New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Dose–Response Assay with Glyphosate
2.4. Shikimic Acid Accumulation Assay
2.5. Absorption and Translocation
2.6. Metabolism Study
2.7. EPSPS Enzyme Activity Assay
2.8. Assay with Alternative Herbicides
2.9. Statistical Analysis
3. Results
3.1. Dose–Response Assay with Glyphosate
3.2. Shikimic Acid Accumulation Assay
3.3. Absorption and Translocation
3.4. C-glyphosate Visualization
3.5. Metabolism Study
3.6. EPSPS Enzyme Activity Assay
3.7. Assay with Alternative Herbicides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fleck, N.G.; Schaedler, C.E.; Agostinetto, D.; Rigoli, R.P.; Dal Magro, T.; Tironi, S.P. Associação de características de planta em cultivares de aveia com habilidade competitiva. Planta Daninha 2009, 27, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Kissmann, K.G. Plantas Infestantes e Nocivas|Instituto de Botânica, 2rd ed.; BASF Brasileira: São Paulo, Brazil, 1997; 825p. [Google Scholar]
- Catasús Guerra, L.J. Las Gramíneas (Poaceae) de Cuba II, 1st ed.; Cavanillesia Altera: Madrid, Brazil, 2002. [Google Scholar]
- Barkworth, M.E. Chloris Sw. In Manual of Grasses for North America; Barkworth, M.E., Anderton, L.K., Capels, K.M., Long, S., Piep, M.B., Eds.; Intermountain Herbarium and Utah State University Press: Logan, USA, 2007; pp. 185–253. [Google Scholar]
- Cerros-Tlatilpa, R.; Siqueiros-Delgado, M.E.; Skendzic, E.M. El género Chloris Sw. (Poaceae: Chloridoideae) en México. Acta Bot. Mex. 2015, 112, 95–147. [Google Scholar] [CrossRef] [Green Version]
- Hoyos, V.; Mora, A.; Plaza, G.; De Prado, R. First report of Chloris radiata glyphosate resistance in Colombia. In Proceedings of the Sustainable Integrated Weed Management and Herbicide Tolerant Varieties, Thessaloniki, Greece, 4–6 July 2019; EWRS Working Groups: Salónica, Greece, 2019. [Google Scholar]
- Nunes, A.L.; Vidal, R.A.; Trezzi, M.M. Herbicides to control Chloris distichophylla (False-Star-Grass). Rev. Bras. Herbic. 2007, 6, 13–21. [Google Scholar]
- Moraes de Aguiar, A.C.; Cutti, L.; Orsolin da Silva, D.R.; Kaspary, T.E.; Muraro, D.S.; Rieder, E.; Gonsiorkiewicz Rigon, C.A. Avaliação de herbicidas para o controle de Chloris distichophylla. Agrotrópica 2017, 29, 69–74. [Google Scholar] [CrossRef]
- Vencill, W.K.; Nichols, R.L.; Webster, T.M.; Soteres, J.K.; Mallory-Smith, C.; Burgos, N.R.; Johnson, W.G.; McClelland, M.R. Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops. Weed Sci. 2012, 60, 2–30. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, E.R.; Fernández-Moreno, P.T.; Bastida, F.; Osuna, M.D.; Alcántara-De La Cruz, R.; Cruz-Hipolito, H.E.; De Prado, R. Identifying Chloris species from cuban citrus orchards and determining their glyphosate-resistance status. Front. Plant Sci. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, E.; da Silveira, H.M.; Alcántara-de la Cruz, R.; Domínguez-Valenzuela, J.A.; Cruz-Hipolito, H.E.; De Prado, R. From tolerance to resistance: Mechanisms governing the differential response to glyphosate in Chloris barbata. Pest Manag. Sci. 2018, 74, 1118–1124. [Google Scholar] [CrossRef]
- Powles, S.B. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Manag. Sci. 2008, 64, 360–365. [Google Scholar] [CrossRef]
- Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. [Google Scholar] [CrossRef]
- Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar] [CrossRef]
- Duke, S.O. Glyphosate: The world’s most successful herbicide under intense scientific scrutiny. Pest Manag. Sci. 2018, 74, 1025–1026. [Google Scholar] [CrossRef] [PubMed]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef]
- HRAC Herbicide Resistant Action Committee. Available online: https://hracglobal.com/ (accessed on 28 February 2020).
- Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heap, I. International Survey of Herbicide Resistance Weed. Available online: http://www.weedscience.org/Summary/MOA.aspx (accessed on 29 February 2020).
- Ngo, T.D.; Malone, J.M.; Boutsalis, P.; Gill, G.; Preston, C. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia. Pest Manag. Sci. 2018, 74, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Ngo, T.D.; Krishnan, M.; Boutsalis, P.; Gill, G.; Preston, C. Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia. Pest Manag. Sci. 2017, 74, 1094–1100. [Google Scholar] [CrossRef]
- Barroso, A.A.M.; Albrecht, A.J.P.; Dos Reis, F.C.; Placido, H.F.; Toledo, R.E.; Albrecht, L.P.; Filho, R.V. Different Glyphosate Susceptibility in Chloris polydactyla Accessions. Weed Technol. 2014, 28, 587–591. [Google Scholar] [CrossRef]
- Brunharo, C.A.; Patterson, E.L.; Carrijo, D.R.; de Melo, M.S.; Nicolai, M.; Gaines, T.A.; Nissen, S.J.; Christoffoleti, P.J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag. Sci. 2016, 72, 1758–1764. [Google Scholar] [CrossRef]
- Ge, X.; D’Avignon, D.A.; Ackerman, J.J.H.; Collavo, A.; Sattin, M.; Ostrander, E.L.; Hall, E.L.; Sammons, R.D.; Preston, C. Vacuolar Glyphosate-Sequestration Correlates with Glyphosate Resistance in Ryegrass (Lolium spp.) from Australia, South America, and Europe: A 31 P NMR Investigation. J. Agric. Food Chem. 2012, 60, 1243–1250. [Google Scholar] [CrossRef]
- Alcántara-de la Cruz, R.; Rojano-Delgado, A.M.; Giménez, M.J.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; Barro, F.; De Prado, R. First Resistance Mechanisms Characterization in Glyphosate-Resistant Leptochloa virgata. Front. Plant Sci. 2016, 7, 1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, J.M.; Morran, S.; Shirley, N.; Boutsalis, P.; Preston, C. EPSPS gene amplification in glyphosate-resistant Bromus diandrus. Pest Manag. Sci. 2016, 72, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Shaner, D.L.; Nadler-Hassar, T.; Henry, W.B.; Koger, C.H. A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci. 2005, 53, 769–774. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Ruiz-Jiménez, J.; de Castro, M.D.L.; De Prado, R. Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection. Electrophoresis 2010, 31, 1423–1430. [Google Scholar] [CrossRef]
- de Carvalho, L.B.; Alves, P.L.D.C.A.; González-Torralva, F.; Cruz-Hipolito, H.E.; Rojano-Delgado, A.M.; De Prado, R.; Gil-Humanes, J.; Barro, F.; Luque de Castro, M.D. Pool of Resistance Mechanisms to Glyphosate in Digitaria insularis. J. Agric. Food Chem. 2012, 60, 615–622. [Google Scholar] [CrossRef]
- Rojano-Delgado, A.M.; Cruz-Hipolito, H.; De Prado, R.; Luque de Castro, M.D.; Franco, A.R. Limited uptake, translocation and enhanced metabolic degradation contribute to glyphosate tolerance in Mucuna pruriens var. utilis plants. Phytochemistry 2012, 73, 34–41. [Google Scholar] [CrossRef]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 28 February 2020).
- Christoffoleti, P.J.; Galli, A.J.; Carvalho, S.J.; Moreira, M.S.; Nicolai, M.; Foloni, L.L.; Martins, B.A.; Ribeiro, D.N. Glyphosate sustainability in South American cropping systems. Pest Manag. Sci. 2008, 64, 422–427. [Google Scholar] [CrossRef]
- Powles, S.B.; Lorraine-Colwill, D.F.; Dellow, J.J.; Preston, C. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 1998, 46, 604–607. [Google Scholar] [CrossRef]
- Khan, I.M.; Hassan, G.; Khan, I.; Marwat, K.B. Testing of herbicides at various doses on the growth stages of wild onion grown in pots. Sarhad J. Agric. 2011, 27, 85–91. [Google Scholar]
- Preston, C.; Wakelin, A.M. Resistance to glyphosate from altered herbicide translocation patterns. Pest Manag. Sci. 2008, 64, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Vila-Aiub, M.M.; Balbi, M.C.; Distéfano, A.J.; Fernández, L.; Hopp, E.; Yu, Q.; Powles, S.B. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Manag. Sci. 2012, 68, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Glyphosate Degradation in Glyphosate-Resistant and -Susceptible Crops and Weeds. J. Agric. Food Chem. 2011, 59, 5835–5841. [Google Scholar] [CrossRef] [PubMed]
- Alcántara-de la Cruz, R.; Fernández-Moreno, P.T.; Ozuna, C.V.; Rojano-Delgado, A.M.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; Barro, F.; De Prado, R. Target and Non-target Site Mechanisms Developed by Glyphosate-Resistant Hairy beggarticks (Bidens pilosa L.) Populations from Mexico. Front. Plant Sci. 2016, 7, 1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, L.; Yu, Q.; Han, H.; Mao, L.; Nyporko, A.; Fan, L.; Bai, L.; Powles, S. Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in Echinochloa colona. Plant Physiol. 2019, 181, 1519–1534. [Google Scholar] [CrossRef] [PubMed]
- Alcántara de la Cruz, R.; Barro, F.; Domínguez-Valenzuela, J.A.; De Prado, R. Physiological, morphological and biochemical studies of glyphosate tolerance in Mexican Cologania (Cologania broussonetii (Balb.) DC.). Plant Physiol. Biochem. 2016, 98, 72–80. [Google Scholar] [CrossRef]
- Ribeiro, D.N.; Nandula, V.K.; Dayan, F.E.; Rimando, A.M.; Duke, S.O.; Reddy, K.N.; Shaw, D.R. Possible Glyphosate Tolerance Mechanism in Pitted Morningglory (Ipomoea lacunosa L.). J. Agric. Food Chem. 2015, 63, 1689–1697. [Google Scholar] [CrossRef]
- González-Torralva, F.; Rojano-Delgado, A.M.; Luque de Castro, M.D.; Mülleder, N.; De Prado, R. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) biotypes. J. Plant Physiol. 2012, 169, 1673–1679. [Google Scholar] [CrossRef]
- Bracamonte, E.; Fernández-Moreno, P.T.; Barro, F.; De Prado, R. Glyphosate-Resistant Parthenium hysterophorus in the Caribbean Islands: Non Target Site Resistance and Target Site Resistance in Relation to Resistance Levels. Front. Plant Sci. 2016, 7, 1845. [Google Scholar] [CrossRef] [Green Version]
- García, M.J.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Bracamonte, E.; Portugal, J.; Alcántara-de la Cruz, R.; De Prado, R. The Triple Amino Acid Substitution TAP-IVS in the EPSPS Gene Confers High Glyphosate Resistance to the Superweed Amaranthus hybridus. Int. J. Mol. Sci. 2019, 20, 2396. [Google Scholar] [CrossRef] [Green Version]
- Christoffoleti, P.; Trentin, R.; Tocchetto, S.; Marochi, A.; Galli, A.J.; López-Ovejero, R.; Nicolai, M. Alternative Herbicides to Manage Italian Ryegrass (Lolium multiflorum Lam) Resistant to Glyphosate at Different Phenological Stages. J. Environ. Sci. Health Part B 2005, 40, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.; Cook, T.; Chauhan, B.S. Alternative Options to Glyphosate for Control of Large Echinochloa colona and Chloris virgata Plants in Cropping Fallows. Plants 2019, 8, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcántara-de la Cruz, R.; Moraes de Oliveira, G.; Bianco de Carvalho, L.; Fátima das Graças Fernandes da Silva, M. Herbicide Resistance in Brazil: Status, Impacts, and Future Challenges. In Herbicides—Current Research and Case Studies in Use, 2nd ed.; Ferreira, K.M., Ed.; IntechOpen (in Press): Rijeka, Croatia, 2020; pp. 1–25. [Google Scholar]
Trade Name | Active Ingredient | MOAa | Field Dose (g ai ha−1) |
---|---|---|---|
Control | - | - | - |
Centurion Plus 12% | Clethodim | ACCase | 100 |
Leopard 5% | Quizalofop | ACCase | 100 |
Hussar 5% | Iodosulfuron | ALS | 5 |
Terafit 25% | Flazasulfuron | ALS | 50 |
Paratex 20% | Paraquat | PS I | 400 |
Goal Supreme 24% | Oxyfluorfen | PPO | 500 |
Finale 15% | Glufosinate | GS | 500 |
Laudis 20% | Tembotrione | HPPD | 120 |
Diuron 80% | Diuron | PS II | 1800 |
Atazinax-Flo 47.5% | Atrazine | PS II | 2000 |
Plant Survival (LD50) | |||||
Population | d (SE) | b (SE) | LD50 (SE) | P | RF |
GS | 100.00 ± 0.04 | 11.81 ± 1.33 | 517.82 ± 2.00 | <0.0001 | - |
GR | 100.04 ± 0.04 | 23.02 ± 0.72 | 1526.6 ± 0.85 | <0.0001 | 2.95 |
Growth Reduction (GR50) | |||||
d (SE) | b (SE) | GR50 (SE) | P | RF | |
GS | 97.04 ± 2.23 | 2.26 ± 0.21 | 142.95 ± 6.99 | <0.0001 | - |
GR | 95.47 ± 1.48 | 2.35 ± 0.19 | 730.10 ± 33.36 | <0.0001 | 5.10 |
Population | % Absorption | Translocation (% of Absorbed) | ||
---|---|---|---|---|
Treated Leaf | Rest of Plant | Roots | ||
GS | 48.32 ± 1.60 a | 42.22 ± 2.35 b | 29.2 ± 0.73 a | 28.6 ± 2.82 a |
GR | 23.32 ± 0.93 b | 83 ± 2.09 a | 10.68 ± 0.40 b | 6.32 ± 2.06 b |
Herbicides | MOA | Visual Evaluationa | % Survival Plantb | % Fw Reductionc | |||
---|---|---|---|---|---|---|---|
GS | GR | GS | GR | GS | GR | ||
Control | - | 0 | 0 | 100 | 100 | 0 d | 0 d |
Clethodim | ACCase | 100 | 100 | 0 | 0 | 100 a | 100 a |
Quizalofop | ACCase | 100 | 100 | 0 | 0 | 100 a | 100 a |
Iodosulfuron | ALS | 0 | 0 | 100 | 100 | 18 c | 15.63 c |
Flazasulfuron | ALS | 70 | 70 | 100 | 100 | 41 b | 37.5 b |
Paraquat | PS I | 100 | 100 | 0 | 0 | 100 a | 100 a |
Oxyfluorfen | PPO | 90 | 90 | 50 | 75 | 40 b | 42.5 b |
Glufosinate | GS | 100 | 100 | 0 | 0 | 100 a | 100 a |
Tembotrione | HPPD | 100 | 100 | 0 | 0 | 100 a | 100 a |
Diuron | PS II | 100 | 100 | 0 | 0 | 100 a | 100 a |
Atrazine | PS II | 100 | 100 | 0 | 0 | 100 a | 100 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-García, J.G.; Golmohammadzadeh, S.; Palma-Bautista, C.; Rojano-Delgado, A.M.; Domínguez-Valenzuela, J.A.; Cruz-Hipólito, H.E.; De Prado, R. New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. Agronomy 2020, 10, 377. https://doi.org/10.3390/agronomy10030377
Vázquez-García JG, Golmohammadzadeh S, Palma-Bautista C, Rojano-Delgado AM, Domínguez-Valenzuela JA, Cruz-Hipólito HE, De Prado R. New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. Agronomy. 2020; 10(3):377. https://doi.org/10.3390/agronomy10030377
Chicago/Turabian StyleVázquez-García, José G., Sajedeh Golmohammadzadeh, Candelario Palma-Bautista, Antonia M. Rojano-Delgado, José A. Domínguez-Valenzuela, Hugo E. Cruz-Hipólito, and Rafael De Prado. 2020. "New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance" Agronomy 10, no. 3: 377. https://doi.org/10.3390/agronomy10030377
APA StyleVázquez-García, J. G., Golmohammadzadeh, S., Palma-Bautista, C., Rojano-Delgado, A. M., Domínguez-Valenzuela, J. A., Cruz-Hipólito, H. E., & De Prado, R. (2020). New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance. Agronomy, 10(3), 377. https://doi.org/10.3390/agronomy10030377