The Effect of ULO and NA Storage on Changes in the Quality of Apple Fruit (Malus domestica Borkh.) during Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Weight Loss
2.3. Soluble Solids Content (SSC), Sugars Content, and Titratable Acidity (TA)
2.4. Determination of Total Phenolics, Flavonoid Contents, and Antioxidant Activity
2.5. Determination of Pectic Fractions
2.6. Statistical Analysis
3. Results
3.1. Weight Loss
3.2. SSC, Sugars Content, and TA
3.3. Content of Total Phenolics, Total Flavonoids, and Antioxidant Capacity
3.4. Pectic Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J. 2004, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferretti, G.; Neri, D.; Bacchetti, T. Effect of Italian sour cherry (Prunus cerasus L.) on the formation of advanced glycation end products and lipid peroxidation. Food Nutr. Sci. 2014, 5, 1568–1576. [Google Scholar]
- Hyson, D.A. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Kim, Y.J.; Kim, D.O.; Lee, H.J.; Lee, C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003, 51, 6516–6520. [Google Scholar] [CrossRef]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81, 2155–2175. [Google Scholar] [CrossRef]
- Kevers, C.; Pincemail, J.; Tabart, J.; Defraigne, J.; Dommes, J. Influence of cultivar, harvest time, storage conditions and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears. J. Agric. Food Chem. 2011, 59, 6165–6171. [Google Scholar] [CrossRef]
- Lavelli, V. Combined effect of storage temperature and water activity on the antiglycoxidative properties and color of dehydrated apples. J. Agric. Food Chem. 2009, 57, 11491–11497. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Piretti, M.V.; Gallerani, G.; Pratella, G.C. Polyphenol fate and superficial scald in Apple. Postharvest Biol. Technol. 1994, 4, 213–224. [Google Scholar] [CrossRef]
- Bizjak, J.; Slatnar, A.; Stampar, F.; Veberic, R. Changes in Quality and Biochemical Parameters in ‘Idared’ apples during Prolonged Shelf Life and 1-MCP treatment. J. Food Sci. Technol. 2012, 18, 569–577. [Google Scholar] [CrossRef]
- Veberic, R.; Schmitzer, V.; Mikulic-Petkovsek, M.; Stampar, F. Impact of shelf life on content of primary and secondary metabolites in apple (Malus domestica Borkh.). J. Food Sci. 2010, 75, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Sofic, E.; Prior, R.L. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 1996, 44, 3426–3431. [Google Scholar]
- Wang, H.; Gao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
- Van Der Sluis, A.A.; Dekker, M.; De Jager, A.; Jonegen, W.M.F. Activity and concentration of polyphenolic antioxidants in apple: Effect of cultivar, harvest year and storage conditions. J. Agric. Food Chem. 2001, 49, 3606–3613. [Google Scholar] [CrossRef]
- Schmitz-Eiberger, M.; Weber, V.; Treutter, D.; Baab, G.; Lorenz, J. Bioactive components in fruits from different apple varieties. J. Appl. Bot. 2003, 77, 167–171. [Google Scholar]
- Bidhendi, A.J.; Geitmann, A. Relating the mechanics of the primary plant cell wall to morphogenesis. J. Exp. Bot. 2016, 67, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Guillon, F.; Moïse, A.; Quemener, B. Remodeling of pectin and hemicellulose in tomato pericarp during fruit growth. Plant Sci. 2017, 257, 48–62. [Google Scholar] [CrossRef]
- Ben, J.; Gaweda, M. Changes of pectic compounds in Jonathan apples under various storage conditions. Acta Physiol. Plant. 1985, 7, 45–54. [Google Scholar]
- Nour, V.; Ionica, E. Study concerning the influence of the electroionical technology on the apples long-term storage. JE Prot. Ec. 2002, 3, 863–866. [Google Scholar]
- Tanner, H. Getränke Analytik; Verlag Heller Chemie: Schwäbisch Hall, Germany, 1979. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enyzmol. 1999, 299, 152–178. [Google Scholar]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrinni, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dekker, R.F.H.; Richards, G.N. Determination of pectic substances in plant material. J. Sci. Food. Agric. 1972, 23, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.A.; De Jager, A. Flavonoid and chlorogenic acid levels in skin of Jonagold and Elstar apples during and after regular ultra-low oxygen storage. Postharvest Biol. Technol. 2000, 20, 15–24. [Google Scholar] [CrossRef]
- Golding, J.B.; McGlasson, W.B.; Wyllie, S.G.; Leach, D.N. Fate of apple peel phenolics during cool storage. J. Agric. Food Chem. 2001, 49, 2283–2289. [Google Scholar] [CrossRef]
- Napolitano, A.; Cascone, A.; Graziani, G.; Ferracane, R.; Scalfi, L.; Divaio, C.; Ritienei, A.; Fogliano, V. Influence of variety and storage on the polyphenol composition of apple flesh. J. Agric. Food Chem. 2004, 52, 6526–6531. [Google Scholar] [CrossRef]
- Matthes, A.; Schmitz-Eiberger, M. Polyphenol content and antioxidant capacity of apple fruit: Effect of cultivar and storage conditions. J. Appl. Bot. Food Qual. 2009, 82, 152–157. [Google Scholar]
- Soliva-Fortuny, R.; Oms-Oliu, G.; Martin-Belloso, O. Effects of ripeness stages on the storage atmosphere, color and textural properties of minimally processed apple slices. J. Food Sci. 2002, 67, 1958–1962. [Google Scholar] [CrossRef]
- Kader, A.A. Postharvest Technology of Horticultural Crops; UCANR Publications: University of California, Richmond, CA, USA, 2002; Volume 3311. [Google Scholar]
- Weibel, F.; Widmer, F.; Husistein, A. Comparison of production systems: Integrated and organic apple production. Part III: Inner quality: Composition and sensory. Schweizer Zeitschrift für Obst-Und Weinbau 2004, 140, 10–13. [Google Scholar]
- Crouch, I. 1–Methylcyclopropene (SmartfreshTM) as an alternative to modified atmosphere and controlled atmosphere storage of apples and pears. Acta Hortic. 2003, 600, 433–436. [Google Scholar] [CrossRef]
- Farooq, R.A.; Khan, I. Physico-Chemical Quality of Apple cv. Gala fruit Stored At Low Temperature. FUUAST J. Biol. 2012, 2, 103–107. [Google Scholar]
- Defilippi, B.G.; Dandekar, A.M.; Kader, A.A. Impact of suppression of ethylene action or biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruits. J. Agric. Food Chem. 2004, 52, 5694–5701. [Google Scholar] [CrossRef] [PubMed]
- Jan, I.; Rab, A. Influence of storage duration on physico-chemical changes in fruit of apple cultivars. J. Anim. Plant Sci. 2012, 22, 708–714. [Google Scholar]
- Pre-Aymard, C.; Fallik, E.; Weksler, A.; Lurie, S. Sensory analysis and instrumental measurements of ‘Anna’ apples treated with 1-methylcyclopropene. Postharvest Biol. Technol. 2005, 36, 135–142. [Google Scholar] [CrossRef]
- Clarke, C.J.; McGlone, V.A.; Jordan, R.B. Detection of brownheart in ‘Braeburn’ apple by transmission NIR spectroscopy. Postharvest Biol. Technol. 2003, 28, 87–96. [Google Scholar] [CrossRef]
- Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.; Dommes, J.; Pincemail, J. Evolution of Antioxidant Capacity during Storage of Selected Fruits and Vegetables. J. Agric. Food Chem. 2007, 55, 8596–8603. [Google Scholar] [CrossRef]
- Novaković, M.M.; Stevanović, S.M.; Gorjanović, S.Ž; Jovanović, P.M.; Tešević, V.V. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective and freeze-drying. J. Food Sci. 2011, 76, C663–C668. [Google Scholar]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Di Pietro, P.F.; Nunes, E.C.; Fett, R. Phenolic compounds and antioxidant activity of the apple flesh and peel of eleven cultivars grown in Brazil. Sci. Hortic. 2011, 128, 261–266. [Google Scholar] [CrossRef]
- Miletić, M.; Popović, B.; Mitrović, O.; Kandić, M. Phenolic content and antioxidant capacity of fruits of plum cv. ‘Stanley’ (Prunus domestica L.) as influenced by maturity stage and on-tree ripening. Aust. J. Crop Sci. 2012, 6, 681–687. [Google Scholar]
- Nagai, T.; Suzuki, N. Partial purification of polyphenol oxidase from Chinese cabbage Brassica rapa L. J. Agric. Food Chem. 2001, 49, 3922–3926. [Google Scholar] [CrossRef]
- Lattanzio, V.; Di Venere, D.; Linsalata, V.; Bertolini, P.; Ippolito, A.; Salerno, M. Low temperature metabolism of apple phenolics and quiescence of Phlyctaena vagabunda. J. Agric. Food Chem. 2001, 49, 5817–5821. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Marezek, A.; Ben, J. Antioxidant properties of two apple cultivars during long-term storage. Food Chem. 2001, 80, 303–307. [Google Scholar] [CrossRef]
- Ilker, R.; Szczesniak, A.S. Structural and chemical bases for texture of plant foodstuffs. J. Text. Stud. 1990, 21, 1–36. [Google Scholar] [CrossRef]
- Yoshioka, H.; Aoba, K.; Kashimura, Y. Molecular weight and degree of methoxylation in cell wall polyuronide during softening in pear and apple fruit. J. Am. Soc. Hortic. Sci. 1992, 117, 600–606. [Google Scholar] [CrossRef] [Green Version]
- De Smedt, V.; Pauwels, E.; De Baerdemaeker, J.; Nicolaï, B. A microscopic observation of mealiness in apples: A quantitative approach. Postharvest Biol. Technol. 1998, 14, 151–158. [Google Scholar] [CrossRef]
- Siddiqui, S.; Brackmann, A.; Streif, J.; Bangerth, F. Controlled atmosphere storage of apples, cell wall composition and fruit softening. J. Hortic. Sci. 1996, 71, 613–620. [Google Scholar] [CrossRef]
Factor | Total Phenolics (mg GAE/100 g fw) | Total Flavonoids (mg R/100 g fw) | Antioxidant Capacity (mmol TE/100g fw) | |
---|---|---|---|---|
Storage type (A) | NA storage | 68.61 ± 19.28 b | 21.32 ± 5.78 b | 0.3948 ± 0.2208 b |
ULO storage | 110.24 ± 9.14 a | 33.34 ± 2.68 a | 0.5208 ± 0.2835 a | |
Shelf life duration (B) | 0 days (T1) | 104. 46 ± 15.12 a | 25.55 ± 8.73 b | 0.1577 ± 0.0404 c |
10 days (T2) | 87.74 ± 26.59 b | 32.26 ± 4.20 a | 0.4800 ± 0.0597 b | |
20 days (T3) | 76.07 ± 29.38 c | 24.19 ± 7.50 b | 0.7358 ± 0.1199 a | |
(A × B) | NA × T1 | 92.68 ± 5.36 b | 17.82 ± 3.38 c | 0.1247 ± 0.0142 e |
NA × T2 | 63.69 ± 1.25 c | 28.64 ± 1.17 b | 0.4300 ± 0.0229 d | |
NA × T3 | 49.46 ± 1.43 c | 17.52 ± 0.79 c | 0.6297 ± 0.0167 b | |
ULO × T1 | 116.25 ± 11.25 a | 33.27 ± 0.23 ab | 0.1907 ± 0.0248 e | |
ULO × T2 | 111.78 ± 5.57 a | 35.87 ± 1.85 a | 0.5300 ± 0.0300 c | |
ULO × T3 | 102.68 ± 5.71 ab | 30.86 ± 2.51 ab | 0.8418 ± 0.0440 a | |
ANOVA | ||||
A | *** | *** | *** | |
B | *** | *** | *** | |
A × B | ** | ** | ** |
Factor | Total Phenolics (mg GAE/100 g fw) | Total Flavonoids (mg R/100 g fw) | Antioxidant Capacity (mmol TE/100g fw) | |
---|---|---|---|---|
Storage type (A) | NA storage | 108.37 ± 38.70 a | 40.07 ± 8.69 a | 0.6782 ± 0.2183 a |
ULO storage | 77.76 ± 14.58 b | 30.13 ± 1.86 b | 0.5589 ± 0.2828 b | |
Shelf life duration (B) | 0 days (T1) | 103.87 ± 49.90 a | 39.29 ± 11.77 a | 0.3197 ± 0.1362 c |
10 days (T2) | 74.02 ± 14.51 b | 30.15 ± 0.95 c | 0.6500 ± 0.0235 b | |
20 days (T3) | 101.31 ± 14.92 a | 35.86 ± 4.98 c | 0.8861 ± 0.0607 a | |
(A × B) | NA × T1 | 149.34 ± 4.46 a | 49.97 ± 0.69 a | 0.4405 ± 0.0104 d |
NA × T2 | 61.07 ± 4.80 d | 29.93 ± 4.31 c | 0.6533 ± 0.0333 c | |
NA × T3 | 114.70 ± 3.58 b | 40.31 ± 0.61 b | 0.9410 ± 0.0083 a | |
ULO × T1 | 58.39 ± 0.94 d | 28.61 ± 1.87 c | 0.1988 ± 0.0490 e | |
ULO × T2 | 86.96 ± 0.36 c | 30.37 ± 1.43 c | 0.6467 ± 0.0153 c | |
ULO × T3 | 87.92 ± 2.32 c | 31.41 ± 1.51 c | 0.8312 ± 0.0094 b | |
ANOVA | ||||
A | *** | *** | *** | |
B | *** | *** | *** | |
A × B | *** | *** | *** |
Factor | Pectinic Acid (mg/100 g fw) | Pectic Acid (mg/100 g fw) | Protopectin (mg/100 g fw) | Pectinic Acid /Protopectin | |
---|---|---|---|---|---|
Storage type (A) | NA storage | 90.92 ± 53.13 a | 51.16 ± 40.31 a | 44.46 ± 14.22 b | 2.75 ± 2.58 a |
ULO storage | 63.30 ± 18.24 b | 30.25 ± 20.04 b | 67.13 ± 34.88 a | 1.66 ± 1.59 b | |
Shelf life duration (B) | 0 days (T1) | 43.46 ± 5.61 c | 17.36 ± 4.48 c | 71.57 ± 14.88 a | 0.64 ± 0.18 b |
10 days (T2) | 67.91 ± 3.65 b | 24.18 ± 4.29 b | 71.86 ± 25.79 a | 1.05 ± 0.35 b | |
20 days (T3) | 119.95 ± 45.03 a | 80.58 ± 26.62 a | 23.96 ± 4.58 b | 4.94 ± 1.46 a | |
(A × B) | NA × T1 | 46.50 ± 4.00 c | 21.43 ± 0.64 c | 58.14 ± 2.79 c | 0.80 ± 0.03 c |
NA × T2 | 65.72 ± 2.54 b | 27.33 ± 3.05 c | 48.36 ± 2.63 d | 1.36 ± 0.13 c | |
NA × T3 | 160.54 ± 9.35 a | 104.72 ± 3.20 a | 25.87 ± 5.04 e | 6.10 ± 1.09 a | |
ULO × T1 | 40.43 ± 5.93 c | 13.29 ± 0.21 d | 85.00 ± 2.21 b | 0.48 ± 0.08 c | |
ULO × T2 | 70.11 ± 3.54 b | 21.03 ± 2.61 c | 95.34 ± 1.59 a | 0.74 ± 0.03 c | |
ULO × T3 | 79.37 ± 6.45 b | 56.44 ± 3.52 b | 21.05 ± 1.25 e | 3.77 ± 0.27 b | |
ANOVA | |||||
A | *** | *** | *** | *** | |
B | *** | *** | *** | *** | |
A × B | *** | *** | *** | ** |
Factor | Pectinic Acid (mg/100 g fw) | Pectic Acid (mg/100 g fw) | Protopectin (mg/100 g fw) | Pectinic Acid /Protopectin | |
---|---|---|---|---|---|
Storage type (A) | NA storage | 127.66 ± 64.68 a | 47.46 ± 32.64 a | 48.21 ± 23.09 a | 4.77 ± 5.16 a |
ULO storage | 80.66 ± 48.91 b | 32.54 ± 9.63 b | 49.84 ± 32.99 a | 1.62 ± 0.81 b | |
Shelf life duration (B) | 0 days (T1) | 62.53 ± 18.48 b | 28.04 ± 3.77 b | 62.04 ± 5.75 b | 1.04 ± 0.39 b |
10 days (T2) | 70.46 ± 22.37 b | 24.36 ± 1.79 c | 72.66 ± 5.65 a | 0.99 ± 0.39 b | |
20 days (T3) | 179.48 ± 37.64 a | 67.61 ± 25.60 a | 12.38 ± 6.88 c | 17.77 ± 7.27 a | |
(A × B) | NA × T1 | 79.07 ± 3.00 c | 25.43 ± 0.50 d | 57.21 ± 3.57 c | 1.38 ± 0.12 c |
NA × T2 | 90.66 ± 5.11 c | 25.97 ± 0.14 d | 68.86 ± 6.04 ab | 1.33 ± 0.19 c | |
NA × T3 | 213.23 ± 10.94 a | 90.97 ± 0.23 a | 18.55 ± 1.72 d | 11.58 ± 1.41 b | |
ULO × T1 | 46.00 ± 4.93 d | 30.64 ± 3.86 c | 60.86 ± 0.50 b | 0.69 ± 0.07 c | |
ULO × T2 | 50.25 ± 0.18 d | 22.74 ± 0.45 d | 76.45 ± 0.32 a | 0.66 ± 0.00 c | |
ULO × T3 | 145.73 ± 2.19 b | 44.25 ± 1.02 b | 6.20 ± 1.11 e | 23.95 ± 3.99 a | |
ANOVA | |||||
A | *** | *** | ns | *** | |
B | *** | *** | *** | *** | |
A × B | *** | *** | *** | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korićanac, A.; Miletić, N.; Popović, B.; Mitrović, O.; Lukić, M.; Pešaković, M.; Tomić, J. The Effect of ULO and NA Storage on Changes in the Quality of Apple Fruit (Malus domestica Borkh.) during Shelf Life. Agronomy 2020, 10, 25. https://doi.org/10.3390/agronomy10010025
Korićanac A, Miletić N, Popović B, Mitrović O, Lukić M, Pešaković M, Tomić J. The Effect of ULO and NA Storage on Changes in the Quality of Apple Fruit (Malus domestica Borkh.) during Shelf Life. Agronomy. 2020; 10(1):25. https://doi.org/10.3390/agronomy10010025
Chicago/Turabian StyleKorićanac, Aleksandra, Nemanja Miletić, Branko Popović, Olga Mitrović, Milan Lukić, Marijana Pešaković, and Jelena Tomić. 2020. "The Effect of ULO and NA Storage on Changes in the Quality of Apple Fruit (Malus domestica Borkh.) during Shelf Life" Agronomy 10, no. 1: 25. https://doi.org/10.3390/agronomy10010025