Short-Term Root-Zone Temperature Treatment Enhanced the Accumulation of Secondary Metabolites of Hydroponic Coriander (Coriandrum sativum L.) Grown in a Plant Factory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.1.1. Germination and Plant Seedling
2.1.2. Growth Condition and Treatments
2.2. Measurement
2.2.1. Growth Parameters
2.2.2. Total Chlorophyll and Total Carotenoid Concentration
2.2.3. 1,1-Diphenyl-2-picrylhydrazyl Radical-Scavenging Activity
2.2.4. Total Phenolic Content
2.2.5. Chlorogenic Acid and Rutin Content
2.3. Statistical Analysis
3. Results
3.1. Plant Growth
3.2. Pigment, Secondary Metabolite, and Antioxidant Capacity
3.3. Chlorogenic Acid and Rutin
4. Discussion
4.1. Plant Growth
4.2. Pigments and Secondary Metabolite Accumulation
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sahib, N.G.; Anwar, F.; Gilani, A.H.; Hamid, A.A.; Saari, N.; Alkharfy, K.M. Coriander (Coriandrum sativum L.): A potential source of high-value components for functional foods and nutraceuticals—A review. Phyther. Res. 2013, 27, 1439–1456. [Google Scholar]
- Kohara, K.; Sakamoto, Y.; Hasegawa, H.; Kozuka, H.; Sakamoto, K.; Hayata, Y. Fluctuations in volatile compounds in leaves, stems, and fruits of growing coriander (Coriandrum sativum L.) plants. J. Jpn. Soc. Hortic. Sci. 2006, 75, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Divya, P.; Puthusseri, B.; Neelwarne, B. The effect of plant regulators on the concentration of carotenoids and phenolic compounds in foliage of coriander. LWT Food Sci. Technol. 2014, 56, 101–110. [Google Scholar] [CrossRef]
- El-Zaeddi, H.; Calín-Sánchez, Á.; Nowicka, P.; Martínez-Tomé, J.; Noguera-Artiaga, L.; Burló, F.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chem. 2017, 226, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Dueñas, M.; Dias, I.M.; Maria, S.J.; Santos-buelga, C.; Ferreira, I.C.F.R. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chem. 2012, 132, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- İnanç, A.L. Chlorophyll: Structural properties, health benefits and its occurrence in virgin olive oils. Acad. Food J./Akademik GIDA 2011, 9, 26–32. [Google Scholar]
- Kizhedath, A.; Suneetha, V. Estimation of chlorophyll content in common household medicinal leaves and their utilization to avail health benefits of chlorophyll. J. Pharm. Res. 2011, 4, 1412–1413. [Google Scholar]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Abdulmanea, K.; Prokudina, E.A.; Lanková, P.; Vaníčková, L.; Koblovská, R.; Zelený, V.; Lapčík, O. Immunochemical and HPLC identification of isoflavonoids in the Apiaceae family. Biochem. Syst. Ecol. 2012, 45, 237–243. [Google Scholar] [CrossRef]
- Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 2012, 210, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Ippoushi, K.; Nakayama, M.; Ito, H. Absorption of chlorogenic acid and caffeic acid in rats after oral. J. Agric. Food Chem. 2000, 48, 5496–5500. [Google Scholar] [CrossRef]
- Ong, K.W.; Hsu, A.; Kwong, B.; Tan, H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 2013, 85, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.; Niu, G. Plant factory as a resource-efficient closed plant production system. In Plant Factory: An indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 69–90. [Google Scholar]
- Sakamoto, M.; Suzuki, T. Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am. J. Plant Sci. 2015, 6, 2350–2360. [Google Scholar] [CrossRef] [Green Version]
- He, J.; See, X.E.; Qin, L.; Choong, T.W. Effects of root-zone temperature on photosynthesis, productivity and nutritional quality of aeroponically grown salad rocket (Eruca sativa) vegetable. Am. J. Plant Sci. 2016, 7, 1993–2005. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Duan, Z.; Mao, J.; Li, X.; Dong, F.; Yan, Q.; Duan, Z.; Mao, J.; Li, X.; Dong, F. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of c. Soil Sci. Plant Nutr. 2012, 58, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawahy, M.S.; Al-Rawahy, S.A.; Al-Mulla, Y.A.; Nadaf, S.K. Effect of cooling root-zone temperature on growth, yield and nutrient uptake in cucumber grown in hydroponic system during summer season in cooled greenhouse. J. Agric. Sci. 2019, 11, 47–60. [Google Scholar] [CrossRef]
- Nguyen, D.T.P.; Lu, N.; Kagawa, N.; Takagaki, M. Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory. Agronomy 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Falah, M.A.F.; Wajima, T.; Yasutake, D.; Sago, Y.; Kitano, M. Responses of root uptake to high temperature of tomato plants (Lycopersicon esculentum Mill.) in soil-less culture. J. Agric. Technol. 2010, 6, 543–558. [Google Scholar]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Bantis, F.; Ouzounis, T.; Radoglou, K. Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Sci. Hortic. (Amst.) 2016, 198, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, N.; Iguchi, H.; Henzan, M.; Hanaoka, M. Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Sci. Nutr. 2019, 7, 1494–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.J. Root temperature and plant growth: A review. In Research review 4, Commonwealth Bureau of Horticulture and Plantation Crops; Commonwealth Agriculture Bureaux: East Malling, Kent, UK, 1973; pp. 59–72. [Google Scholar]
- Nxawe, S.; Ndakidemi, P.A.; Laubscher, C.P. Possible effects of regulating hydroponic water temperature on plant growth, accumulation of nutrients and other metabolites. Afr. J. Biotechnol. 2010, 9, 9128–9134. [Google Scholar]
- Chadirin, Y.; Hidaka, K.; Takahashi, T.; Sago, Y.; Wajima, T.; Kitano, M. Application of temperature stress to roots of spinach I. Effect of the low temperature stress on quality. Environ. Control Biol. 2011, 49, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Chadirin, Y.; Sago, Y.; Hidaka, K.; Wajima, T.; Kitano, M. Application of temperature stress to root zone of spinach III. Effective method for short term application of low and high temperature stresses to toots. Environ. Control Biol. 2012, 50, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, E.; Hikosaka, S.; Goto, E. Effects of nutrient solution temperature on the concentration of major bioactive compounds in red perilla. J. Agric. Meteorol. 2018, 74, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Téllez, I.L.; Fernando, G.-M.C. Nutrient Solutions for Hydroponic Systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; IntTechOpen: Rijeka, Croatia, 2012; pp. 1–22. [Google Scholar]
- Morard, P.; Silvestre, J. Plant injury due to oxygen deficiency in the root environment of soilless culture: A review. Plant Soil 1996, 184, 243–254. [Google Scholar] [CrossRef]
- Sakamoto, M.; Uenishi, M.; Miyamoto, K.; Suzuki, T. Effect of root-zone temperature on the growth and fruit quality of hydroponically grown strawberry plants. J. Agric. Sci. 2016, 8, 122–131. [Google Scholar]
- Costa, L.D.; Tomasi, N.; Gottardi, S.; Iacuzzo, F.; Cortella, G.; Manzocco, L.; Pinton, R.; Mimmo, T.; Cesco, S. The effect of growth medium temperature on corn salad [Valerianella locusta (L.) laterr] baby leaf yield and quality. HortScience 2011, 46, 1619–1625. [Google Scholar] [CrossRef]
- Islam, M.Z.; Lee, T.Y.; Mele, M.A.; Choi, L.I.; Kang, M.H. The effect of phosphorus and root zone temperature on anthocyanin of red romaine lettuce. Agronomy 2019, 9, 47. [Google Scholar] [CrossRef] [Green Version]
- Kefeli, A.I.; Kalevitch, M.V.; Borsari, B. Phenolic cycle in plants and environment. J. Cell Molercular Biol. 2003, 2, 13–18. [Google Scholar]
- Haldimann, P.; Feller, U.R.S. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ. 2005, 28, 302–317. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Pham, A.T.; Kwon, D.Y.; Lee, S.; Arasu, M.V. Enhancement of chlorogenic acid production in hairy roots of Platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1. Int. J. Mol. Sci. 2014, 15, 14743–14752. [Google Scholar]
Treatment Codez | Total Chl Content (mg g−1 FW) | Total Carotenoid Content (mg g−1 FW) | ASA Content (mg g−1) | TPC (mg GAE g−1 FW) | Antioxidant Capacity (mg TE g−1 FW) |
---|---|---|---|---|---|
25 (control) | 0.95 abc x | 0.16 c | 1.59 d | 0.60 f | 0.39 d |
15-3 | 1.08 ab | 0.19 ab | 1.91 a | 0.84 d | 0.72 c |
15-6 | 0.9 bc | 0.16 bc | 1.79 abc | 1.11 c | 1.04 b |
20-3 | 0.94 bc | 0.16 bc | 1.35 e | 0.72 de | 0.49 d |
20-6 | 1.12 ab | 0.21 a | 1.65 bcd | 0.83 d | 0.66 c |
30-3 | 1.12 ab | 0.16 c | 1.59 cd | 0.66 ef | 0.41 d |
30-6 | 1.16 a | 0.17 bc | 1.62 cd | 0.73 de | 0.44 d |
35-3 | 0.82 c | 0.16 c | 1.83 ab | 1.38 b | 1.12 b |
35-6 | 0.79 c | 0.16 c | 1.63 cd | 1.73 a | 1.54 a |
ANOVA y | |||||
RZT (A) | *** | *** | *** | *** | *** |
Stress period (B) | NS | * | NS | *** | *** |
A x B | ** | *** | *** | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, D.T.P.; Lu, N.; Kagawa, N.; Kitayama, M.; Takagaki, M. Short-Term Root-Zone Temperature Treatment Enhanced the Accumulation of Secondary Metabolites of Hydroponic Coriander (Coriandrum sativum L.) Grown in a Plant Factory. Agronomy 2020, 10, 413. https://doi.org/10.3390/agronomy10030413
Nguyen DTP, Lu N, Kagawa N, Kitayama M, Takagaki M. Short-Term Root-Zone Temperature Treatment Enhanced the Accumulation of Secondary Metabolites of Hydroponic Coriander (Coriandrum sativum L.) Grown in a Plant Factory. Agronomy. 2020; 10(3):413. https://doi.org/10.3390/agronomy10030413
Chicago/Turabian StyleNguyen, Duyen T. P., Na Lu, Natsuko Kagawa, Mizuki Kitayama, and Michiko Takagaki. 2020. "Short-Term Root-Zone Temperature Treatment Enhanced the Accumulation of Secondary Metabolites of Hydroponic Coriander (Coriandrum sativum L.) Grown in a Plant Factory" Agronomy 10, no. 3: 413. https://doi.org/10.3390/agronomy10030413
APA StyleNguyen, D. T. P., Lu, N., Kagawa, N., Kitayama, M., & Takagaki, M. (2020). Short-Term Root-Zone Temperature Treatment Enhanced the Accumulation of Secondary Metabolites of Hydroponic Coriander (Coriandrum sativum L.) Grown in a Plant Factory. Agronomy, 10(3), 413. https://doi.org/10.3390/agronomy10030413