The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain
Abstract
:1. Introduction
1.1. Intensive Farming under the New Model of Sustainable Development
1.2. Family Farming, Circular Economy and Bioeconomy-Priorities for SDG
1.3. Protected Horticulture and Agricultural Waste Biomass as the Basis of the Bioeconomy
- Characterise the main protected horticultural crops in the province of Almeria and estimate the production of greenhouse waste biomass.
- Identify the current management strategies for agricultural waste biomass from greenhouses, as well as the policies and regulatory tools responsible for its integrated management.
- Analyse the possible alternatives for the exploitation of waste biomass and the opportunities for growers.
- Conduct an economic assessment of self-management of agricultural waste to analyse the feasibility of its implementation as a sustainability strategy.
2. Materials and Methods
2.1. General Stages of the Process
2.2. Specific Methods Developed by Each Objective
2.3. Additional Specifications for Objective 4
- -
- All calculations were adapted to a farm with a land area of 1 ha, with an Almeria-type “backbone” greenhouse measuring 6 metres ridge height, 5 metres gutter height (amagado) and 4.70 metres wall height. The remaining production facilities included an irrigation system, water collection reservoirs and a climate control system—common for the production model in Almeria, as is the cost structure presented (variable and fixed) [60].
- -
- The production and prices of tomato crop were estimated based on official documentation published in the Annual Report of the Ministry of Agriculture, Fisheries and Rural Development for the 2017/2018 season [58].
- -
- The relative costs of agricultural waste management are assigned according to the method chosen by the grower and following the cost calculation proposed in Torres Nieto [70]. Two options are presented for managing agricultural waste:
- o
- Without self-management of waste, that is, the removal and transportation of plant waste to an external company specialised in agricultural waste management. Thus, the only additional costs involved are transport expenses and recycling taxes due.
- o
- Self-management of waste, that is, the grower undertakes all tasks related to cleaning and processing and the ultimate application of resulting green fertiliser on their farm.
3. Results and Discussion
3.1. Characterisation of the Intensive Protected Horticultural System in Almeria
3.1.1. Evolution of Greenhouse and Crop Land Cover
3.1.2. Distribution of Greenhouse Cover by Farming Areas and Towns
3.1.3. Main Crops and Evolution of Horticultural Production
3.2. Policies, Strategies and Regulatory and Financial Tools Promoting Integrated Management of Agricultural Waste Biomass
3.3. Characterization and Estimation of Waste Biomass Production from Greenhouses in the Province of Almeria
3.4. Current Management Strategies for Agricultural Waste Biomass from Greenhouses: The Case of the Province of Almeria
- -
- Regulatory frameworks, featuring administrative and technical demands that make it difficult for growers to comply with requisites and to implement recovery systems [69].
- -
- Complex administrative processes and delays in the issuing of aid and/or authorisations [107].
- -
- Lack of coordination between the policies and regulatory tools of public authorities responsible for waste managment and inspection and control processes [69].
- -
- -
- -
- -
- Financial obstacles and economic risks related to the implementation of new practices [108].
- -
- Ignorance of international, national and regional policies and directives that promote and favour the adoption of sustainable agricultural practices.
3.5. Alternatives for the Exploitation of Waste Biomass from Greenhouses and Opportunities for Growers
- -
- -
- -
- ✓
- It guides them towards adopting policies and global action plans related to sustainable development.
- ✓
- It is one of the main activities of organic agriculture, which is also one of the main objectives of the circular bioeconomy strategy.
- ✓
- It is a priority issue for governments, which offers the possibility of gaining access to aid and subsidies that promote sustainable agriculture.
- ✓
- It responds to the growing demand among consumers who prefer quality agricultural products obtained by means of environmentally friendly techniques and processes.
- ✓
- It contributes to the recovery of agricultural waste biomass, which, in economic terms, reduces costs of inputs and raw materials.
- ✓
- It minimises the production of waste, saving costs of transporting and managing the treatment of waste, while also reducing the negative impact on the environment.
3.6. Economic Assessment of Self-Management of Waste as a Transition towards Organic Fertilization
- There is a decrease in the use of three key inputs: soil preparation cost, inorganic fertiliser and water, particularly in the phase lasting from planting to initial flowering. This result is in line with the findings of other studies, particularly those for tomato crop [125].Concretely, the self-management of waste strategy means a saving of 450 €/ha in the cost of “Soil preparation”, because part of these tasks are charged to the activities of the “Management of residual biomass “, i.e., "Removal of raffia and shredding" (+1030 €/ha) and "Fertilizer management with plant residues" (+900 €/ha). These new costs are according to the study by Torres Nieto [70], which estimates a total cost of 1,930 €/ha for a tomato crop. However, farmers who choose the self-management of the waste strategy do not assume the cost of transport to the recycling plant (+990 €/ha).In addition, farmers who prefer not to use the self-management of the waste strategy accept a higher cost of fertilization per hectare (+889 €/ha) because the contribution of vegetable residues to the soil (with self-management of waste strategy) saves around 40% of the total fertilization costs. Moreover, the contribution of green biomass means a saving of 2% in the consumption of irrigation water, especially from “Growing and development until 1st inflorescence” (+216 €/ha). This result is according to the data obtained by García-Raya et al. [125] for a tomato crop.
- Soil quality is improved through organic enriching, favouring a more eco-friendly agriculture in line with the current demands of consumers.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Towards Zero Hunger 1945-2030; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Rivera-Ferre, M.G.; Ortega-Cerdà, M.; Baumgärtner, J. Rethinking study and management of agricultural systems for policy design. Sustainability 2013, 5, 3858. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. The international Code of Conduct for the Sustainable Use and Management of Fertilizers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Organisation for Economic Cooperation and Development. Background Notes on Sustainable, Productive and Resilient Agro-Food Systems: Value Chains, Human Capital, and the 2030 Agenda; Organisation for Economic Cooperation and Development: Rome, Italy, 2019. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Food and Agriculture. Driving Action across the 2030 Agenda for Sustainable Development; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i7454e.pdf (accessed on 4 February 2020).
- Food and Agriculture Organization of the United Nations. Status of the World’s Soil Resources. Technical Summary; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture. Innovation in Family Farming; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Strategic Work of FAO to Reduce Rural Poverty; Food and Agriculture Organization of the United Nations, 2017. [Google Scholar]
- Aggarwal, P.; Vyas, S.; Thornton, P.; Campbell, B.M.; Kropff, M. Importance of considering technology growth in impact assessments of climate change on agriculture. Glob. Food Sec. 2019, 23, 41–48. [Google Scholar] [CrossRef]
- United Nations—Intergovernmental Panel on Climate Change. Climate Change and Land: Summary for Policymakers. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers. ipcc; 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/Edited-SPM_Approved_Microsite_FINAL.pdf (accessed on 4 February 2020).
- Lange, G.; Wodon, Q.; Carey, K. The Changing Wealth of Nations 2018: Building a Sustainable Future; Lange, G.-M., Wodon, Q., Carey, K., Eds.; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. Updated Bioeconomy Strategy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Aznar-Sánchez, J.; Belmonte-Ureña, L.; López-Serrano, M.; Velasco-Muñoz, J. Forest Ecosystem Services: An Analysis of Worldwide Research. Forests 2018, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Belmonte-Ureña, L.J.; Manzano-Agugliaro, F. The worldwide research trends on water ecosystem services. Ecol. Indic. 2019, 99, 310–323. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report 2019; Jensen, L., Ed.; United Nations Publications: New York, NY, USA, 2019. [Google Scholar]
- Binswanger, H.P.; Hazell, P.; McCalla, A. Agriculture and the Environment. Perspectives on Sustainable Rural Development; Lutz, E., Ed.; World Bank: Washington, DC, USA, 1998. [Google Scholar]
- Ministerio de Agricultura y Pesca, A.y.M.A. Procedimiento Para la Declaración de Subproducto; Ministerio de Agricultura y Pesca, Alimientación y Medio Ambiente: Madrid, España, 2017. [Google Scholar]
- European Commission. Investing in Sustainable Development. The EU at the forefront in implementing the Addis Ababa Action Agenda; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Posición Común en Relación con la Iniciativa de la Comisión Europea Sobre “Modernización y Simplificación de la Política Agrícola Común. Available online: https://www.mapa.gob.es/es/pac/postura-reforma-pac/posicioncomunconferenciasectorialabril2017_tcm30-379797.pdf (accessed on 5 February 2020).
- United Nations Economic and Social Council. Report of the Team of Specialists on Innovation and Competitiveness Policies on its Tenth Session; United Nations Economic and Social Council: Geneva, Switzerland, 2017; Available online: https://www.unece.org/fileadmin/DAM/ceci/documents/2017/ICP/TOS-ICP/ECE.CECI.ICP.2017.2.e.pdf (accessed on 5 February 2020).
- FAO. Transforming Food and Agriculture to Achieve the SDGs.20 Interconnected Actions to Guide Decision-Makers; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- DeLonge, M.S.; Miles, A.; Carlisle, L. Investing in the transition to sustainable agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. International Fund for Agricultural Development United Nations Decade of Family Farming 2019-2028. Global Action Plan; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Food and Agriculture Organization of the United Nations. COAG/2010/6, Committee on Agriculture. Twenty-second Session, Rome, 16–19 June 2010. Policies and Institutions to Support Smallholder Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Food and Agriculture Organization of the United Nations. FAO’S Work on Family Farming. Preparing for the Decade of Family Farming (2019–2028) to Achieve the SDGs; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Family Farmers. Feeding the World, Caring for the Earth; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Food and Agriculture Organization of the United Nations. International Fund for Agricultural Development (IFAD). Putting Family Farmers at the Centre to Achieve the SDGs; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Graziano da Silva, J. From Fome Zero to Zero Hunger: A Global Perspective; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- European Commission. EIP-AGRI Workshop “Opportunities for Agriculture and Forestry in the Circular Economy”. Workshop Report 28–29 October 2015; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Russo, I.; Confente, I.; Scarpi, D.; Hazen, B.T. From trash to treasure: The impact of consumer perception of bio-waste products in closed-loop supply chains. J. Clean. Prod. 2019, 218, 966–974. [Google Scholar] [CrossRef]
- Blomsma, F.; Brennan, G. The Emergence of Circular Economy: A New Framing Around Prolonging Resource Productivity. J. Ind. Ecol. 2017, 21, 603–614. [Google Scholar] [CrossRef]
- Molina-Moreno, V.; Leyva-Díaz, J.; Llorens-Montes, F.; Cortés-García, F. Design of Indicators of Circular Economy as Instruments for the Evaluation of Sustainability and Efficiency in Wastewater from Pig Farming Industry. Water 2017, 9, 653. [Google Scholar] [CrossRef]
- United Nations. Goal 12. Ensure Sustainable Consumption and Production Patterns (Updated on 3 March 2016); United Nations: New York, NY, USA, 2016. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. On the Implementation of the Circular Economy Action Plan; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Union. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Closing the Loop—An EU Action Plan for the Circular Economy; European Union: Brussels, Belgium, 2015. [Google Scholar]
- European Comission. Innovating for Sustainable Growth: A Bioeconomy for Europe; European Comission; Office of the European Union: Brussels, Belgium, 2012. [Google Scholar]
- European Commission. Horizon 2020 in Brief. The EU Framework Programme for Research & Innovation; Union, E., Ed.; Office of the European Union: Brussels, Belgium, 2014. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Innovating for Sustainable Growth: A Bioeconomy for Europe; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Bracco, S.; Calicioglu, O.; Gomez San Juan, M.; Flammini, A. Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks. Sustainability 2018, 10, 1698. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable Bio-Composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10, 19–26. [Google Scholar] [CrossRef]
- European Commission. Review of the 2012 European Bioeconomy Strategy; Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- German Bioeconomy Council. World Bioeconomy Exhibition. El-Chichakli, B., Kambach, K., Eds.; German Bioeconomy Council: 2018. Available online: https://biooekonomierat.de/fileadmin/Publikationen/Sonstige/Ausstellungskatalog_final.pdf (accessed on 6 February 2020).
- Tuck, C.O.; Perez, E.; Horvath, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of Biomass: Deriving More Value from Waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- McCormick, K.; Kautto, N. The Bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589. [Google Scholar] [CrossRef] [Green Version]
- Bioeconomy Stakeholders Panel. European Bioeconomy Stakeholders. Manifesto; Bioeconomy Stakeholders Panel: Brussels, Belgium, 2017. [Google Scholar]
- Ciegis, R.; Ramanauskiene, J.; Martinkus, B. The concept of sustainable development and its use for sustainability scenarios. Eng. Econ. 2009, 2, 28–37. [Google Scholar]
- Heimann, T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Futur. 2019, 7, 43–57. [Google Scholar] [CrossRef] [Green Version]
- International Advisory Council (IAC) GBS2018. Global Bioeconomy Summit Communiqué 2018. Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing; International Advisory Council (IAC) GBS2018: Berlin, Germany, 2018. [Google Scholar]
- Intharathirat, R.; Abdul Salam, P. Valorization of MSW-to-Energy in Thailand: Status, Challenges and Prospects. Waste Biomass Valorization 2016, 7, 31–57. [Google Scholar] [CrossRef]
- Kothari, R.; Tyagi, V.V.; Pathak, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Junta de Andalucía. Estrategia Andaluza Bioeconomía Circular; Junta de Andalucía: Sevilla, España, 2018. [Google Scholar]
- Baudoin, W.; Nersisyan, A.; Shamilov, A.; Hodder, A.; Gutierrez, D.; Pascale, S.D.e.; Nicola, S.; Chairperson, V.; Gruda, N.; Urban, L.; et al. Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries. Principles for Sustainable Intensification of Smallholder Farms; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Tüzel, Y.; Leonardi, C. Protected cultivation in Mediterranean region: Trends and needs. J. Ege Univ. Fac. Agric. 2009, 46, 215–223. [Google Scholar]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; Pascale, S.D.e.; Qaryouti, M. Good Agricultural Practices for Greenhouse Vegetable Crops. Principles for Meditterranean Climate Areas; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- European Comission. EIP-AGRI Focus Group Circular Horticulture. Final Report. February 2019; eip-agri Agriculture & Innovation: Brussels, Belgium, 2019. [Google Scholar]
- Torrellas, M.; Antón, A.; López, J.C.; Baeza, E.J.; Parra, J.P.; Muñoz, P.; Montero, J.I. LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int. J. Life Cycle Assess. 2012, 17, 863–875. [Google Scholar] [CrossRef]
- European Commission. EIP-AGRI Workshop Opportunities for Farm Diversification in the Circular Bioeconomy. Final Report. May 2019; eip-agri Agriculture & Innovation: Brussels, Belgium, 2019. [Google Scholar]
- Torrellas, M.; Antón, A.; Ruijs, M.; García Victoria, N.; Stanghellini, C.; Montero, J.I. Environmental and economic assessment of protected crops in four European scenarios. J. Clean. Prod. 2012, 28, 45–55. [Google Scholar] [CrossRef]
- Consejería de Agricultura, P.y.D.S. Memoria Resumen 2018. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/consejeria/sobre-consejeria/estadisticas/paginas/agrarias-anuario.html (accessed on 6 February 2020).
- United Nations System Staff College (UNSSC). La Agenda 2030 Para el Desarrollo Sostenible; UNSSC Knowledge Centre for Sustainable Developmen: Bonn, Germany, 2015. [Google Scholar]
- Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A.; Camacho, F. The greenhouses of Almería, Spain: Technological analysis and profitability. Acta Hortic. 2017, 219–226. [Google Scholar] [CrossRef]
- Egea, F.J.; Torrente, R.G.; Aguilar, A. An efficient agro-industrial complex in Almería (Spain): Towards an integrated and sustainable bioeconomy model. N. Biotechnol. 2018, 40, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Instituto de Estudios de Cajamar. La Economía de la Provincia de Almería; Caja Rural Intermediterránea.Cajamar, Ed.; Instituto de Estudios de Cajamar: Almería, España, 2005; ISBN 84-95531-27-5. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R. Cartografía de Invernaderos en Almería, Granada y Málaga; Año 2018. Consejería de Agricultura, Pesca y Desarrollo Rural, 2018. Available online: https://www.juntadeandalucia.es/export/drupaljda/Cartografia%20_inv_AL_GR_MA_180725.pdf (accessed on 6 February 2020).
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R.-O.de P.y M. Evaluación de la Campaña 2017 /18. Hortícolas Protegidos de Almería; Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, España, 2018. [Google Scholar]
- Honoré, M.N.; Belmonte-Ureña, L.J.; Navarro-Velasco, A.; Camacho-Ferre, F. Profit Analysis of Papaya Crops under Greenhouses as an Alternative to Traditional Intensive Horticulture in Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 2908. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R.-C.de M.A.y O.del T. Líneas de Actuación en Materia de Gestión de Restos Vegetales en la Horticultura de Andalucía; Consejería de Agricultura, Pesca y Desarrollo Rural—Consejería de Medio Ambiente y Ordenación del Territorio: Sevilla, España, 2016. [Google Scholar]
- Hernández, J.C.L.; Martínez, C.P.; Fernández, G.A. Ficha de Transferencia Nro. 017. Residuos Vegetales Procedentes de los Invernaderos de Almería; Cajamar Caja Rural: Almería, España, 2016. [Google Scholar]
- Aznar-Sánchez, J.; Belmonte-Ureña, L.; Velasco-Muñoz, J.; Valera, D. Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain. Int. J. Environ. Res. Public Health 2019, 16, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministerio de Agricultura, A.y M.A. Produccion y Consumo Sostenibles y Residuos Agrarios; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, España, 2012. [Google Scholar]
- Torres Nieto, J.M. Documentos Técnicos No. 10. Cajamar Caja Rural. Uso Agronómico de Restos de Cosecha en Los Invernaderos Enarenados de la Cuenta Mediterránea; Cajamar Caja Rural: Málaga, Spain, 2016. [Google Scholar]
- Ministerio de Agricultura y Pesca, A.y.M.A.; Ministerio de Economía, I.y.C. Pacto Por Una Economía Circular: El Compromiso de los Agentes Económicos y Sociales 2018-2020; Ministerio para la Transición Ecológica: Madrid, España, 2017. [Google Scholar]
- European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Sources. European Parliament and of the Council of the European Union, 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 7 February 2020).
- European Union. Directiva 2008/98/CE del Parlamento Europeo y del Consejo de 19 de Noviembre de 2008, Sobre los Residuos y Por la Que se Derogan Determinadas Directivas. Parlamento europeo y el Consejo de la Unión Europea, 2008. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A32008L0098 (accessed on 7 February 2020).
- European Union. Directiva (UE) 2018/851 del Parlamento Europeo y del Consejo de 30 de Mayo de 2018, por la Que se Modifica la Directiva 2008/98/CE Sobre Los Residuos. Parlamento europeo y el Consejo de la Unión Europea, 2018. Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:32018L0851&from=EN (accessed on 7 February 2020).
- Jefatura del estado español—Juan Carlos I—Rey de España. Ley 22/2011, de 28 de Julio, de Residuos y Suelos Contaminados. «BOE» núm. 181, de 29 de julio de 2011 Referencia: BOE-A-2011-13046; Presidente del Gobierno—José Luis Rodríguez Zapatero: Madrid, España, 2016. [Google Scholar]
- Jefatura del estado español—Juan Carlos I—Rey de España. Ley 5/2013, de 11 de Junio, Por la Que se Modifican la Ley 16/2002, de 1 de Julio, de Prevención y Control Integrados de la Contaminación, y la Ley 22/2011, de 28 de Julio, de Residuos y Suelos Contaminados; Presidente del Gobierno- Mariano Rajoy Brey: Madrid, España, 2013. [Google Scholar]
- European Commission. Commission Decision of 3 May 2000 Replacing Decision 94/3/EC Establishing a List of Wastes Pursuant to Article 1(a) of Council Directive 75/442/EEC on Waste and Council Decision 94/904/EC Establishing a List of Hazardous Waste Pursuant to Article 1(4) of; Commission of the European Communities—Margot WALLSTRÖM: Brussels, Belgium, 2000. [Google Scholar]
- European Union. Reglamento (CE) No. 834/2007 del Consejo de 28 de Junio de 2007, Sobre Producción y Etiquetado de Los Productos Ecológicos y por el Que se Deroga el Reglamento (CEE) No. 2092/91; Presidente del Consejo de la Unión Europea—S. Gabriel: Luxembourg, 2007; Available online: https://www.boe.es/doue/2007/189/L00001-00023.pdf (accessed on 7 February 2020).
- European Environment Agency. Circular by Design: Products in the Circular Economy; Office of the European Union: Copenhagen, Denmark, 2017. [Google Scholar]
- European Union. The Common Agricultural Policy (CAP) and the Treaty. European Parliament—Albert Massot, 2019. Available online: https://www.europarl.europa.eu/factsheets/en/sheet/103/the-common-agricultural-policy-cap-and-the-treaty (accessed on 8 February 2020).
- European Union. The Post-2020 Common Agricultural Policy: Environmental Benifits and Simplification. European Commission, 2019. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/key_policies/documents/cap-post-2020-environ-benefits-simplification_en.pdf (accessed on 8 February 2020).
- Comisión Europea. Reglamento (CE) No. 1698/2005 del Consejo de 20 de Septiembre de 2005, Relativo a la Ayuda al Desarrollo Rural a Través del Fondo Europeo Agrícola de Desarrollo Rural (FEADER). Consejo de la Unión Europea, 2005. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2005R1698:20070101:ES:PDF (accessed on 8 February 2020).
- European Union. Regulation (EU) No 1303/2013 of the European Parliament and of the Council of 17 December 2013, Laying down Common Provisions on the European Regional Development Fund, the European Social Fund, the Cohesion Fund, the European Agricultural Fund for Rural. European Parliament and of the Council of the European Union, 2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013R1303 (accessed on 8 February 2020).
- European Commission. European Structural and Investment Funds 2014-2020: Official Texts and Commentaries; Office of the European Union: Luxembourg, 2015. [Google Scholar]
- European Comission. Bioeconomy: The European Way to Use our Natural Resources. Action Plan 2018; Office of the European Union: Brussels, Belgium, 2018. [Google Scholar]
- Ministerio de Agricultura y Pesca, A.y.M.A. España—Programa Nacional de Desarrollo Rural 2014—2020. Versión 5.0 (Consolidado con el Marco Nacional2014es06rdnf001—v3.0—Adoptado por la CE); Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, España, 2018. [Google Scholar]
- Ministerio de Agricultura, P.y.A. Resolución de 18 de Junio de 2018, del Fondo Español de Garantía Agraria, O.A. (FEGA) por la Que se Convocan Ayudas Para la Concesión de Subvenciones a la Ejecución de Proyectos de Innovación de Interés General por Grupos Operativos de la Asociación Euro; Miguel Ángel Riesgo Pablo—Presidente del Fondo Español de Garantía Agraria O.A: Madrid, España, 2018. [Google Scholar]
- Ministerio de Agricultura, A.y.M.A. Programa Estatal de Prevención de Residuos 27.11.2013; Secretaría de Estado de Medio Ambiente—Secretaría de Estado de Medio Ambiente—Dirección General de Calidad y Evaluación Ambiental y Medio Natural: Madrid, España, 2013. [Google Scholar]
- Ministerio de Economía y Competitividad. Estrategia Española de Bioeconomía. Horizonte 2030; Ministerio de Economía y Competitividad—Secretaria de Estado de Investigación, Desarrollo e Innovación: Madrid, España, 2015. [Google Scholar]
- Ministerio de Agricultura, A.y.M.A. Plan Estatal Marco de Gestión de Residuos (PEMAR) 2016-2022; Secretaría de Estado de Medio Ambiente—Dirección General de Calidad y Evaluación Ambiental y Medio Natural: Madrid, España, 2016. [Google Scholar]
- Ministerio de Agricultura y Pesca, A.y.M.A. Estrategia Para la Producción Ecológica 2018-2020; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, España, 2018. [Google Scholar]
- Camacho-Ferre, F. Diferentes alternativas para la gestión del residuo biomasa procedente de cultivos de invernadero. In Innovaciones Tecnológicas en Cultivos de Invernadero; Rodríguez, E.J.F., Ed.; Universidad de Almería—Junta de Andalucía: Almería, España, 2003. [Google Scholar]
- Camacho Ferre, F. Estudio Técnico de Plan de Higiene Rural. Término Municipal de Níjar; Níjar Natura: Almería, España, 2000. [Google Scholar]
- Reche Mármol, J. Cultivo del Pimiento Dulce en Invernadero; Junta de Andalucía. Consejería de Agricultura y Pesca, Ed.; Signatura; Secretaría General Técnica. Servicio de Publicaciones y Divulgación: Sevilla, España, 2010. [Google Scholar]
- Callejón, A.J.; Carreño, A.; Sánchez-Hermosilla, J.; Pérez, J. Evaluación de impacto ambiental de centro de transformación y gestión de residuos sólidos agrícolas en la provincia de Almería (España). Inf. la Construcción 2010, 62, 79–93. [Google Scholar] [CrossRef]
- Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [Google Scholar]
- Manzano Agugliaro, F. Gasificacion de residuos de invernadero para la obtención de energía eléctrica en el sur de España: Ubicación mediante SIG. Interciencia 2007, 32, 1–7. [Google Scholar]
- Galdeano-gómez, E.; Aznar-sánchez, J.A.; Pérez-mesa, J.C. Contribuciones Económicas, Sociales y Medioambientales de la Agricultura Intensiva de Almería. Un Análisis de Sinergias Entre las Dimensiones de Sostenibilidad; Cajamar, C.R., Ed.; Cajamar Caja Rural: Almería, España, 2016. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R. Caracterización de Las Explotaciones de Invernadero de Andalucía: Campo de Dalías (Almería); Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, Spain, 2015. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R. Caracterización de los Invernaderos de Andalucía; Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, Spain, 2015. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R. Caracterización de las Explotaciones de Invernadero de Andalucía: Campo de Níjar y Bajo Andarax (Almería); Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, Spain, 2015. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R.-S.G.de A.y.A. El Sector Agrario y Pesquero en Andalucía; Consejería de Agricultura, Pesca y Desarrollo Rural: Sevilla, Spain, 2017. [Google Scholar]
- Ministerio de Agricultura y Pesca, A.y.M.A.-S.G.de C.D.y.A.E. Agricultura Ecológica—Estadísticas 2017; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente—Subdirección General de Calidad Diferenciada y Agricultura Ecológica: Sevilla, Spain, 2018. [Google Scholar]
- García García, M.C.; Céspedes López, A.J.; Pérez Parra, J.J.; Lorenzo Mínguez, P. El Sistema de Producción Hortícola Protegido de la Provincia de Almería; Instituto de investigación y Formación Agraria y Pesquera (IFAPA): Almería, España, 2016. [Google Scholar]
- Junta de Andalucía—Consejería de Agricultura, P.y.D.R. Caracterización de Las Explotaciones de Invernadero de Andalucía: Otras Zonas; Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, Spain, 2015. [Google Scholar]
- Junta de Andalucía—Consejería de Economía y Conocimiento. Decreto 1/2016, de 12 de Enero, Por el Que se Establece un Conjunto de Medidas Para la Aplicación de la Declaración Responsable Para Determinadas Actividades Económicas Reguladas en la Ley 3/2014, de 1 de Octubre, de Medidas Normativas Para Reducir Las tr. Consejería de Economía y Conocimiento, 2016. Available online: https://www.juntadeandalucia.es/boja/2016/9/1 (accessed on 8 February 2020).
- Lefèvre, C.; Fatma, R.; Viridiana, A.; Liesl, W. Soil Organic Carbon the Hidden Potential; Liesl, W., Viridiana, A., Rainer, B., Ronald, V., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Callejón-Ferre, A.J.; Carreño-Sánchez, J.; Suárez-Medina, F.J.; Pérez-Alonso, J.; Velázquez-Martí, B. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Aguilera-Sáez, L.M.; Arrabal-Campos, F.M.; Callejón-Ferre, Á.J.; Suárez Medina, M.D.; Fernández, I. Use of multivariate NMR analysis in the content prediction of hemicellulose, cellulose and lignin in greenhouse crop residues. Phytochemistry 2019, 158, 110–119. [Google Scholar] [CrossRef]
- Morales, L.; Garzón, E.; Martínez-Blanes, J.M.; Sánchez-Soto, P.J. Thermal study of residues from greenhouse crops plant biomass. J. Therm. Anal. Calorim. 2017, 129, 1111–1120. [Google Scholar] [CrossRef]
- Garzón, E.; Morales, L.; Martínez-Blanes, J.M.; Sánchez-Soto, P.J. Characterization of ashes from greenhouse crops plant biomass residues using X-ray fluorescence analysis and X-ray diffraction. X Ray Spectrom. 2017, 46, 569–578. [Google Scholar] [CrossRef]
- Sánchez-Molina, J.A.; Reinoso, J.V.; Acién, F.G.; Rodríguez, F.; López, J.C. Development of a biomass-based system for nocturnal temperature and diurnal CO2 concentration control in greenhouses. Biomass Bioenergy 2014, 67, 60–71. [Google Scholar] [CrossRef]
- Pinna-Hernández, M.G.; Martínez-Soler, I.; Díaz Villanueva, M.J.; Acien Fernández, F.G.; López, J.L.C. Selection of biomass supply for a gasification process in a solar thermal hybrid plant for the production of electricity. Ind. Crops Prod. 2019, 137, 339–346. [Google Scholar] [CrossRef]
- Reinoso, J.V.; Acién, F.G.; Fernández, M.D.; López, J.C.; Sánchez, J.A.; Rodríguez, F. Caracterización de los Residuos Vegetales de Invernadero Para su Aprovechamiento en Sistemas de Calefacción y Enriquecimiento. Actas del II Simposio Nacional de Ingeniería Hortícola realizado del 10 al 12 de febrero de 2016, en Almería, España.
- Acién Fernández, F.G.; Fernández Sevilla, J.M.; López Hernández, J.C.; Fernández Fernández, M.D.; Rodríguez Díaz, F.D.A.; Sánchez Molina, J.A. Sistema Combinado de Calefacción y Enriquecimiento Carbónico a Partir de Biomasa. Available online: http://repositorio.ual.es/handle/10835/4390 (accessed on 8 February 2020).
- Callejón-Ferre, A.J.; López-Martínez, J.A.; López-Martínez, J.A. Briquettes of plant remains from the greenhouses of Almería (Spain). Span. J. Agric. Res. 2009, 7, 525. [Google Scholar] [CrossRef]
- Márquez, M.A.; Diánez, F.; Camacho, F. The use of vegetable subproducts from greenhouses (VSG) for animal feed in the Poniente region of Almería. Renew. Agric. Food Syst. 2011, 26, 4–12. [Google Scholar] [CrossRef]
- Parra, S.; Aguilar, F.J.; Calatrava, J. Decision modelling for environmental protection: The contingent valuation method applied to greenhouse waste management. Biosyst. Eng. 2008, 99, 469–477. [Google Scholar] [CrossRef]
- Gómez-Tenorio, M.A.; Lupión-Rodríguez, B.; Boix-Ruiz, A.; Ruiz-Olmos, C.; Marín-Guirao, J.I.; Tello-Marquina, J.C.; Camacho-Ferre, F.; de Cara-García, M. Meloidogyne -infested tomato crop residues are a suitable material for biodisinfestation to manage Meloidogyne sp. in greenhouses in Almería (south-east Spain). Acta Hortic. 2018, 217–222. [Google Scholar]
- Veeken, A.; Adani, F.; Fangueiro, D.; Jensen, S. EIP-AGRI Focus Group—Nutrient Recycling. The Value of Recycling Organic Matter to Soils. Classification as Organic Fertiliser or Organic Soil Improver. eip-agri Agriculture & Innovation—European Commission, 2017. Available online: http://circulairterreinbeheer.nl/wp-content/uploads/2017/10/Value-of-organic-matter-Classification-as-fertiliser-or-soil-improver_final-23-Jan-2017.pdf (accessed on 8 February 2020).
- Junta de Andalucía. Orden de 16 de febrero de 2018, por la que se efectúa la convocatoria para el año 2018 de Subvenciones a la Medida 10: Agroambiente y Clima, a la Medida 11: Agricultura Ecológica y a la Medida 13: Pagos a Zonas con Limitaciones Naturales u Otras Limitacio; Consejería de Agricultura, Pesca y Desarrollo Rural—Observatorio de Precios y Mercados: Sevilla, Spain, 2018. [Google Scholar]
- Del Moral, F.; González, V.; Simón, M.; García, I.; Sánchez, J.A.; De Haro, S. Soil properties after 10 years of organic versus conventional management in two greenhouses in Almeria (SE Spain). Arch. Agron. Soil Sci. 2012, 58, S226–S231. [Google Scholar] [CrossRef]
- Becker, S.J.; Ebrahimzadeh, A.; Plaza Herrada, B.M.; Lao, M.T. Characterization of Compost Based on Crop Residues: Changes in Some Chemical and Physical Properties of the Soil after Applying the Compost as Organic Amendment. Commun. Soil Sci. Plant Anal. 2010, 41, 696–708. [Google Scholar] [CrossRef]
- García-Raya, P.; Ruiz-Olmos, C.; Marín-Guirao, J.; Asensio-Grima, C.; Tello-Marquina, J.; de Cara-García, M. Greenhouse Soil Biosolarization with Tomato Plant Debris as a Unique Fertilizer for Tomato Crops. Int. J. Environ. Res. Public Health 2019, 16, 279. [Google Scholar] [CrossRef] [Green Version]
Tomato | Pepper | Courgette | Watermelon | Cucumber | Aubergine | Melon | Green beans | |
---|---|---|---|---|---|---|---|---|
Land area (ha) | 10,380 | 10,181 | 7755 | 7797 | 5099 | 2150 | 1808 | 510 |
Production (t/year) | 992,669 | 732,118 | 452,035 | 397,832 | 443,604 | 181,130 | 73,394 | 9819 |
Comparison Aug 2017 to July 2018 | Tomate Crop | ||
---|---|---|---|
Without Self-Management of the Waste (1) | With Self-Management of Waste (2) | Δ (1—2) | |
Total annual incomes (€·ha−1) | 131,498 € € | - € | |
Production (kg·ha−1) | 197,000 | - € | |
Average price (€·kg−1) | 0.668 € | - € | |
Total variable cost (€) | 83,960 € | 83,345 € | 615 € |
Technical assessment (€) | 313 € | ||
Soil preparation (€) | 1,674 € | 1,224 € | 450 € |
Fertilization (€) | 2,223 € | 1,334 € | 889 € |
Covering and structure (€) | 4,799 € | - € | |
Seeds and seedling production (€) | 7,793 € | - € | |
Growing and development until 1st inflorescence (€) | 10,791 € | 10,575 € | 216 € |
Flowering periods until 1st harvesting season (€) | 15,807 € | - € | |
From the 1st harvesting season until the end of the cultivation (€) | 39,571 € | - € | |
Management of residual biomass | |||
Transport and management in recycling plant | 990 € | - € | 990 € |
Removal of raffia and shredding | - € | 1030 € | -1030 € |
Fertilizer management with plant residues | - € | 900 € | -900 € |
Total fixed costs (€) | 21,623 € | - € | |
Soil maintenance (€) | 2082 € | - € | |
Covering and structure (€) | 4168 € | - € | |
Energy and fixed supplies (€) | 1,646 € | - € | |
Insurance, management and financial services (€) | 3625 € | - € | |
Equipment and irrigation system (€) | 10,103 € | - € | |
Total expenses | 105,583 € | 104,968 € | 615 € |
Net profit (ha) | 25,914 € | 26,529 € | - 615 € |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Plaza-Úbeda, J.A.; Camacho-Ferre, F. The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy 2020, 10, 489. https://doi.org/10.3390/agronomy10040489
Duque-Acevedo M, Belmonte-Ureña LJ, Plaza-Úbeda JA, Camacho-Ferre F. The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy. 2020; 10(4):489. https://doi.org/10.3390/agronomy10040489
Chicago/Turabian StyleDuque-Acevedo, Mónica, Luis J. Belmonte-Ureña, José A. Plaza-Úbeda, and Francisco Camacho-Ferre. 2020. "The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain" Agronomy 10, no. 4: 489. https://doi.org/10.3390/agronomy10040489
APA StyleDuque-Acevedo, M., Belmonte-Ureña, L. J., Plaza-Úbeda, J. A., & Camacho-Ferre, F. (2020). The Management of Agricultural Waste Biomass in the Framework of Circular Economy and Bioeconomy: An Opportunity for Greenhouse Agriculture in Southeast Spain. Agronomy, 10(4), 489. https://doi.org/10.3390/agronomy10040489