Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan
Abstract
:1. Introduction
- (1)
- Investigate the performance of two hybrid (18A-A & 18A-2) and a local (Ghaneemat IBGE 2016) wheat cultivars grown under four deficit irrigation water regimes and sown at three dates of 15 November, 30 November, and 15 December;
- (2)
- Understand the relationships between phenological traits, crop-water relationships, and biological and grain yields of hybrid and local wheat cultivars.
2. Materials and Methods
2.1. Study Site Characteristics
2.2. Treatments and Field Experiments
2.3. Plant Measurements and Analysis
2.3.1. Phenological Traits
2.3.2. Crop–Water Relations
2.3.3. Chlorophyll and Carotenoids Contents
2.4. Biological and Grain Yields
2.5. Statistical Analysis
3. Results
3.1. Effects on Phenological Traits
3.2. Effects on Physiological Traits
3.3. Effects on Crop–Water Relations
3.4. Effects on Biological and Grain Yields
3.5. Correlations of Biological and Grain Yields with Crop Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Kang, S.; Zhang, L.; Liang, Y.; Hu, X.; Cai, H.; Gu, B. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric. Water Manag. 2002, 55, 203–216. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agric. Water Manag. 2017, 179, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Dinar, A.; Tieu, A.; Huynh, H. Water scarcity impacts on global food production. Glob. Food Sec. 2019, 23, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Du, T.; Kang, S.; Sun, J.; Zhang, X.; Zhang, J. An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China. Agric. Water Manag. 2010, 97, 66–74. [Google Scholar] [CrossRef]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric. Water Manag. 2015, 53, 71–77. [Google Scholar] [CrossRef]
- Kalamartzis, I.; Dordas, C.; Georgiou, P.; Menexes, G. The use of appropriate cultivar of basil (Ocimum basilicum) can increase water use efficiency under water stress. Agronomy 2020, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Oweis, T. Water yield relation and optimal irrigation scheduling of wheat in Mediterranean regions. Agric. Water Manag. 1998, 3, 195–211. [Google Scholar] [CrossRef]
- Tari, A.F. The effects of different deficit irrigation strategies on yield, quality, and water-use efficiencies of wheat under semi-arid conditions. Agric. Water Manag. 2016, 167, 1–10. [Google Scholar] [CrossRef]
- James, R.M.; Andrew, W.; Paxton, P. Deficit irrigation in a production setting: Canopy temperature as an adjunct to ET estimates. Irrig. Sci. 2012, 30, 127–137. [Google Scholar]
- Zhong, Y.; Shangguan, Z. Water consumption characteristics and water use efficiency of winter wheat under long-term nitrogen fertilization regimes in Northwest China. PLoS ONE 2014, 9, e98850. [Google Scholar] [CrossRef] [Green Version]
- Yufeng, Z.; Saddique, Q.; Ajaz, A.; Jiatun, X.; Khan, M.I.; Mu, Q.; Azmat, M.; Cai, H.; Siddique, K.H.M. Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agric. Water Manag. 2021, 243, 106483. [Google Scholar]
- Soundharajan, B.; Sudheer, K.P. Deficit irrigation management for rice using crop growth simulation model in an optimization framework. Paddy Water Environ. 2009, 7, 135–149. [Google Scholar] [CrossRef]
- Katerji, N.; Campi, P.; Mastrorilli, M. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agric. Water Manag. 2013, 130, 14–26. [Google Scholar] [CrossRef]
- Neal, J.S.; Murphy, S.R.; Harden, S.; Fulkerson, W.J. Differences in soil water content between perennial and annual forages and crops grown under deficit irrigation and used by the dairy industry. Field Crop. Res. 2012, 137, 148–162. [Google Scholar] [CrossRef]
- Istanbulluoglu, A.; Arslan, B.; Gocmen, E.; Gezer, E.; Pasa, C. Effects of deficit irrigation regimes on the yield and growth of oilseed rape (Brassica napus L.). Biosyst. Eng. 2010, 105, 388–394. [Google Scholar] [CrossRef]
- Jha, P.K.; Kumar, S.N.; Ines, A.V. Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain: Field experiment and modeling approach. Field Crop. Res. 2018, 219, 76–86. [Google Scholar] [CrossRef]
- Adu, M.O.; Yawson, D.O.; Armah, F.A.; Asare, P.A.; Frimpong, K.A. Meta-analysis of crop yields of full, deficit and partial root-zone drying irrigation. Agric. Water. Manag. 2018, 197, 79–90. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Gas exchange and xylem [ABA]. Agric. Water. Manag. 2010, 97, 1486–1494. [Google Scholar] [CrossRef]
- Li, Q.Q.; Lang, K.; Liu, Q.R.; Bian, C.Y.; Liu, X.H.; Chen, G.Q. Dry matter, grain yield, and evapo-transpiraiton of winter wheat under deficit irrigation in North China Plain. J. Food Agric. Environ. 2013, 11, 2593–2596. [Google Scholar]
- Li, H.; Qi, Z.; Gui, D.; Zeng, F. Water use efficiency and yield responses of cotton to field capacity-based deficit irrigation in an extremely arid area of China. Int. J. Agric. Biol. Eng. 2019, 12, 91–101. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Li, Y.; Zhang, Y.; Cai, T.; Ren, X.; Han, O.; Jia, Z. Effects of deficit irrigation combined with rainwater harvesting planting system on the water use efficiency and maize (Zea mays L.) yield in a semiarid area. Irrig. Sci. 2019, 37, 611–625. [Google Scholar] [CrossRef]
- Gadédjisso-Tossou, A.; Avellán, T.; Schütze, N. Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa. Water 2018, 10, 1803. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Monem, E.S.M.; Young, J.C.; Rabalski, I.; Hucl, P.; Fregeau-Reid, J. Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 2007, 55, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.A.M.; Hassanein, R.A.; Khalil, S.I.; El-Khawas, S.A.; El-Bassiouny, H.M.S.; Abd El-Monem, A.A. Effect of arginine or putrescine on growth, yield and yield components of late sowing wheat. J. Appl. Sci. Res. 2010, 6, 177–183. [Google Scholar]
- MNFSR. Agriculture Statistics of Pakistan; Ministry of National Food Security and Research: Islamabad, Pakistan, 2015. [Google Scholar]
- Mukhtarullah, J.A.; Akmal, M. Yield comparison of some improved wheat varieties under different sowings dates as rainfed crop. Sarhad J. Agric. 2016, 32, 89–95. [Google Scholar] [CrossRef]
- Upadhyay, R.G.; Ranjan, R.; Negi, P.S. Influence of sowing dates and varieties on productivity of wheat under mid Himalayan region of Uttarkhand. Inter. J. Trop. Agr. 2015, 33, 1905–1909. [Google Scholar]
- Naz, G.; Akmal, M. Yield and yield contributing traits of wheat varieties affected by N-rate. Sarhad J. Agric. 2016, 3, 212–217. [Google Scholar] [CrossRef]
- Bai, J.F.; Wang, Y.K.; Wang, P.; Duan, W.J.; Yuan, S.H.; Sun, H.; Yuan, G.L.; Ma, J.X.; Wang, N.; Zhang, F.T.; et al. Uncovering male fertility transition responsive miRNA in a wheat photo-thermosensitive genic male sterile line by deep sequencing and degradome analysis. Front. Plant Sci. 2017, 8, 1370. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Balyan, H.S.; Gahlaut, V.; Saripalli, G.; Pal, B.; Basnet, B.R.; Joshi, A.K. Hybrid wheat: Past, present and future. Theor. Appl. Genet. 2019, 132, 2463–2483. [Google Scholar] [CrossRef]
- FAO. Production Quantities of Wheat by Country. 2019. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 25 January 2021).
- IndexMundi. Wheat Yield by Country. 2020. Available online: https://www.indexmundi.com/agriculture/?commodity=wheat&graph=yield (accessed on 25 January 2021).
- Khan, I.; Lei, H.; Khan, A.; Muhammad, I.; Javeed, T.; Khan, A.; Huo, X. Yield gap analysis of major food crops in Pakistan: Prospects for food security. Environ. Sci. Pollut. Res. 2021, 28, 7994–8011. [Google Scholar] [CrossRef] [PubMed]
- Fiaz, S.; Khan, S.A.; Noor, M.A.; Younas, A.; Ali, H.; Ali, K.; Gaballah, M.M.; Anis, G.B. Genome engineering for food security. In Genome Engineering for Crop Improvement; Upadhyay, S.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 380–390. [Google Scholar]
- Henson, I.E.; Mahakashmaly, V.; Bidinger, E.R.; Alagarswamy, G. Genotypic variation in pearl millet (Pennisetum americanum Leeke) in the ability to accumulate abscisic acid in response to water stress. Expo. Bot. 1981, 32, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper enzymes in chloroplasts. Phenol oxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar]
- Kang, Z.; Li, G.; Huang, J.; Niu, X.; Zou, H.; Zang, G. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (gc). Plant Physiol. Biochem. 2012, 60, 81–87. [Google Scholar] [CrossRef]
- Thomas, J.A.; Jaffrey, A.C.; Atsuko, K.; David, M.K. Regulating the proton budget of higher plant photosynthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 9709–9713. [Google Scholar]
- Pande, P.; Verma, R.S. Sowing date and varietal effects on chlorophyll content and photosynthetic rate of wheat. Pantnagar. J. Res. 2011, 9, 8–11. [Google Scholar]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemical profiles and antioxidant activity of wheat varieties. J. Agric. Food Chem. 2004, 51, 7825–7834. [Google Scholar] [CrossRef]
- Hentschel, V.; Kranl, K.; Hollmann, J.; Lindhauer, M.G.; Böhm, V.M.; Bitsch, R. Spectrophotometric determination of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in durum wheat. J. Agric. Food Chem. 2002, 50, 6663–6668. [Google Scholar] [CrossRef]
- Panfili, G.; Fratianni, A.; Irano, M. Improved normal-phase high-performance liquid chromatography procedure for the determination of carotenoids in cereals. J. Agric. Food Chem. 2004, 52, 6373–6377. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cereals after solid-phase extraction. J. Sep. Sci. 2011, 34, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.G.M.; Zeng, Y.; Yang, X.; Anwaar, H.A.; Mansha, M.Z.; Hanif, C.M.S.; Ikran, K.; Ullah, A.; Alghanem, S.M.S. Conferring drought-tolerant wheat genotypes through morpho-physiological and chlorophyll indices at seedling stage. Saudi J. Biol. Sci. 2020, 27, 2116–2123. [Google Scholar] [CrossRef]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagosh, S.; Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch 2017, 71, 37–42. [Google Scholar]
- Yue, X.; Hu, Y.; Zhang, H.; Schmidhalter, U. Evaluation of both SPAD reading and SPAD index on estimating the plant nitrogen status of winter wheat. Int. J. Plant Prod. 2020, 14, 67–75. [Google Scholar] [CrossRef]
- Ayer, D.; Sharma, A.; Ojha, B.; Paudel, A.; Dhakal, K. Correlation and path coefficient analysis in advanced wheat genotypes. SAARC J. Agric. 2017, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ihsan, M.Z.; El-Nakhlawy, F.S.; Ismail, S.M.; Fahad, S.; Daur, I. Wheat phenological development and growth studies as affected by drought and late season high temperature stress under arid environment. Front. Plant Sci. 2016, 7, 795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for yield Potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Tuberosa, R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 2012, 3, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, A.; DaSilva, J.A.T. Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Not. Sci. Biol. 2012, 4, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Spiertz, J.; Vos, J. Grain growth of wheat and its limitation by carbohydrate and nitrogen supply. In Wheat Growth and Modelling; Day, W., Atkin, R.K., Eds.; Springer: New York, NY, USA, 1985; pp. 129–141. [Google Scholar]
- Mumtaz, M.Z.; Aslam, M.; Nasrullah, H.M.; Akhter, M.; Ali, B. Effect of various sowing dates on growth, yield and yield components of different wheat genotypes. Am. Eur. J. Agric. Environ. Sci. 2015, 15, 2230–2234. [Google Scholar]
- Spink, J.H.; Semere, T.; Sparkes, D.T.; Whaley, J.M.; Foulkes, M.J.; Clare, R.W.; Scott, R.K. Effect of sowing date on the optimum plant density of winter wheat. Ann. Appl. Biol. 2000, 137, 179–188. [Google Scholar] [CrossRef]
- Shahzad, M.; Din, A.; Sahi, S.T.; Ehsanullah, K.; Ahmad, M. Effect of sowing dates and seed treatment on grain yield and quality of wheat. Pakistan. J. Agric. Sci. 2007, 44, 581–583. [Google Scholar]
- Gardner, J.S.; Hess, W.M.; Trione, E.J. Development of the young wheat spike: A SEM study of Chinese spring wheat. Am. J. Bot. 1985, 72, 548–559. [Google Scholar] [CrossRef]
- Prevéy, J.S. Climate change: Flowering time may be shifting in surprising ways. Curr. Biol. 2020, 30, R112–R114. [Google Scholar] [CrossRef]
- Sial, M.A.; Arain, M.A.; Mazhar, S.K.; Naqvi, H.; Dahot, M.U.; Nizamani, N.A. Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pak. J. Bot. 2005, 37, 575–584. [Google Scholar]
- Sial, M.A.; Dahot, M.U.; Arain, M.A.; Markhand, G.S.; Naqvi, M.H.; Laghari, K.A.; Mirbahar, A.A. Effect of water stress on yield and yield components of semi-dwarf bread wheat (Triticum aestivum L.). Pak. J. Bot. 2009, 41, 1715–1728. [Google Scholar]
- Kilic, H.; Yagbasanlar, T. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Not. Bot. Hort. Agrobot. Cluj. 2010, 38, 164–170. [Google Scholar]
- Akhter, N.; Hossainn, F.; Karim, A. Influence of calcium on water relation of two cultivars of wheat under salt stress. Int. J. Environ. 2013, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tuteja, N.; Singh, G.S. Plant Acclimation to Environmental Stress; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hasanuzzaman, M.; Hossain, M.A.; da Silva, J.A.T.; Fujita, M. Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A., Shanker, C., Maheswari, M., Eds.; Springer: New York, NY, USA, 2012; pp. 261–315. [Google Scholar]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants oxidative damage and oxygen deprivation stress. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [Green Version]
- 68. Iqbal. Physiology of Wheat (Triticum aestivum L.) Accessions and the Role of Phytohormones under Water Stress. Ph.D. Thesis, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan, 2009; pp. 83–154.
- Ranney, T.G.; Bassuk, N.L.; Whilow, T.H. Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry pruns tress. J. Am. Soc. Hortic. Sci. 1991, 116, 648–688. [Google Scholar]
- Zhang, B.C.; Li, F.M.; Huang, G.B.; Cheng, Z.Y.; Zhang, Y.H. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area. Agric. Water Manag. 2006, 79, 28–42. [Google Scholar] [CrossRef]
- Maria, A.M.; Gendy, A.A.; Selim, A.H.; Abd El.-All, A.M. Response of wheat plants grown under water stress in relation to Jasmonic acid. Minufiya J. Agric. Res. 2008, 33, 1355–1375. [Google Scholar]
- Waraich, E.A.; Ahmad, R. Physiological responses to water stress and nitrogen management in wheat (Triticum aestivum L): Evaluation of gas exchange, water relations and water use efficiency. In Proceedings of the Fourteenth International Water Technology Conference (IWTC 14), Cairo, Egypt, 2010; pp. 46–51. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.6997&rep=rep1&type=pdf (accessed on 24 September 2021).
- Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficit in higher plants. Plant Cell Environ. 2000, 25, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop. Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Mahamed, M.B.; Sarobol, E.; Hordofa, E.; Kaewrueng, T.; Verawudh, S.J. Effects of soil moisture depletion at different growth stages on yield and water use efficiency of bread wheat grown in semi-arid conditions in Ethiopia. Kasetsart J. Nat. Sci. 2011, 45, 201–208. [Google Scholar]
- Pugnaire, F.I.; Serrano, L.U.I.S.; Pardos, J.O.S.E. Constraints by water stress on plant growth. In Handbook of Plant and Crop Stress; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 2, pp. 271–283. [Google Scholar]
- Guendouz, A.; Semcheddine, N.; Moumeni, L.; Hafsi, M. The effect of supplementary irrigation on leaf area, specific leaf weight, grain yield and water use efficiency in durum wheat (Triticum durum desf.) cultivars. Ekin J. Crop Breed. Genet. 2016, 2, 82–89. [Google Scholar]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.H.M.; Chen, Y. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzad, K.; Bakht, J.; Shah, W.A.; Shafi, M.; Jabeen, N. Yield and yield components of various wheat cultivars as affected by different sowing dates. Asian J. Plant Sci. 2002, 1, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Farooq, M.; Shabir, G.; Khan, M.B.; Zia, A.B. Delay in planting decreases wheat productivity. Int. J. Agric. Biol. 2012, 14, 533–539. [Google Scholar]
- Ahmad, I.; Wajid, S.A.; Ahmad, A.; Cheema, M.J.M.; Judge, J. Assessing the impact of thermo-temporal changes on the productivity of spring maize under semi-arid environment. Int. J. Agric. Biol. 2018, 20, 2203–2210. [Google Scholar]
- Ali, M.A.; Ali, M.; Sattar, M.; Ali, L. Sowing date effect on yield of different wheat varieties. J. Agric. Res. 2010, 48, 157–162. [Google Scholar]
- Sharma, N.P.; Sumesh, K.W.; Lohot, V.D.; Ghildiyal, M.C. High temperature effect on grain growth in wheat cultivars: An evaluation of responses. Indian J. Plant Physiol. 2006, 11, 239–245. [Google Scholar]
- Hussain, M.; Shabir, G.; Farooq, M.; Jabran, K.; Farooq, S. Developmental and phenological responses of wheat to sowing dates. Pak. J. Agric. Sci. 2012, 49, 1–10. [Google Scholar]
- Amini, R.A.; Alami-Milani, M.; Mohammadinasab, A.D. Effect of different irrigation treatments and mulch on water use efficiency of lentil. Int. J. Biosci. 2013, 3, 44–49. [Google Scholar]
- Shahzad, M.W.; Razaq, M.; Hussain, A.R.J.A.D.; Yaseen, M.; Afzal, M.; Mehmood, M.K. Yield and yield components of wheat (Triticum aestivum L.) affected by aphid feeding and sowing time at Multan, Pakistan. Pak. J. Bot. 2013, 45, 2005–2011. [Google Scholar]
- Ali, M.H.; Hoque, M.R.; Hassan, A.A.; Khair, A. Effects of deficit irrigation on yield, water productivity and economic returns of wheat. Agric. Water Manag. 2007, 92, 151–161. [Google Scholar] [CrossRef]
- Abid, M.; Ali, S.; Qi, L.K.; Zahoor, R.; Tian, Z.; Jiang, D.; Snider, J.L.; Dai, T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4615. [Google Scholar] [CrossRef]
- Prey, L.; Kipp, S.; Hu, Y.; Schmidhalter, U. Nitrogen use efficiency and carbon traits of high-yielding European hybrid vs. line winter wheat cultivars: Potentials and limitations. Front. Plant Sci. 2019, 9, 1988. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Ju, C.; Wang, Z.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J. Integr. Agric. 2017, 16, 1028–1043. [Google Scholar] [CrossRef]
- Buczek, J. Quality and productivity of hybrid wheat depending on the tillage practices. Plant Soil Environ. 2020, 66, 415–420. [Google Scholar] [CrossRef]
- Liao, R.; Wu, W.; Hu, Y.; Xu, D.; Huang, Q.; Wang, S. Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China. Agric. Water Manag. 2019, 221, 388–396. [Google Scholar] [CrossRef]
- Lu, J.; Ma, L.; Hu, T.; Geng, C.; Yan, S. Deficit drip irrigation based on crop evapotranspiration and precipitation forecast improves water- use efficiency and grain yield of summer maize. J. Sci. Food Agric. 2021, in press. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Ma, X.; Ahmad, I.; Kamran, M.; Dong, Z.; Cai, T.; Jia, Q.; Ren, X.; Zhang, P.; et al. Planting patterns and deficit irrigation strategies to improve wheat production and water use efficiency under simulated rainfall conditions. Front. Plant Sci. 2017, 8, 1408. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, E.E.; Sibert, S.; Hüging, H.; Ewert, F. Climate change effect on wheat phenology depends on cultivar change. Sci. Rep. 2018, 8, 4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selva, C.; Riboni, M.; Baumann, U.; Würschum, T.; Whitford, R.; Tucker, M.R. Hybrid breeding in wheat: How shaping floral biology can offer new perspectives. Funct. Plant Biol. 2020, 47, 675–694. [Google Scholar] [CrossRef]
- Bornhofen, E.; Benin, G.; Storck, L.; Woyann, L.G.; Duarte, T.; Stoco, M.G.; Marchioro, S.V. Statistical methods to study adaptability and stability of wheat genotypes. Bragantia 2017, 76, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Macholdt, J.; Honermeier, B. Yield stability in winter wheat production: A survey on german farmers’ and advisors’ views. Agronomy 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Studnicki, M.; Kang, M.S.; Iwańska, M.; Oleksiak, T.; Wójcik-Gront, E.; Mądry, W. Consistency of yield ranking and adaptability patterns of winter wheat cultivars between multi-environmental trials and farmer surveys. Agronomy 2019, 9, 245. [Google Scholar] [CrossRef] [Green Version]
- Sultana, M.R.; Alim, M.A.; Hossain, M.B.; Karmaker, S.; Islam, M.S. Effect of variety and weed management practices on yield and yield attributes of wheat. J. Environ. Sci. Nat. Resour. 2012, 5, 91–96. [Google Scholar] [CrossRef] [Green Version]
Properties | Values |
---|---|
pH (H2O) | 8.01 |
Electrical conductivity (dS m−1) | 0.86 |
Bulk density (g−1 cm3) | 1.67 |
Sand (%) | 8.67 |
Silt (%) | 52.43 |
Clay (%) | 38.90 |
Textural class | Silty clay loam |
CaCO3 (%) | 14.2 |
Total organic C (g kg−1) | 8.21 |
Total N (g kg−1) | 0.52 |
Field capacity (%) | 32.81 |
Permanent wilting point (%) | 18.41 |
AB-DTPA extractible nutrients | |
P (mg kg−1) | 3.78 |
K (mg kg−1) | 104 |
Zn (mg kg−1) | 0.84 |
Mg (mg kg−1) | 2.21 |
Na (mg kg−1) | 2.30 |
Irrigation Regime | Sowing Dates | Irrigation Required (mm) | Rainfall (mm) | Irrigation Applied (mm) | Rainfall after Irrigation (mm) | Total Irrigation (mm) | Average Irrigation (mm) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | 2018–2019 | 2019–2020 | ||||
I: Irrigation at tillering stage | 15 November | 77 | 8 | 33 | 69 | 44 | 20 | 35 | 97 | 112 | 105 |
30 November | 77 | 58 | 8 | 19 | 69 | 10 | 23 | 87 | 100 | 94 | |
15 December | 77 | 51 | 12 | 26 | 65 | 24 | 42 | 101 | 119 | 110 | |
II: Irrigations at tillering and booting stages | 15 November | 154 | 8 | 41 | 146 | 113 | 20 | 25 | 174 | 179 | 177 |
30 November | 154 | 58 | 29 | 96 | 125 | 10 | 17 | 164 | 171 | 168 | |
15 December | 154 | 51 | 51 | 103 | 103 | 24 | 32 | 178 | 186 | 182 | |
III: Irrigations at tillering, booting, and flowering stages | 15 November | 231 | 8 | 45 | 223 | 186 | 20 | 25 | 251 | 256 | 254 |
30 November | 231 | 58 | 38 | 173 | 193 | 10 | 15 | 241 | 246 | 244 | |
15 December | 231 | 45 | 76 | 186 | 155 | 24 | 45 | 255 | 276 | 266 | |
IV: Irrigations at tillering, booting, flowering, and grain filling stages | 15 November | 308 | 8 | 33 | 300 | 275 | 20 | 20 | 328 | 328 | 328 |
30 November | 308 | 56 | 76 | 252 | 232 | 10 | 10 | 318 | 318 | 318 | |
15 December | 308 | 45 | 99 | 263 | 209 | 24 | 49 | 332 | 357 | 345 |
Irrigation Regimes | Days to Tillering | ||||||||
---|---|---|---|---|---|---|---|---|---|
15 November | 30 November | 15 December | |||||||
IBGE | 18A-1 | 18A-2 | IBGE | 18A-1 | 18A-2 | IBGE | 18A-1 | 18A-2 | |
I | 45 ± 2 aA | 43 ± 1 aA | 47 ± 2 aA | 42 ± 1 aA | 44 ± 1 aA | 46 ± 1 aA | 35 ± 1 aA | 41 ± 5 aA | 39 ± 1 aA |
II | 46 ± 3 aA | 45 ± 2 aA | 49 ± 6 aA | 44 ± 1 aA | 44 ± 1 aA | 46 ± 1 aA | 35 ± 1 aA | 36 ± 1 aA | 39 ± 1 bA |
III | 43 ± 1 aA | 45 ± 1 aA | 47 ± 2 aA | 43 ± 1 aA | 45 ± 1 abA | 48 ± 1 bA | 35 ± 1 aA | 37 ± 1 abA | 39 ± 1 bA |
IV | 44 ± 2 aA | 44 ± 1 aA | 48 ± 1 aA | 42 ± 1 aA | 43 ± 1 aA | 46 ± 1 aA | 35 ± 1 aA | 38 ± 1 bA | 39 ± 1 bA |
Days to jointing | |||||||||
I | 64 ± 1 aA | 67 ± 1 aA | 71 ± 2 bA | 61 ± 1 aA | 64 ± 1 aA | 67 ± 1 bA | 59 ± 1 aA | 60 ± 1 abA | 63 ± 1 bA |
II | 64 ± 1 aA | 67 ± 1 aA | 68 ± 2 aA | 60 ± 1 aA | 64 ± 1 bA | 67 ± 1 cA | 58 ± 1 aA | 61 ± 1 abA | 63 ± 1 bA |
III | 63 ± 1 aA | 65 ± 1 aA | 70 ± 1 bA | 61 ± 1 aA | 64 ± 1 bA | 67 ± 1 cA | 59 ± 1 aA | 61 ± 1 abA | 65 ± 2 bA |
IV | 63 ± 1 aA | 66 ± 1 bA | 69 ± 1 cA | 60 ± 1 aA | 62 ± 1 aA | 66 ± 1 bA | 59 ± 1 aA | 60 ± 1 abA | 63 ± 1 bA |
Days to heading | |||||||||
I | 100 ± 1 aA | 107 ± 2 abA | 110 ± 3 bA | 100 ± 2 aA | 101 ± 3 aA | 106 ± 2 aA | 93 ±2 aA | 96 ± 2 aA | 102 ± 1 bA |
II | 114 ± 4 aB | 123 ± 2 aB | 123 ± 4 aB | 101 ± 3 aA | 108 ± 3 abA | 114 ± 3 bAB | 106 ± 0 aB | 108 ± 0 bB | 113 ± 0 cB |
III | 134 ± 4 aC | 129 ± 3 aB | 132 ± 5 aBC | 113 ± 1 aB | 119 ± 2 aB | 120 ± 4 aBC | 106 ± 2 aB | 107 ± 2 aB | 111 ± 2 aA |
IV | 131 ± 2 aC | 137 ± 2 abC | 141 ± 3 bC | 110 ± 2 aB | 119 ± 2 bB | 127 ± 2 cC | 103 ± 3 aB | 99 ± 3 aA | 105 ± 2 aB |
Days to anthesis | |||||||||
I | 117 ± 2 aA | 123 ± 2 aA | 122 ± 3 aA | 112 ± 2 aA | 113 ± 3 aA | 118 ± 3 aA | 111 ± 3 aA | 105 ± 2 aA | 112 ± 3 aA |
II | 126 ± 1 aB | 129 ± 1 abA | 131 ± 2 bB | 109 ± 2 aA | 114 ± 4 aA | 123 ± 1 bA | 112 ± 1 aB | 114 ± 2 aB | 120 ± 2 bBC |
III | 148 ± 4 aC | 143 ± 3 aB | 149 ± 2 aC | 126 ± 1 aB | 133 ± 1 aB | 133 ± 4 aB | 119 ± 1 aC | 122 ± 0 bC | 125 ± 0 cC |
IV | 144 ± 2 aC | 149 ± 2 abB | 154 ± 3 cC | 124 ± 2 aB | 133 ± 1 bB | 140 ± 2 cB | 117 ± 1 aC | 118 ± 1 aBC | 117 ± 2 aAB |
Days to physiological maturity | |||||||||
I | 143 ± 2 aA | 152 ± 1 bA | 157 ± 1 bA | 144 ± 2 aA | 151 ± 1 bA | 154 ± 1 bA | 141 ± 1 aA | 142 ± 1 aA | 147 ± 1 bA |
II | 154 ± 1 aB | 159 ± 2 aB | 164 ± 2 bB | 143 ± 1 aA | 149 ± 1 aA | 144 ± 6 aA | 140 ± 1 aA | 142 ± 1 aA | 148 ± 1 bA |
III | 169 ± 2 aC | 172 ± 2 aC | 177 ± 1 bC | 153 ± 2 sB | 162 ± 3 bB | 168 ± 3 bB | 154 ± 5 aB | 154 ± 1 aC | 157 ± 1 aB |
IV | 171 ± 2 aC | 184 ± 1 bD | 190 ± 1 cD | 157 ± 2 aB | 164 ± 1 bB | 173 ± 2 cB | 144 ± 1 aA | 146 ± 1 aB | 150 ± 1 bA |
Irrigation Regimes | Chlorophyll a (mg g−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
15 November | 30 November | 15 December | |||||||
IBGE | 18A-1 | 18A-2 | IBGE | 18A-1 | 18A-2 | IBGE | 18A-1 | 18A-2 | |
I | 9.13 ± 0.34 aA | 9.40 ± 0.38 aA | 9.13 ± 0.79 a | A9.00 ± 0.31 aA | 8.47 ± 0.29 aA | 8.57 ± 0.28 aA | 8.30 ± 0.28 bA | 7.83 ± 0.33 abA | 7.30 ± 0.33 aA |
II | 9.27 ± 0.28 aA | 9.43 ± 0.37 aA | 9.37 ± 0.27 aA | 8.87 ± 0.32 aA | 9.23 ± 0.27 aA | 9.40 ± 0.32 aA | 7.87 ± 0.31 aA | 7.90 ± 0.29 aA | 7.67 ± 0.39 aA |
III | 9.53 ± 0.31 aA | 9.93 ± 0.27 aA | 9.57 ± 0.32 aA | 9.40 ± 0.30 aA | 8.90 ± 0.28 aA | 8.70 ± 0.31 aA | 8.17 ± 0.29 aA | 8.13 ± 0.29 aA | 7.97 ± 0.30 aA |
IV | 9.53 ± 0.31 aA | 9.93 ± 0.27 aA | 10.0 ± 0.28 aA | 9.63 ± 0.27 aA | 9.50 ± 030 aA | 8.83 ± 0.28 aA | 7.87 ± 0.29 aA | 7.93 ± 0.27 aA | 7.90 ± 0.27 aA |
Chlorophyll b (mg g−1) | |||||||||
I | 5.03 ± 0.33 aA | 5.40 ± 0.32 a | A5.00 ± 0.34 aA | 4.84 ± 0.32 aA | 5.27 ± 0.33 aA | 4.83 ± 0.32 aA | 3.40 ± 0.32 aA | 3.73 ± 0.38 aA | 4.53 ± 1.13 aA |
II | 5.38 ± 0.32 aA | 7.02 ± 0.33 bB | 6.62 ± 0.30 bB | 5.38 ± 0.32 aA | 7.03 ± 0.49 bB | 6.65 ± 0.34 bB | 5.12 ± 0.33 aB | 5.15 ± 0.31 aB | 4.92 ± 0.40 aA |
III | 6.73 ± 0.35 aB | 7.17 ± 0.32 aB | 6.77 ± 0.36 aB | 6.60 ± 0.34 aB | 6.10 ± 0.32 aB | 5.90 ± 0.35 aB | 5.33 ± 0.32 aB | 5.33 ± 0.33 aB | 5.17 ± 0.34 aA |
IV | 6.73 ± 0.35 aB | 7.13 ± 0.32 a | 6.77 ± 0.36 aB | 6.63 ± 0.33 aB | 6.60 ± 0.34 aB | 6.03 ± 0.32 aB | 5.07 ± 0.33 aB | 5.13 ± 0.32 aB | 5.10 ± 0.32 aA |
Carotenoids (mg g−1) | |||||||||
I | 6.17 ± 1.66 aA | 7.77 ± 1.85 aA | 6.93 ± 1.28 aA | 7.27 ± 2.00 aA | 6.30 ± 1.40 aA | 7.83 ± 1.55 aA | 6.90 ± 1.89 aA | 6.80 ± 1.54 aA | 7.10 ± 1.33 aA |
II | 7.20 ± 1.98 aA | 8.13 ± 1.96 aA | 8.40 ± 1.73 aA | 7.17 ± 1.97 a | A7.93 ± 1.90 aA | 8.40 ± 1.74 aA | 6.63 ± 1.81 aA | 7.10 ± 1.64 aA | 7.50 ± 1.45 aA |
III | 7.63 ± 2.12 aA | 8.10 ± 1.95 aA | 8.30 ± 1.70 aA | 7.72 ± 2.14 aA | 7.88 ± 1.90 aA | 8.03 ± 1.62 aA | 6.78 ± 1.84 aA | 7.13 ± 1.64 aA | 7.42 ± 1.42 aA |
IV | 7.63 ± 2.12 aA | 8.40 ± 2.04 aA | 8.30 ± 1.70 aA | 7.85 ± 2.21 aA | 7.88 ± 1.87 aA | 8.35 ± 1.76 aA | 6.78 ± 1.87 aA | 7.13 ± 1.66 aA | 7.42 ± 1.43 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anjum, M.M.; Arif, M.; Riaz, M.; Akhtar, K.; Zhang, S.Q.; Zhao, C.P. Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan. Agronomy 2021, 11, 1976. https://doi.org/10.3390/agronomy11101976
Anjum MM, Arif M, Riaz M, Akhtar K, Zhang SQ, Zhao CP. Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan. Agronomy. 2021; 11(10):1976. https://doi.org/10.3390/agronomy11101976
Chicago/Turabian StyleAnjum, Muhammad Mehran, Muhammad Arif, Muhammad Riaz, Kashif Akhtar, Sheng Quan Zhang, and Chang Ping Zhao. 2021. "Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan" Agronomy 11, no. 10: 1976. https://doi.org/10.3390/agronomy11101976
APA StyleAnjum, M. M., Arif, M., Riaz, M., Akhtar, K., Zhang, S. Q., & Zhao, C. P. (2021). Performance of Hybrid Wheat Cultivars Facing Deficit Irrigation under Semi-Arid Climate in Pakistan. Agronomy, 11(10), 1976. https://doi.org/10.3390/agronomy11101976