Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Al-Yassin, A.; Pecchioni, N.; Francia, E.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Cammarano, D.; Holland, J.; Ronga, D. Spatial and Temporal Variability of Spring Barley Yield and Quality Quantified by Crop Simulation Model. Agronomy 2020, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: A meta-analysis. Global Chang. Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.J.; Jones, D.L.; Edwards-Jones, G.; Williams, A.P. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J. Plant Nutr. Soil Sci. 2012, 175, 840–845. [Google Scholar] [CrossRef]
- Borrelli, L.; Pecetti, L. Wheat yield as a measure of the residual fertility after 20 years of forage cropping systems with different manure management in Northern Italy. Ital. J. Agron. 2019, 14, 1359. [Google Scholar]
- Chadwick, D.; Wei, J.; Yan’an, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Rehim, A.; Khan, M.; Imran, M.; Bashir, M.A.; Ul-Allah, S.; Khan, M.N.; Hussain, M. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat. Ital. J. Agron. 2020, 15, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Milan Ihnat, A.; Fernandes, L. Trace elemental characterization of composted poultry manure. Bioresour. Technol. 1996, 57, 143–156. [Google Scholar] [CrossRef]
- Ronga, D.; Setti, L.; Salvarani, C.; De Leo, R.; Bedin, E.; Pulvirenti, A.; Milc, J.; Pecchioni, N.; Francia, E. Effects of solid and liquid digestate for hydroponic baby leaf lettuce (Lactuca sativa L.) cultivation. Sci. Hortic. 2019, 244, 172–181. [Google Scholar] [CrossRef]
- Larney, F.J.; Blackshaw, R.E. Weed seed viability in composted beef cattle feedlot manure. J. Environ. Qual. 2003, 32, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Francia, E.; Pulvirenti, A.; Gigliano, S.; Zaccardelli, M.; Pane, C.; Caradonia, F.; Bortolini, S.; Maistrello, L.; Ronga, D. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Manag. 2019, 95, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Bortolini, S.; Macavei, L.I.; Saadoun, J.H.; Foca, G.; Ulrici, A.; Bernini, F.; Malferrari, D.; Setti, L.; Ronga, D.; Maistrello, L. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. J. Clean. Prod. 2020, 262, 121289. [Google Scholar] [CrossRef]
- Butler, T.A.; Sikora, L.J.; Teeinhilber, P.M.; Douglass, L.W. Compost age and sample storage effects on maturity indicators of biosolids compost. J. Environ. Qual. 2001, 30, 2141–2148. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Ahmad, M.; Mumtaz, M.Z.; Nazli, F.; Farooqi, M.A.; Khalid, I.; Iqbal, Z.; Arshad, H. Impact of integrated use of enriched compost, biochar, humic acid and Alcaligenes sp. AZ9 on maize productivity and soil biological attributes in natural field conditions. Ital. J. Agron. 2019, 14, 1413. [Google Scholar] [CrossRef]
- Irshad, M.; Eneji, A.E.; Hussain, Z.; Ashraf, M. Chemical characterization of fresh and composted livestock manures. J. Soil Sci. Plant Nutr. 2013, 13, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Haase, M.; Rösch, C.; Ulrici, O. Feasibility study on the processing of surplus livestock manure into an organic fertilizer by thermal concentration–The case study of Les Plenesses in Wallonia. J. Clean. Prod. 2017, 161, 896–907. [Google Scholar] [CrossRef]
- Brito, L.M.; Coutinho, J.; Smith, S.R. Methods to improve the composting process of the solid fraction of dairy cattle slurry. Bioresour. Technol. 2008, 99, 8955–8960. [Google Scholar] [CrossRef]
- Olsen, J.E.; Larsen, H.E. Bacterial decimation times in anaerobic digestions of animal slurries. Biol. Wastes 1987, 21, 153–168. [Google Scholar] [CrossRef]
- Pulvirenti, A.; Ronga, D.; Zaghi, M.; Rita, A.; Mannella, L.; Pecchioni, N. Pelletingis a successful method to eliminate the presence of Clostridium spp. from the digestate of biogas plants. Biomass Bioenergy 2015, 81, 479–482. [Google Scholar] [CrossRef]
- Alkanok, G.; Demirel, B.; Onay, T.T. Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Manag. 2014, 34, 134–140. [Google Scholar] [CrossRef]
- Lehtomaki, A.; Bjornsson, L. Two-stage anaerobic digestion of energy crops: Methane production, nitrogen mineralisation and heavy metal mobilisation. Environ. Technol. 2006, 27, 209–218. [Google Scholar] [CrossRef]
- Ronga, D.; Pellati, F.; Brighenti, V.; Laudicella, K.; Laviano, L.; Fedailaine, M.; Benvenuti, S.; Pecchioni, N.; Francia, E. Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum basilicum L.) and peppermint (Mentha x piperita L.) in hydroponics. J. Appl. Res. Med. Aromat. Plants 2018, 11, 18–26. [Google Scholar] [CrossRef]
- Baffi, C.; Dell’Abate, M.T.; Nassisi, A.; Silva, S.; Benedetti, A.; Genevini, P.L.; Adani, F. Determination of biological stability in compost: A comparison of methodologies. Soil Biol. Biochem. 2007, 39, 1284–1293. [Google Scholar] [CrossRef]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of spent coffee ground compost in peat-based growing media for the production of basil and tomato potting plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Ronga, D.; Francia, E.; Allesina, G.; Pedrazzi, S.; Zaccardelli, M.; Pane, C.; Tava, A.; Bignami, C. Valorization of vineyard by-products to obtain composted digestate and biochar suitable for nursery grapevine (Vitis vinifera L.) production. Agronomy 2019, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Adi, A.J.; Noor, Z.M. Waste recycling: Utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour. Technol. 2009, 100, 1027–1030. [Google Scholar] [CrossRef]
- Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T. Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere 2012, 88, 677–682. [Google Scholar] [CrossRef]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotechnol. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Hara, M. Fertilizer Pellets Made from Composted Livestock Manure; Food & Fertilizer Technology Center: Taipei, Taiwan, 2001. [Google Scholar]
- Ncube, P.; Roberts, S.; Vilakazi, T. Regulation and rivalry in transport and supply in the fertilizer industry in Malawi, Tanzania and Zambia. In Competition in Africa—Insights from Key Industries; Roberts, S., Ed.; HSRC Press: Cape Town, South Africa, 2016; pp. 102–131. [Google Scholar]
- Schnurer, A.; Jarvis, A. Microbiological Handbook for Biogas Plants; Swedish Waste Management U: Malmo, Sweden, 2009. [Google Scholar]
- Bagge, E.; Sahlstrom, L.; Albihn, A. The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res. 2005, 39, 4879–4886. [Google Scholar] [CrossRef]
- Ronga, D.; Caradonia, F.; Parisi, M.; Bezzi, G.; Parisi, B.; Allesina, G.; Pedrazzi, S.; Francia, E. Using digestate and biochar as fertilizers to improve processing tomato production sustainability. Agronomy 2020, 10, 138. [Google Scholar] [CrossRef] [Green Version]
- Hagassou, D.; Francia, E.; Ronga, D.; Buti, M. Blossom end-rot in tomato (Solanum lycopersicum L.): A multi-disciplinary overview of inducing factors and control strategies. Sci. Hortic. 2019, 249, 49–58. [Google Scholar] [CrossRef]
- Caradonia, F.; Francia, E.; Morcia, C.; Ghizzoni, R.; Moulin, L.; Terzi, V.; Ronga, D. Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria avoid processing tomato leaf damage during chilling stress. Agronomy 2019, 9, 299. [Google Scholar] [CrossRef] [Green Version]
- Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy 2019, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Wienhold, B.J.; Gilley, J.E.; Eigenberg, R.A. Mineralization of manure nutrients. J. Soil Water Conserv. 2002, 57, 470–473. [Google Scholar]
- Cassman, K.G.; Munns, D.N. Nitrogen mineralization as affected by soil moisture, temperature, and depth. Soil Sci. Soc. Am. J. 1980, 44, 1233–1237. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B. Nitrogen mineralization from field-applied beef cattle feedlot manure or compost. Soil Sci. Soc. Am. J. 2000, 64, 2024–2030. [Google Scholar] [CrossRef]
Parameters | Farmyard Manure | Dewatered Slurry | Pellet from DCS | ||
---|---|---|---|---|---|
Fresh | Composted | Fresh | Composted | ||
25 July 2019 | 15 November 2019 | 25 July 2019 | 15 November 2019 | 10 December 2019 | |
pH | 7.93 | 9.00 *,y | 7.36 | 8.78 *,y | - |
EC (mS cm−1) | 3.76 | 4.68 *,y | 1.44 | 1.03 | - |
TS (% WB) | 23.35 | 33.41 * | 29.82 | 71.28 * | 94.21 z,y |
Total N (% WB) | 0.45 | 0.80 * | 0.43 | 0.77 * | 1.91 z,y |
N-NH4+ (% WB) | 0.32 * | 0.09 | 0.08 * | 0.004 | - |
TOC (% TS) | 45.28 | 43.52 | 57.28 *,y | 30.34 | 31.73 * |
C/N | 23.64 * | 18.20 | 40.17 *,y | 28.23 z | 15.68 |
Total P (% WB) | 0.10 | 0.19 * | 0.13 | 0.28 * | 0.48 z,y |
K (% WB) | 0.75 | 1.22 * | 0.40 | 0.99 * | 1.75 z,y |
TEC (% TS) | 15.57 *,y | 9.62 | 13.23 *,y | 10.68 | - |
HA+ FA (% TS) | 10.15 *,y | 7.33 | 8.52 | 7.97 | - |
NH (% TS) | 5.42 *,y | 2.30 | 4.71* | 2.70 | - |
DH (%) | 65.00 | 76.00 *,y | 64.00 | 75.00 *,y | - |
HR (%) | 17.00 | 22.00 *,y | 15.00 | 26.00 *,y | - |
HI (-) | 0.53 *,y | 0.31 | 0.55 *,y | 0.34 | - |
Treatments | Aerobic Mesophilic Bacteria (CFU g−1) | Enterobacteriaceae (CFU g−1) | Clostridia spp. (CFU g−1) | |||
---|---|---|---|---|---|---|
Farmyard manure | 3.20 × 10E + 06 | e | 1.05 × 10E + 06 | b | 8.56 × 10E + 04 | b |
Composted farmyard manure | 2.06 × 10E + 08 | b | 7.81 × 10E + 04 | cd | 3.55 × 10E + 04 | c |
Dewatered slurry | 9.07 × 10E + 07 | c | 1.19 × 10E + 05 | c | 1.23 × 10E + 04 | d |
Dewatered and composted slurry | 2.79 × 10E + 08 | a | 2.80 × 10E + 06 | a | 1.66 × 10 + 06 | a |
Pelleted-DCS | 4.84 × 10E + 06 | de | 8.71 × 10E + 03 | d | 1.25 × 10E + 04 | d |
Treatment | VolumetricWater Content (m3 m−3) | GM Temperature (°C) | GM Electrical Conductivity (mS cm−1) | Weed Emergence (no. pot−1) | Nitrogen Mineralizd and Lost (g kg−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Not fertilized | 0.11 | d | 25.2 | a | 0.39 | c | 0 | b | - | |
Farmyard manure | 0.14 | c | 25.0 | b | 0.47 | b | 1 | a | 0.004 | d |
Composted farmyard manure | 0.12 | c | 25.1 | ab | 0.41 | bc | 0 | b | 0.009 | c |
Dewatered slurry | 0.16 | b | 24.8 | c | 0.53 | ab | 1 | a | 0.027 | a |
Dewatered and composted slurry | 0.18 | b | 24.7 | b | 0.57 | a | 0 | b | 0.016 | b |
Pelleted-DCS | 0.20 | a | 24.4 | c | 0.56 | a | 0 | b | 0.018 | b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ronga, D.; Mantovi, P.; Pacchioli, M.T.; Pulvirenti, A.; Bigi, F.; Allesina, G.; Pedrazzi, S.; Tava, A.; Dal Prà, A. Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability. Agronomy 2020, 10, 661. https://doi.org/10.3390/agronomy10050661
Ronga D, Mantovi P, Pacchioli MT, Pulvirenti A, Bigi F, Allesina G, Pedrazzi S, Tava A, Dal Prà A. Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability. Agronomy. 2020; 10(5):661. https://doi.org/10.3390/agronomy10050661
Chicago/Turabian StyleRonga, Domenico, Paolo Mantovi, Maria Teresa Pacchioli, Andrea Pulvirenti, Francesco Bigi, Giulio Allesina, Simone Pedrazzi, Aldo Tava, and Aldo Dal Prà. 2020. "Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability" Agronomy 10, no. 5: 661. https://doi.org/10.3390/agronomy10050661
APA StyleRonga, D., Mantovi, P., Pacchioli, M. T., Pulvirenti, A., Bigi, F., Allesina, G., Pedrazzi, S., Tava, A., & Dal Prà, A. (2020). Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability. Agronomy, 10(5), 661. https://doi.org/10.3390/agronomy10050661