Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Experimental Treatments
2.2. Climatic Conditions
2.3. Soil Sampling and Further Analyzes
2.4. Soil Water Content Measurements and Probe Calibration
2.5. Statistical Analysis
3. Results
3.1. Impact of Biochar Application and Re-Application on Bulk and Particle Density
3.2. Impact of Biochar Application and Re-Application on Porosity
3.3. Impact of Biochar Application and Re-Application on Saturated Hydraulic Conductivity
3.4. Impact of Biochar Application and Re-Application on Soil Water Content Dynamics
3.5. Impact of Biochar Application and Re-Application on Plant Available Water and Readily Plant Available Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bárek, V.; Halaj, P.; Igaz, D. The influence of climate change on water demands for irrigation of special plants and vegetables in Slovakia. In Bioclimatology and Natural Hazards; Strelcová, K., Matyas, C., Kleidon, A., Lapin, M., Matejka, F., Blazenec, M., Škvarenina, J., Holecy, J., Eds.; Springer: Dordrecht, The Netherlands, 2009; Volume 1, pp. 271–282. [Google Scholar]
- Sobocká, J.; Šurina, B.; Torma, S.; Dodok, R. Klimatická Zmena a jej Možné Dopady na Pôdny Fond Slovenska (Climate Change and Its Possible Impacts on the Soil Fund of Slovakia); VÚPOP: Bratislava, Slovakia, 2005. (In Slovak) [Google Scholar]
- Čimo, J.; Malenčíková, T.; Szomorová, L. Analyses of temperature changes in Danubian lowland. Ecol. Saf. 2015, 9, 57–65. [Google Scholar]
- Takáč, J.; Bárek, V.; Halaj, P.; Igaz, D.; Jurík, Ľ. Possible impact of climate change on soil water content in Danubian lowland. Cereal Res. Comm. 2008, 36, 1623–1626. [Google Scholar]
- Tárník, A.; Igaz, D. Quantification of soil water storage available to plants in the Nitra river basin. Acta Scien. Polon. Form. Circum. 2015, 14, 209–216. [Google Scholar] [CrossRef]
- Kováč, K.; Čimo, J.; Špánik, F.; Macák, M. Agroklimatické podmienky tvorby úrod jačmeňa siatého jarného (Agroclimatic conditions of spring barley yield production). In Proceedings of the Bioklimatologie Současnosti a Budoucnosti, Křtiny, Czechia, 12–14 September 2005. (In Slovak). [Google Scholar]
- Čimo, J.; Molnárová, J.; Špánik, F. The agroclimatical Analysis of production process of spring barley. Analele Univers. Oradea 2010, 9, 58–62. [Google Scholar]
- Lehmann, J.; Stephen, J. Biochar effect on soil hydrology. In Biochar for Environmental Management: Science, Technology and Implementation; Rountledge; Taylor & Francis Group: London, UK, 2015; pp. 543–563. [Google Scholar]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. Biochar in European Soils and Agriculture; Rountledge; Taylor & Francis Group: New York, NY, USA, 2016. [Google Scholar]
- Yu, O.; Raichle, B.; Sink, S. Impact of biochar on the water holding capacity of loamy sand soil. Inter. J. Energy Environ. Eng. 2013, 4, 1–9. [Google Scholar]
- Bruun, S.; Harmer, S.L.; Bekiaris, G.; Wibke, C.; Zuin, L.; Hu, Y.; Jansen, L.S.; Lombi, E. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 2017, 169, 377–386. [Google Scholar] [CrossRef]
- Rizhiya, E.Y.; Muchina, I.M.; Balashov, E.V.; Šimansky, V.; Buchkina, N.P. Effect of biochar on N2O emission, crop yield and properties of Stagnic Luvisol in a field experiment. Zemdirb. Agricult. 2019, 106, 297–306. [Google Scholar] [CrossRef]
- Horák, J.; Kondrlová, E.; Igaz, D.; Šimanský, V.; Felber, R.; Lukac, M.; Balashov, E.V.; Buchkina, N.P.; Rizhiya, E.Y.; Jankowski, M. Biochar and biochar with N-fertilizer affect soil N2O emission in Haplic Luvisol. Biologia 2017, 72, 995–1001. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V.; Aydin, E.; Igaz, D.; Buchkina, N.; Balashov, E. Effects of biochar combinated with N-fertilizer on soil CO2 emissions, crop yields and relationships with soil properties. Polish J. Environ. Stud. 2020, 29, 1–13. [Google Scholar] [CrossRef]
- Hunt, J.; DuPonte, M.; Sato, D.; Kawabata, A. The Basics of Biochar: A Natural Soil Amendment. Available online: https://www.ctahr.hawaii.edu/oc/freepubs/pdf/SCM-30.pdf (accessed on 12 June 2020).
- Antunes, E.; Schumann, J.; Brodie, G.; Jacob, M.V.; Schneider, P.A. Biochar produced from biosolids using a single-mode microwave: Characterisation and its potential for phosphorus removal. J. Environ. Manag. 2017, 196, 119–126. [Google Scholar] [CrossRef]
- Aslam, Z.; Khalid, M.; Aon, M. Impact of biochar on soil physical properties. Schol. J. Agric. Sci. 2014, 4, 280–284. [Google Scholar]
- Šimanský, V.; Šrank, D.; Jonczak, J.; Juriga, M. Fertilization and application of different biochar types and their mutual interactions influencing changes of soil characteristics in soils of different textures. J. Ecol. Eng. 2019, 20, 149–164. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.E.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2013, 376, 347–361. [Google Scholar] [CrossRef]
- Arthur, E.; Tuller, M.; Moldrup, P.; Jonge, L.W. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil. Geoderma 2015, 243-244, 175–182. [Google Scholar] [CrossRef]
- Salinas, J.; García, I.; Moral, F.; Simón, M. Use of marble sludge and biochar to improve soil water retention capacity. Span. J. Soil Sci. 2018, 8, 121–129. [Google Scholar]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Jones, B.E.H.; Haynes, R.J.; Phillips, I.R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag. 2010, 91, 2281–2288. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Walters, R.D.; White, J.G. Biochar in situ decreased bulk density and improved soil-water relations and indicators in Southeastern US Coastal Plain Ultisols. Soil Sci. 2018, 183, 1–13. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agricult. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Lei, O.; Zhang, R. Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J. Soils Sedim. 2013, 13, 1561–1572. [Google Scholar] [CrossRef]
- Makó, A.; Barna, G.; Horel, Á. Soil physical properties affected by biochar addition at different plant phaenological phases. Part II. Intern. Agrophys. 2020, 34, 1–7. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Sun, F.; Lu, S. Biochars improve aggregate stability, water retention, and pore-space properties of clayey soil. J. Plant Nutr. Soil Sci. 2014, 177, 26–33. [Google Scholar] [CrossRef]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Sci. World J. 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Hseu, Z.; Jien, S.; Chien, W.; Liou, R. Impacts of biochar on physical properties and erosion potential of Mudstone Slopeland Soil. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shahreen, S.M.; Ok, Y.S. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Aydin, E.; Šimanský, V.; Horák, J.; Igaz, D. Potential of biochar to alternate soil properties and crop yields 3 and 4 years after the application. Agronomy 2020, 10, 889. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Wallace, H.M.; Xu, C.; Zwieten, L.; Weng, Z.H.; Xu, Z.; Che, R.; Tahmasbian, I.; Hu, H.; Bai, S.H. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 2018, 636, 142–151. [Google Scholar] [CrossRef]
- Horák, J. Vplyv biouhlia v kombinácií s rôznými dávkami N hnojív na emisie oxidu dusného (N2O) v podmienkach poľného experimentu (Effect of biochar in combination with different doses of N fertilizer on nitrus oxide (N2O) emissions in condition of field experiment). In Ochrana Ovzdušia (Air Protection); Kongres STUDIO: Bratislava, Slovakia, 2017; pp. 147–156. (In Slovak) [Google Scholar]
- Igaz, D.; Šimanský, V.; Horák, J.; Kondrlová, E.; Domanová, J.; Rodný, M.; Buchkina, N.P. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech. 2018, 66, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Horák, J.; Igaz, D.; Balashov, E.; Jonczak, J. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J. Soil Sedim. 2018, 18, 1432–1440. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V.; Igaz, D. Biochar and biochar with N fertilizer impact on soil physical properties in silty loam Haplic Luvisol. J. Ecol. Eng. 2019, 20, 31–38. [Google Scholar]
- Horák, J. Testing biochar as a possible way to ameliorate slightly acidic soil at the research field located in the Danubian lowland. Acta Hort. Regiot. 2015, 18, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Horák, J.; Šimanský, V.; Igaz, D.; Juriga, M.; Aydin, E.; Lukac, M. Biochar: An important component ameliorating the productivity of intensively used soils. Polish J. Environ. Stud. 2020, 29, 2995–3001. [Google Scholar] [CrossRef]
- Tarnik, A. Impact of biochar reapplication on physical soil properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 1–7. [Google Scholar] [CrossRef]
- Toková, L. Using Gravimetric Method for Soil Moisture Determination; Veda Mladých, Slovenská poľnohospodárska univerzita: Nitra, Slovakia, 2019; pp. 122–130. [Google Scholar]
- Toková, L.; Igaz, D.; Aydin, E. Measurement of volumetric water content by gravimetric and time domain reflectometry methods at field experiment with biochar and N fertilizer. Acta Hort. Regiot. 2019, 22, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Vitkova, J.; Kondrlova, E.; Rodny, M.; Surda, P.; Horak, J. Analysis of soil water content and crop yield after biochar application in field conditions. Plant Soil Environ. 2017, 63, 569–573. [Google Scholar]
- Kondrlová, E.; Horák, J.; Igaz, D. Effect of biochar and nutrient amendment on vegetative growth of spring barley (Hordeum vulgare L. var. Malz). Aust. J. Crop Sci. 2018, 12, 178–184. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Šimanský, V.; Horák, J.; Polláková, N.; Juriga, M.; Jonczak, J. Will the nutrient content in biochar be reflected by their higher content of corn organs? J. Element. 2019, 24, 525–537. [Google Scholar] [CrossRef]
- Horák, J.; Šimanský, V.; Aydin, E. Benefits of biochar and its combination with nitrogen fertilization for soil quality and grain yields of barley, wheat and corn. J. Element. 2020, 25, 443–458. [Google Scholar]
- Šiška, B.; Špánik, F.; Repa, Š.; Gálik, M. Praktická Biometeorológia (Practical Biometeorology); Slovenská Poľnohospodárska Univerzita: Nitra, Slovakia, 2005. (In Slovak) [Google Scholar]
- Čimo, J.; Špánik, F.; Šiška, B.; Tomlain, J.; Horák, J. Praktická Biometeorológia (Practical Biometeorology); Slovenská Poľnohospodárska Univerzita: Nitra, Slovakia, 2012. (In Slovak) [Google Scholar]
- Eijkelkamp Soil & Water. Air Pycnometer according to Langer. Available online: https://en.eijkelkamp.com/products/laboratory-equipment/air-pycnometer-according-to-langer.html (accessed on 24 June 2020).
- Igaz, D.; Kondrlová, E.; Horák, J.; Čimo, J.; Tárník, A.; Bárek, V. Stanovenie koeficientu hydraulickej vodivosti laboratórnymi metódami (Determination of hydraulic conductivity coefficient by laboratory methods). In Základné Merania v Hydropedológii (Basic Measurements in Hydropedology), 1st ed.; Slovenská Poľnohospodárska Univerzita: Nitra, Slovakia, 2017; pp. 46–56. (In Slovak) [Google Scholar]
- Mohsenipour, M.; Shaid, S. Estimation of Saturated Hydraulic Conductivity: A Review. Available online: https://www.academia.edu/32994134/ESTIMATION_OF_SATURATED_HYDRAULIC_CONDUCTIVITY_A_REVIEW (accessed on 24 June 2020).
- Campbell Scientific. Product Manual: HS2 and HSP2. Available online: https://s.campbellsci.com/documents/us/manuals/hs2.pdf (accessed on 24 June 2020).
- Kim, H.; Cosh, M.H.; Bindlish, R.; Lakshmi, V. Field evaluation of portable soil water content sensors in a sandy loam. Vadose Zone J. 2020, 19, 1–17. [Google Scholar] [CrossRef]
- Chandler, D.G.; Seyfried, M.; Murdock, M.; McNamara, J.P. Field calibration of water content reflectometers. Soil Sci. Soc. Am. J. 2004, 68, 1501–1507. [Google Scholar] [CrossRef]
- Tanriverdi, C.; Degirmenci, H.; Gonen, E.; Boyaci, S. A comparison of the gravimetric and TDR methods in terms of determining the soil water content of the corn plant. Sci. Pap. Ser. A Agron. 2016, 59, 153–158. [Google Scholar]
- Šimanský, V. Effects of biochar and biochar with nitrogen on soil organic matter and soil structure in Haplic Luvisol. Acta Fytotech. Zootech. 2016, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Šimanský, V.; Šrank, D.; Juriga, M. Differences in soil properties and crop yields after application of biochar blended with farmyard manure in sandy and loamy soils. Acta Fytotech. Zootech. 2019, 22, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Šimanský, V.; Horák, J.; Igaz, D.; Jonczak, J.; Markiewicz, M.; Felber, R.; Rizhiya, E.Y.; Lukac, M. How dose of biochar and biochar with nitrogen can improve the parameters of soil organic matter and soil structure? Biologia 2016, 71, 989–995. [Google Scholar] [CrossRef]
- Fischer, D.; Glaser, B. Synergisms between compost and biochar for sustainable soil amelioration. In Management of Organic Waste; Kumar, S., Ed.; Tech Europe: Rijeka, Croatia, 2012; pp. 167–198. [Google Scholar]
- Šrank, D.; Šimanský, V. Physical properties of texturally different soils after application of biochar substrates. Agriculture 2020, 66, 45–55. [Google Scholar]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate—Occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Yeboah, E.; Ofori, P.; Quansah, G.W.; Dugan, E.; Sohi, S.P. Improving soil productivity through biochar amendments to soils. Afr. J. Environ. Sci. Tech. 2009, 3, 34–41. [Google Scholar]
- Bronick, C.J.; Lal, R. The soil structure and land management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of biochar on soil properties, soil loss, and cocoyam yield on tropical sandy loam alfisol. Sci. World J. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.J.; Glaser, B.; Cerri, C.E.P. Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure—Review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Shukla, M.J. Soil Physics—An Introduction, 1st ed.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2014; p. 458. [Google Scholar]
- Šimanský, V.; Jonczak, J. Aluminium and iron oxides affect the soil structure in a long-term mineral fertilized soil. J. Soils Sed. 2020, 20, 2006–2018. [Google Scholar] [CrossRef]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Castejón, J.M.P. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sed. 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fert. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Esmaeelnejad, L.; Shorafa, M.; Gorji, M.; Hosseini, S.M. Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: An incubation study. Comm. Soil Sci. Plant Anal. 2017, 48, 1710–1718. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef]
- Vitková, J.; Šurda, P. Soil moisture changes after biochar application in 2018. Acta Hydrol. Slovaca 2019, 20, 74–79. [Google Scholar]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Artstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioen. 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystic Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellecy of sandy soil. Geoderma 2013, 202‒203, 183–191. [Google Scholar] [CrossRef]
Treatments | Biochar Application in 2014 (t ha−1) | Biochar Re-Application in 2018 (t ha−1) | N Fertilizer Application in 2019 (kg N ha−1) |
---|---|---|---|
Non-fertilized Group (0 kg N ha−1) | |||
B0 + N0 (control) | 0 | 0 | 0 |
B10 + N0 | 10 | 0 | 0 |
B20 + N0 | 20 | 0 | 0 |
B10 reap + N0 | 10 | 10 | 0 |
B20 reap + N0 | 20 | 20 | 0 |
N1 Group—Fertilized (108 kg N ha−1) | |||
B0 + N0 (control) | 0 | 0 | 0 |
B0 + N1 | 0 | 0 | 108 |
B10 + N1 | 10 | 0 | 108 |
B10 reap + N1 | 20 | 0 | 108 |
B20 + N1 | 10 | 10 | 108 |
B20 reap + N1 | 20 | 20 | 108 |
N2 Group—Fertilized (162 kg N ha−1) | |||
B0 + N0 (control) | 0 | 0 | 0 |
B0 + N2 | 0 | 0 | 162 |
B10 + N2 | 10 | 0 | 162 |
B10 reap + N2 | 20 | 0 | 162 |
B20 + N2 | 10 | 10 | 162 |
B20 reap + N2 | 20 | 20 | 162 |
Bulk Density (g cm−3) | SSA (m2 g−1) | Size Fraction (mm) | SOC (g kg−1) | pH (–) | Total C (%) | Total N (%) | P (g kg−1) | K (g kg−1) | Ca (g kg−1) |
---|---|---|---|---|---|---|---|---|---|
0.206 | 21.7 | 1–5 | 10.2 | 8.8 | 53.1 | 14.0 | 6.2 | 15.0 | 57.0 |
Month | Precipitation | Mean Air Temperature | ||||
---|---|---|---|---|---|---|
Total (mm) | % of Normal | Description | Mean (°C) | Deviation of Normal (°C) | Description | |
January | 54.8 | 177 | very wet | −2.2 | −0.5 | normal |
February | 27.4 | 86 | normal | 3.4 | 2.7 | warm |
March | 22.4 | 75 | normal | 8.1 | 3.1 | very warm |
April | 21.4 | 55 | dry | 9.7 | −0.7 | normal |
May | 134.8 | 232 | extremely wet | 9.3 | −5.8 | extremely cold |
June | 29.0 | 44 | very dry | 18.7 | 0.7 | normal |
July | 52.2 | 100 | normal | 21.9 | 2.1 | very warm |
August | 64.0 | 105 | normal | 22.3 | 3.0 | very warm |
September | 52.8 | 132 | wet | 16.2 | 0.6 | normal |
October | 17.8 | 49 | very dry | 12.0 | 1.6 | warm |
November | 95.4 | 173 | very wet | 8.4 | 3.9 | very warm |
December | 53.4 | 134 | wet | 3.3 | 3.2 | very warm |
Treatments | Calibration Equations | R2 |
---|---|---|
B0 + N0 | y = 0.8374x + 3.8489 | 0.93 |
B10 + N0 | y = 0.8319x + 3.8984 | 0.95 |
B20 + N0 | y = 0.8245x + 3.9869 | 0.97 |
B10 reap + N0 | y = 0.8319x + 3.8984 | 0.95 |
B20 reap + N0 | y = 0.8245x + 3.9869 | 0.97 |
B0 + N1 | y = 0.7883x + 5.4387 | 0.94 |
B10 + N1 | y = 0.8030x + 4.8839 | 0.95 |
B20 + N1 | y = 0.7514x + 6.6475 | 0.96 |
B10 reap + N1 | y = 0.8030x + 4.8839 | 0.95 |
B20 reap + N1 | y = 0.7514x + 6.6475 | 0.96 |
B0 + N2 | y = 0.7883x + 5.4387 | 0.94 |
B10 + N2 | y = 0.8030x + 4.8839 | 0.95 |
B20 + N2 | y = 0.7514x + 6.6475 | 0.96 |
B10 reap + N2 | y = 0.8030x + 4.8839 | 0.95 |
B20 reap + N2 | y = 0.7514x + 6.6475 | 0.96 |
Treatments | BD | PD | P | K |
---|---|---|---|---|
g cm−3 | g cm−3 | % vol. | cm h−1 | |
n = 8 | n = 8 | n = 8 | n = 8 | |
Non-fertilized Group (0 kg N ha−1) | ||||
B0 + N0 (control) | 1.41 ± 0.12 b | 2.54 ± 0.09 a | 44.19 ± 3.95 a | 2.12 ± 0.88 a |
B10 + N0 | 1.39 ± 0.11 b | 2.51 ± 0.04 a | 45.73 ± 3.35 a | 2.24 ± 2.35 a |
B20 + N0 | 1.36 ± 0.08 b | 2.45 ± 0.13 a | 44.12 ± 3.53 a | 11.96 ± 20.64 a |
B10 reap + N0 | 1.24 ± 0.08 a | 2.45 ± 0.11 a | 49.98 ± 1.97 b | 10.73 ± 7.42 a |
B20 reap + N0 | 1.25 ± 0.07 a | 2.47 ± 0.10 a | 49.37 ± 3.65 b | 9.97 ± 14.85 a |
N1 Group—Fertilized (108 kg N ha−1) | ||||
B0 + N0 (control) | 1.41 ± 0.12 bc | 2.54 ± 0.09 b | 44.19 ± 3.95 ab | 2.12 ± 0.88 a |
B0 + N1 | 1.42 ± 0.09 c | 2.43 ± 0.10 a | 40.38 ± 3.93 a | 1.63 ± 2.86 a |
B10 + N1 | 1.29 ± 0.10 a | 2.45 ± 0.06 a | 47.21 ± 3.51 b | 6.93 ± 6.74 ab |
B10 reap + N1 | 1.28 ± 0.10 a | 2.40 ± 0.09 a | 46.25 ± 5.47 b | 2.55 ± 1.84 a |
B20 + N1 | 1.33 ± 0.11 abc | 2.55 ± 0.09 b | 46.36 ± 3.20 b | 7.85 ± 10.32 ab |
B20 reap + N1 | 1.31 ± 0.08 ab | 2.38 ± 0.05 a | 45.26 ± 3.99 b | 9.55 ± 10.43 b |
N2 Group—Fertilized (162 kg N ha−1) | ||||
B0 + N0 (control) | 1.41 ± 0.12 c | 2.54 ± 0.09 b | 44.19 ± 3.95 ab | 2.12 ± 0.88 a |
B0 + N2 | 1.38 ± 0.10 bc | 2.53 ± 0.26 b | 42.17 ± 4.55 a | 2.87 ± 3.56 ab |
B10 + N2 | 1.37 ± 0.07 abc | 2.45 ± 0.09 ab | 46.39 ± 4.17 b | 4.23 ± 4.94 ab |
B10 reap + N2 | 1.28 ± 0.07 a | 2.39 ± 0.08 a | 47.11 ± 3.59 b | 5.47 ± 3.78 ab |
B20 + N2 | 1.31 ± 0.06 ab | 2.46 ± 0.08 ab | 47.04 ± 2.73 b | 8.46 ± 7.37 b |
B20 reap + N2 | 1.31 ± 0.10 ab | 2.45 ± 0.09 ab | 46.53 ± 5.40 b | 6.61 ± 10.15 ab |
Treatments | FC | RP | PWP | RPAW | PAW |
---|---|---|---|---|---|
% vol. | % vol. | % vol. | % vol. | % vol. | |
n = 8 | n = 8 | n = 8 | n = 8 | n = 8 | |
Non-fertilized Group (0 kg N ha−1) | |||||
B0 + N0 (control) | 30.04 ± 1.50 a | 25.98 ± 1.20 b | 25.79 ± 1.23 b | 3.84 ± 1.32 a | 4.03 ± 1.38 a |
B10 + N0 | 30.37 ± 1.05 ab | 25.42 ± 2.05 ab | 25.01 ± 2.07 ab | 4.61 ± 1.43 ab | 5.02 ± 1.63 ab |
B20 + N0 | 31.73 ± 1.54 b | 26.22 ± 1.33 b | 24.33 ± 1.38 ab | 5.29 ± 0.56 b | 7.11 ± 0.83 d |
B10 reap + N0 | 29.29 ± 1.49 a | 24.23 ± 1.17 a | 24.14 ± 1.49 a | 4.86 ± 1.15 ab | 5.52 ± 1.49 bc |
B20 reap + N0 | 30.39 ± 1.47 ab | 25.35 ± 1.61 ab | 23.74 ± 1.57 a | 5.04 ± 1.38 ab | 6.65 ± 1.71 cd |
N1 Group—Fertilized (108 kg N ha−1) | |||||
B0 + N0 (control) | 30.04 ± 1.50 a | 25.98 ± 1.20 ab | 25.79 ± 1.23 bc | 3.84 ± 1.32 a | 4.03 ± 1.38 a |
B0 + N1 | 29.70 ± 2.09 a | 24.64 ± 1.94 a | - | 5.15 ± 0.53 b | - |
B10 + N1 | 30.76 ± 2.06 a | 26.16 ± 2.08 ab | 25.17 ± 2.05 ab | 4.44 ± 0.58 ab | 5.41 ± 0.51 bc |
B10 reap + N1 | 30.16 ± 1.39 a | 26.23 ± 1.78 ab | 23.94 ± 1.61 a | 4.80 ± 1.05 ab | 6.52 ± 1.26 c |
B20 + N1 | 31.23 ± 1.76 a | 26.54 ± 1.35 b | 27.11 ± 2.16 c | 4.38 ± 1.36 ab | 4.76 ± 1.42 ab |
B20 reap + N1 | 31.25 ± 1.46 a | 26.21 ± 1.39 ab | 24.90 ± 1.52 ab | 5.05 ± 1.11 b | 5.96 ± 1.30 bc |
N2 Group—Fertilized (162 kg N ha−1) | |||||
B0 + N0 (control) | 30.04 ± 1.50 a | 25.98 ± 1.20 ab | 25.79 ± 1.23 b | 3.84 ± 1.32 a | 4.03 ± 1.38 a |
B0 + N2 | 30.48 ± 1.12 a | 26.69 ± 1.60 b | - | 4.26 ± 1.05 a | - |
B10 + N2 | 29.59 ± 1.74 a | 24.43 ± 1.89 a | 23.86 ± 1.97 a | 4.68 ± 0.64 ab | 5.12 ± 0.87 ab |
B10 reap + N2 | 30.46 ± 1.19 a | 26.23 ± 1.78 b | 24.87 ± 2.17 ab | 4.55 ± 0.77 ab | 5.48 ± 1.35 b |
B20 + N2 | 30.76 ± 1.92 ab | 25.51 ± 1.48 ab | 24.86 ± 1.48 ab | 4.65 ± 1.11 ab | 4.74 ± 1.12 ab |
B20 reap + N2 | 32.03 ± 1.20 b | 25.47 ± 1.70 ab | 24.37 ± 1.85 ab | 5.36 ± 1.06 b | 7.82 ± 1.20 c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol. Agronomy 2020, 10, 1005. https://doi.org/10.3390/agronomy10071005
Toková L, Igaz D, Horák J, Aydin E. Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol. Agronomy. 2020; 10(7):1005. https://doi.org/10.3390/agronomy10071005
Chicago/Turabian StyleToková, Lucia, Dušan Igaz, Ján Horák, and Elena Aydin. 2020. "Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol" Agronomy 10, no. 7: 1005. https://doi.org/10.3390/agronomy10071005
APA StyleToková, L., Igaz, D., Horák, J., & Aydin, E. (2020). Effect of Biochar Application and Re-Application on Soil Bulk Density, Porosity, Saturated Hydraulic Conductivity, Water Content and Soil Water Availability in a Silty Loam Haplic Luvisol. Agronomy, 10(7), 1005. https://doi.org/10.3390/agronomy10071005