrossRef]
- Liu, X.; Chang, H.; Li, Y.; Huck, W.T.S.; Zheng, Z. Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns. ACS Appl. Mater. Interfaces 2010, 2, 529–535. [Google Scholar] [CrossRef]
- Zhu, C.; Guan, X.; Wang, X.; Li, Y.; Chalmers, E.; Liu, X. Mussel-Inspired Flexible, Durable, and Conductive Fibers Manufacturing for Finger-Monitoring Sensors. Adv. Mater. Interfaces 2019, 6, 1801547. [Google Scholar] [CrossRef]
- Yang, S.-J.; Zou, L.-Y.; Liu, C.; Zhong, Q.; Ma, Z.-Y.; Yang, J.; Ji, J.; Müller-Buschbaum, P.; Xu, Z.-K. Codeposition of Levodopa and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Appl. Mater. Interfaces 2020, 12, 54094–54103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, X.; Zhou, J.; Liang, W.; Li, X.; Zhu, C. Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters. Polymers 2025, 17, 1087. https://doi.org/10.3390/polym17081087
Zhang Y, Huang X, Zhou J, Liang W, Li X, Zhu C. Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters. Polymers. 2025; 17(8):1087. https://doi.org/10.3390/polym17081087
Chicago/Turabian StyleZhang, Yajie, Xinting Huang, Jiachi Zhou, Wenlin Liang, Xinxin Li, and Chuang Zhu. 2025. "Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters" Polymers 17, no. 8: 1087. https://doi.org/10.3390/polym17081087
APA StyleZhang, Y., Huang, X., Zhou, J., Liang, W., Li, X., & Zhu, C. (2025). Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters. Polymers, 17(8), 1087. https://doi.org/10.3390/polym17081087