Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Bushland Evapotranspiration and Agricultural Remote Sensing (BEARS)
2.3. Image Analysis
2.4. Landsat Satellite Dataset and Processing
2.5. Landsat ET Gap Filling
2.6. Dry and Wet Pixel Determination
2.7. Statistical Analysis
3. Results
3.1. Dryland Lysimeter ET Estimation
3.2. Irrigated Lysimeter ET Estimation
4. Discussion
4.1. Dryland Daily ET Comparison
4.2. Irrigated Daily ET Comparison
- The estimated LAI values for the irrigated field were much larger than that of the dryland field.
- All LAI values were zero in the beginning and end of each year, and this reflects that the field was bare soil. However, there were LAI values recorded during the growing season for the same field, providing useful information on when the field was fallow versus when a crop was growing.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Paulson, R.W. Evapotranspiration and Droughts. National Water Summary 1988–1989: Hydrologic Events and Floods and Droughts; US Government Printing Office: Washington, DC, USA, 1991; Volume 2375, pp. 1–147.
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Yaeger, M.A.; Massey, J.H.; Reba, M.L.; Adviento-Borbe, M.A.A. Trends in the construction of on-farm irrigation reservoirs in response to aquifer decline in eastern Arkansas: Implications for conjunctive water resource management. Agric. Water Manag. 2018, 208, 373–383. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chávez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Remote Sensing Based Energy Balance Algorithms for Mapping ET: Current Status and Future Challenges. Trans. ASABE 2007, 50, 1639–1644. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2007, 26, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol. 1998, 213–229. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote. Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Park, A.B.; Colwell, R.N.A.; Meyers, V.F. Resource Survey by Satellite; sci-ence fiction coming true. In Yearbook of Agriculture; US Government Printing Office: Washington, DC, USA, 1968; pp. 13–19. [Google Scholar]
- Jackson, R.D. Remote Sensing of Vegetation Characteristics for Farm Management. 1984 Tech. Symp. East 1984, 475, 81–97. [Google Scholar] [CrossRef]
- Choudhury, B.; Idso, S.; Reginato, R. Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agric. For. Meteorol. 1987, 39, 283–297. [Google Scholar] [CrossRef]
- Su, H.; McCabe, M.; Wood, E.F.; Su, Z.; Prueger, J.H. Modeling Evapotranspiration during SMACEX: Comparing Two Approaches for Local- and Regional-Scale Prediction. J. Hydrometeorol. 2005, 6, 910–922. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; D’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Evett, S.R.; Kustas, W.P.; Gowda, P.H.; Anderson, M.C.; Prueger, J.H.; Howell, T.A. Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales. Adv. Water Resour. 2012, 50, 4–19. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G. Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manag. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Norman, J.; Kustas, W.; Humes, K. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; Shaughnessy, S.A.; Tolk, J.A.; Kustas, W.P.; Anderson, M.C. Two-Source Energy Balance Model: Refinements and Lysimeter Tests in the Southern High Plains. Trans. ASABE 2012, 55, 551–562. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; Matthew, F. UNSW Faculty of Engineering Matthew Francis McCabe Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Moorhead, J.E.; Marek, G.W.; Gowda, P.H.; Lin, X.; Colaizzi, P.D.; Evett, S.R.; Kutikoff, S. Evaluation of Evapotranspiration from Eddy Covariance Using Large Weighing Lysimeters. Agronomy 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Marek, T.H.; Schneider, A.D.; Howell, T.A.; Ebeling, L.L. Design and Construction of Large Weighing Monolithic Lysimeters. Trans. ASAE 1988, 31, 477–484. [Google Scholar] [CrossRef]
- Howell, T.A.; Schneider, A.D.; Dusek, D.A.; Marek, T.H.; Steiner, J.L. Calibration and Scale Performance of Bushland Weighing Lysimeters. Trans. ASAE 1995, 38, 1019–1024. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolutions. Water Resour. Res. 2003, 39, 39. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. Space Phys. 2007, 112, 112. [Google Scholar] [CrossRef]
- Anderson, M.; Kustas, W.P.; Norman, J.M. Upscaling Flux Observations from Local to Continental Scales Using Thermal Remote Sensing. Agron. J. 2007, 99, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. Comparison of Five Models to Scale Daily Evapotranspiration from One-Time-of-Day Measurements. Trans. ASABE 2006, 49, 1409–1417. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: II. Recommended documentation. Agric. Water Manag. 2011, 98, 921–929. [Google Scholar] [CrossRef]
- Chávez, J.L.; Gowda, P.H.; Howell, T.A.; Garcia, L.A.; Copeland, K.S.; Neale, C.M.U. ET Mapping with High-Resolution Airborne Remote Sensing Data in an Advective Semiarid Environment. J. Irrig. Drain. Eng. 2012, 138, 416–423. [Google Scholar] [CrossRef]
- Mkhwanazi, M.; Chávez, J.L.; Rambikur, E.H. Comparison of Large Aperture Scintillometer and Satellite-based Energy Balance Models in Sensible Heat Flux and Crop Evapotranspiration Determination. Int. J. Remote Sens. Appl. 2012, 2, 24. [Google Scholar]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; McGwire, K.C.; Bassett, S.D. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Trezza, R.; Allen, R.; Tasumi, M. Estimation of Actual Evapotranspiration along the Middle Rio Grande of New Mexico Using MODIS and Landsat Imagery with the METRIC Model. Remote Sens. 2013, 5, 5397–5423. [Google Scholar] [CrossRef] [Green Version]
- Chávez, J.L.; Gowda, P.H.; Howell, T.A.; Copeland, K.S. Evaluating Three Evapotranspiration Mapping Algorithms with Lysimetric Data in the Semi-arid Texas High Plains. In Proceedings of the 28th annual international irrigation show, San Diego, CA, USA, 9–11 December 2007. [Google Scholar]
- Dusek, D.A.; Howell, T.A.; Schneider, A.D.; Copeland, K.S. Bushland weighing lysimeter data acquisition systems for evapotranspiration research. Am. Soc. Agric. Eng. 1987, 1061, 81–2506. [Google Scholar]
- Hashem, A.A. Irrigation Water Management Using Remote Sensing and Hydrologic Modeling. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2018. [Google Scholar]
- Marek, G.W.; Gowda, P.; Evett, S.R.; Baumhardt, R.L.; Brauer, D.; Howell, T.A.; Marek, T.H.; Srinivasan, R. Calibration and Validation of the SWAT Model for Predicting Daily ET over Irrigated Crops in the Texas High Plains Using Lysimetric Data. Trans. ASABE 2016, 59, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Marek, G.W.; Gowda, P.; Evett, S.R.; Baumhardt, R.L.; Brauer, D.K.; Howell, T.A.; Marek, T.H.; Srinivasan, R. Estimating Evapotranspiration for Dryland Cropping Systems in the Semiarid Texas High Plains Using SWAT. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 298–314. [Google Scholar] [CrossRef]
- Hashem, A.A.; Engel, B.; Bralts, V.F.; Marek, G.W.; Moorhead, J.E.; Rashad, M.; Radwan, S.; Gowda, P.H. Landsat Hourly Evapotranspiration Flux Assessment using Lysimeters for the Texas High Plains. Water 2020, 12, 1192. [Google Scholar] [CrossRef]
- Moorhead, J.E.; Gowda, P.H.; Ponder, B.A.; Brauer, D.K. Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. In Proceedings of the Managing Global Resources for a Secure Future, Tampa, FL, USA, 22–25 October 2017. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Blonquist, J.; Allen, R.; Bugbee, B. An evaluation of the net radiation sub-model in the ASCE standardized reference evapotranspiration equation: Implications for evapotranspiration prediction. Agric. Water Manag. 2010, 97, 1026–1038. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.L.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Allen, R.G.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.G.M.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Hashem, A.A.; Engel, B.A.; Marek, G.W.; Moorhead, J.E.; Rashad, M.; Flanagan, D.C.; Radwan, S.; Bralts, V.F.; Gowda, P.H. Evaluation of SWAT Soil Water Estimation Accuracy Using Data from Indiana, Colorado, and Texas. Trans. ASABE 2020, 5, 1539–1559. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Patil, V.C. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrol. Earth Syst. Sci. 2017, 21, 6135–6151. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Moorhead, J.E.; Marek, G.W.; Colaizzi, P.D.; Gowda, P.; Evett, S.R.; Brauer, D.; Marek, T.H.; Porter, D.O. Evaluation of Sensible Heat Flux and Evapotranspiration Estimates Using a Surface Layer Scintillometer and a Large Weighing Lysimeter. Sensors 2017, 17, 2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowda, P.H.; Howell, T.A.; Paul, G.; Colaizzi, P.D.; Marek, T.H.; Su, Z.; Copeland, K.S. Deriving Hourly Evapotranspiration Rates with SEBS: A Lysimetric Evaluation. Vadose Zone J. 2013, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M.A.; Silva, S.S. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests. Remote Sens. 2017, 9, 46. [Google Scholar] [CrossRef] [Green Version]
2001 (Cotton-Limited Irrigation) | 2002 (Cotton-Limited Irrigation) | 2003 (Soybean) | 2004 (Soybean) | 2005 (Sorghum) | 2006 (Forage Corn) | 2007 (Forage Sorghum) | 2008 (Cotton) | 2009 (Sunflower) | 2010 (Cotton) | |
---|---|---|---|---|---|---|---|---|---|---|
# | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) | Date (DOY) |
1 | March 12 (71) | January 26 (26) | January 13 (13) | February 17 (48) | January 25 (25) | January 18 (28) | January 8 (8) | January 18 (18) | January 13 (13) | April 29 (119) |
2 | May,22 (142) | February 11 (42) | April 10 (100) | March 20 (80) | February 3 (34) | February 13 (44) | February 25 (56) | February 19 (50) | January 20 (20) | June 25 (176) |
3 | June 16 (167) | March 3 (90) | May 5 (125) | March 27 (87) | March 7 (66) | April 18 (108) | March 4 (63) | March 22 (82) | January 29 (29) | July 18 (199) |
4 | June 23 (174) | May 9 (129) | May 28 (148) | April 21 (112) | June 18 (169) | May 20 (140) | March 29 (88) | April 7 (95) | February 5 (36) | August 3 (215) |
5 | July 9 (190) | May 18 (138) | June 24 (205) | May 14 (135) | June 27 (178) | June 5 (156) | June 8 (159) | May 2 (123) | February 21 (52) | August 12 (224) |
6 | July 25 (206) | June 10 (161) | July 17 (198) | May 30 (151) | July 20 (201) | July 23 (204) | July 26 (207) | May 18 (139) | March 18 (77) | August 19 (231) |
7 | August 19 (231) | June 19 (170) | September 17 (260) | December 1 (336) | August 30 (242) | August 8 (220) | August 11 (223) | June 3 (155) | April 3 (93) | September 4 (247) |
8 | September 27 (270) | July 21 (202) | September 26 (269) | December 12 (352) | September 22 (265) | August 24 (236) | June 10 (162) | June 22 (173) | September 29 (272) | |
9 | October 13 (286) | September 23 (266) | October 19 (292) | October 1 (274) | September 18 (261) | July 21 (203) | July 8 (189) | October 15 (288) | ||
10 | November 7 (311) | November 29 (333) | October 24 (297) | September 25 (268) | August 6 (219) | August 16 (228) | November 16 (320) | |||
11 | December 9 (343) | November 18 (315) | October 11 (284) | August 22 (235) | November 4 (308) | November 23 (327) | ||||
12 | December 12 (359) | October 27 (300) | September 30 (274) | November 20 (324) | December 12 (355) | |||||
13 | November 28 (332) | October 25 (299) | December 25 (359) | |||||||
14 | November 1 (306) | |||||||||
15 | November 17 (322) | |||||||||
16 | December 28 (363) |
Year | Average Frequency (Days) | Maximum Gap (Days) | Dates of Maximum Gap | DOY of Maximum Gap |
---|---|---|---|---|
2001 | 30 | 70 | March 12–May 22 | DOY 71 To DOY 142 |
2002 | 41 | 99 | September 23–December 31 | DOY 266 To DOY 365 |
2003 | 37 | 86 | January 13–April 10 | DOY 13 To DOY 100 |
2004 | 46 | 184 | May 30–December 1 | DOY 151 To DOY 336 |
2005 | 33 | 102 | March 7–June 18 | DOY 66 To DOY 169 |
2006 | 28 | 63 | February 13–April 18 | DOY 44 To DOY 108 |
2007 | 52 | 141 | August 19–December 31 | DOY 231 To DOY 365 |
2008 | 23 | 40 | June 10–July 21 | DOY 162 To DOY 203 |
2009 | 30 | 56 | August 16–November 11 | DOY 228 To DOY 315 |
2010 | 28 | 118 | January 1–April 29 | DOY 1 To DOY 119 |
Pixel | Constraint | Condition | |
---|---|---|---|
Ts | NDVI | ||
Hot (dry) | High | ≤0.2 | Bare agricultural soil |
Cold (Wet) | Low | ≥0.7 | Cultivated agricultural soil |
Daily | Monthly | ||
---|---|---|---|
(mm) | 1.8 | 1.2 | |
% error | 144.3 | 105.7 | |
−1.38 | −0.19 | ||
Measured average ET (mm d−1) | 1.3 | 1.1 | |
Landsat average ET (mm d−1) | 1.7 | 1.4 | |
Regression | R2 | 0.01 | - |
Slope | 0.09 | - |
Crop | RMSE (mm) | % RMSE Error | Measured Average ET (mm d−1) | Landsat Average ET (mm d−1) | |
---|---|---|---|---|---|
Cotton | 2001 GS | 1.7 | 83.4 | 2.0 | 1.1 |
2001 NG | 1.2 | 123.1 | 0.9 | 0.9 | |
Fallow | 2002 GS | - | - | - | - |
2002 NG | 2.5 | 288.4 | 0.9 | 2.0 | |
Sorghum | 2003 GS | 1.9 | 71.4 | 2.7 | 1.7 |
2003 NG | 1.4 | 171.0 | 0.8 | 1.5 | |
Fallow | 2005 GS | - | - | - | - |
2005 NG | 1.7 | 143.6 | 1.2 | 2.0 | |
Sorghum | 2006 GS | 1.3 | 48.9 | 2.7 | 2.6 |
2006 NG | 0.8 | 104.5 | 0.8 | 0.7 | |
Cotton | 2008 GS | 1.8 | 70.5 | 2.5 | 2.6 |
2008 NG | 1.5 | 177.6 | 0.8 | 1.4 | |
Fallow | 2009 GS | - | - | - | - |
2009 NG | 1.8 | 144.3 | 1.2 | 1. | |
Soybean | 2010 GS | 3.3 | 99.1 | 3.3 | 2.0 |
2010 NG | 2.2 | 215.9 | 1.0 | 2.0 |
Daily | Monthly | ||
---|---|---|---|
RMSE (mm) | 2.1 | 1.5 | |
% RMSE error | 86.4 | 56.7 | |
NSE | 0.37 | 0.57 | |
Measured average ET (mm d−1) | 2.4 | 1.9 | |
Landsat average ET (mm d−1) | 2.4 | 1.9 | |
Regression | R2 | 0.38 | - |
Slope | 0.86 | - |
Crop | RMSE (mm) | %RMSE Error | Measured Average ET (mm d−1) | Landsat Average ET (mm d−1) | |
---|---|---|---|---|---|
Cotton | 2001 GS | 2.0 | 66.2 | 3.1 | 2.1 |
2001 NG | 1.4 | 132.1 | 1.1 | 0.5 | |
Cotton | 2002 GS | 3.5 | 81.9 | 4.2 | 4.0 |
2002 NG | 1.8 | 156.3 | 1.1 | 1.9 | |
Soybean | 2003 GS | 2.7 | 55.2 | 4.9 | 4.0 |
2003 NG | 1.4 | 156.0 | 0.9 | 1.8 | |
Sorghum | 2005 GS | 1.8 | 53.4 | 3.4 | 3.6 |
2005 NG | 1.1 | 114.2 | 1.0 | 1.3 | |
Forage corn | 2006 GS | 2.7 | 62.3 | 4.3 | 3.1 |
2006 NG | 1.3 | 138.4 | 0.9 | 0.9 | |
Cotton | 2008 GS | 2.7 | 56.1 | 4.9 | 3.3 |
2008 NG | 1.8 | 186.9 | 0.9 | 1.8 | |
Sunflower | 2009 GS | 3.9 | 75.7 | 5.1 | 3.8 |
2009 NG | 1.4 | 139.9 | 0.9 | 1.4 | |
Cotton | 2010 GS | 3.5 | 87.8 | 3.9 | 3.9 |
2010 NG | 1.8 | 185.5 | 0.9 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, A.A.; Engel, B.A.; Bralts, V.F.; Marek, G.W.; Moorhead, J.E.; Radwan, S.A.; Gowda, P.H. Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains. Agronomy 2020, 10, 1688. https://doi.org/10.3390/agronomy10111688
Hashem AA, Engel BA, Bralts VF, Marek GW, Moorhead JE, Radwan SA, Gowda PH. Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains. Agronomy. 2020; 10(11):1688. https://doi.org/10.3390/agronomy10111688
Chicago/Turabian StyleHashem, Ahmed A., Bernard A. Engel, Vincent F. Bralts, Gary W. Marek, Jerry E. Moorhead, Sherif A. Radwan, and Prasanna H. Gowda. 2020. "Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains" Agronomy 10, no. 11: 1688. https://doi.org/10.3390/agronomy10111688
APA StyleHashem, A. A., Engel, B. A., Bralts, V. F., Marek, G. W., Moorhead, J. E., Radwan, S. A., & Gowda, P. H. (2020). Assessment of Landsat-Based Evapotranspiration Using Weighing Lysimeters in the Texas High Plains. Agronomy, 10(11), 1688. https://doi.org/10.3390/agronomy10111688