Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Weather and Soil Conditions
3.2. Grain Yield and Grain Nitrogen Recovery
3.3. Nitrogen Requirement
3.4. Residual Soil Nitrogen
3.5. In-Season Soil Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchamp, K.H. A history of drainage and drainage methods. In Farm Drainage in the United States. History, Status, and Prospects; Miscellaneous Publication Number 1455; Pavelis, G.A., Ed.; Economic Research Service (DOA): Washington, DC, USA, 1987. [Google Scholar]
- Carlson, B.M. Defining programming directions and priorities with respect to water quality and row crop production. J. NACAA 2014, 7. Available online: https://www.nacaa.com/journal/4445b911-0870-4232-85b0-11a98f7fbf1d (accessed on 7 December 2021).
- Sutton, J.G. Drainage as an aid to increased food production. Agr. Eng. 1943, 24, 327–331. [Google Scholar]
- Mukhtar, S.; Baker, J.L.; Kanwar, R.S. Corn growth as affected by excess soil water. Trans. Am. Soc. Agric. Eng. 1990, 33, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Geigenberger, P. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and Management Strategies for Crop Production in Waterlogged or Flooded Soils: A Review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Patrick, W.H.; Broadbent, F.E. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control. 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Fernández, F.G.; Venterea, R.T.; Fabrizzi, K.P. Corn Nitrogen Management Influences Nitrous Oxide Emissions in Drained and Undrained Soils. J. Environ. Qual. 2016, 45, 1847–1855. [Google Scholar] [CrossRef]
- Fernandez, F.G.; Fabrizzi, K.P.; Naeve, S.L. Corn and Soybean’s Season-Long in-Situ Nitrogen Mineralization in Drained and Undrained Soils. Nutr. Cycl. Agroecosystems 2017, 107, 33–47. [Google Scholar] [CrossRef]
- Xiong, X.; Wilson, E.; Fernández, F.G. How Variable Is Nitrogen in Production Agriculture Fields? Crops Soils 2016, 49, 38–42. [Google Scholar] [CrossRef]
- Castellano, M.J.; Archontoulis, S.V.; Helmers, M.J.; Poffenbarger, H.J.; Six, J. Sustainable Intensification of Agricultural Drainage. Nat. Sustain. 2019, 2, 914–921. [Google Scholar] [CrossRef]
- Sawyer, J.; Nafziger, E.; Randall, G.; Bundy, L.; Rehm, G.; Joern, B. Concepts and Rationale for Regional Nitrogen Rate Guidelines for Corn; Iowa State University-University Extension: Ames, IA, USA, 2006; pp. 1–28. Available online: https://store.extension.iastate.edu/Product/Concepts-and-Rationale-for-Regional-Nitrogen-Rate-Guidelines-for-Corn-pdf (accessed on 7 December 2021).
- Magdoff, F.R. Understanding the Magdoff pre-sidedress nitrate test for corn. J. Prod. Agric. 1991, 4, 297–305. [Google Scholar] [CrossRef]
- Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Dise, N.B.; Roxana Petrescu, A.M.; Leach, A.M.; de Vries, W. Consequences of Human Modification of the Global Nitrogen Cycle. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130116. [Google Scholar] [CrossRef] [Green Version]
- Harding, K.J.; Snyder, P.K. Examining Future Changes in the Character of Central U.S. Warm-Season Precipitation Using Dynamical Downscaling. J. Geophys. Res. Atmospheres 2014, 119, 116–136. [Google Scholar] [CrossRef] [Green Version]
- NOAA. NOWData–NOAA Online Weather Data; National Weather Service Forecast Office (Twin Cities): Chanhassen, MN, USA, 2018. Available online: https://w2.weather.gov/climate/xmacis.php?wfo=mpx (accessed on 2 December 2020).
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, 2nd ed.; Part 1. Agronomy Monograph 9; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of total nitrogen in plant tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: New York, USA, 1998; pp. 75–83. [Google Scholar]
- Mulvaney, R.L. Nitrogen: Inorganic forms. In Methods of Soil Analysis; Part 3. Chemical methods; SSSA Book Ser. 5; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; pp. 1123–1200. [Google Scholar]
- Gelderman, R.H.; Beegle, D. Nitrate-nitrogen. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Reg. Publ. 221; Nathan, M.V., Gelderman, R., Eds.; University of Missouri: Columbia, MI, USA, 1998; pp. 5.1–5.4. [Google Scholar]
- R Core Team. R: A Language and Environment for STATISTICAL Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 July 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1-7. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 10 July 2021).
- Russell, L. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.5.2-1. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 10 August 2021).
- Weisberg, S. Variable selection. In Applied Linear Regression, 4th ed.; Balding, D.J., Cressie, N.A.C., Fitzmaurice, G.M., Goldstein, H., Johnstone, I.M., Molenberghs, G., Scott, D.W., Smith, A.F.M., Tsay, R.S., Weisberg, S., Eds.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
- Paiao, G.D.; Fernández, F.G.; Spackman, J.A.; Kaiser, D.E.; Weisberg, S. Integrating canopy sensing and soil nitrogen for improved corn nitrogen management. Agron. J. 2021, 113, 1996–2005. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 20 September 2021).
- Kaiser, D.; Fernandez, F.G.; Wilson, M.; Coulter, J.; Barber, B. Fertilizing Corn in Minnesota; University of Minnesota: St. Paul, MN, USA, 2020; Available online: https://extension.umn.edu/crop-specific-needs/fertilizing-corn-minnesota (accessed on 15 August 2021).
- Awale, R.; Chatterjee, A.; Kandel, H.; Ransom, J.K. Tile Drainage and Nitrogen Fertilizer Management Influences on Nitrogen Availability, Losses, and Crop Yields. Open J. Soil Sci. 2015, 5, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Van Es, H.M.; Yang, C.L.; Geohring, L.D. Maize Nitrogen Response as Affected by Soil Type and Drainage Variability. Precis. Agric. 2005, 6, 281–295. [Google Scholar] [CrossRef]
- Kladivko, E.J.; Willoughby, G.L.; Santini, J.B. Corn Growth and Yield Response to Subsurface Drain Spacing on Clermont Silt Loam Soil. Agron. J. 2005, 97, 1419–1428. [Google Scholar] [CrossRef]
- Triplett, G.B., Jr.; Van Doren, D.M., Jr. Development of a drainage variable facility for soil and crop management studies on a lakebed clay soil. Ohio Agr. Res. Devel. Cent. Res. Circ. 1963, 117. Available online: https://core.ac.uk/download/pdf/159577945.pdf (accessed on 7 December 2021).
- Mamo, M.; Malzer, G.L.; Mulla, D.J.; Huggins, D.R.; Strock, J. Spatial and Temporal Variation in Economically Optimum Nitrogen Rate for Corn. Agron. J. 2003, 95, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Cassman, K.G.; Walters, D.T.; Dobermann, A.R.; Walters, D.T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Ghane, E.; Fausey, N.R.; Shedekar, V.S.; Piepho, H.P.; Shang, Y.; Brown, L.C. Crop Yield Evaluation under Controlled Drainage in Ohio, United States. J. Soil Water Conserv. 2012, 67, 465–473. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P.M. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Burlington, MA, USA, 2015; pp. 421–446. [Google Scholar]
- Wu, D.; Cárdenas, L.M.; Calvet, S.; Brüggemann, N.; Loick, N.; Liu, S.; Bol, R. The Effect of Nitrification Inhibitor on N2O, NO and N2 Emissions under Different Soil Moisture Levels in a Permanent Grassland Soil. Soil Biol. Biochem. 2017, 113, 153–160. [Google Scholar] [CrossRef]
- Struffert, A.M.; Rubin, J.C.; Fernández, F.G.; Lamb, J.A. Nitrogen Management for Corn and Groundwater Quality in Upper Midwest Irrigated Sands. J. Environ. Qual. 2016, 45, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Spackman, J.A.; Fernandez, F.G.; Coulter, J.A.; Kaiser, D.E.; Paiao, G. Soil Texture and Precipitation Influence Optimal Time of Nitrogen Fertilization for Corn. Agron. J. 2019, 111, 2018–2030. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Shanahan, J.F.; Ransom, C.J.; Bandura, C.J.; Bean, G.M.; Camberato, J.J.; Carter, P.R.; Clark, J.D.; Ferguson, R.B.; Fernández, F.G. A Public–Industry Partnership for Enhancing Corn Nitrogen Research and Datasets: Project Description, Methodology, and Outcomes. Agron. J. 2017, 109, 2371–2388. [Google Scholar] [CrossRef] [Green Version]
- Kusunose, Y.; Mahmood, R. Imperfect Forecasts and Decision Making in Agriculture. Agric. Syst. 2016, 146, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.D.; Fernández, F.G.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Franzen, D.W.; Kitchen, N.R.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; et al. Weather and Soil in the US Midwest Influence the Effectiveness of Single- and Split-Nitrogen Applications in Corn Production. Agron. J. 2020, 112, 5288–5299. [Google Scholar] [CrossRef]
- Hong, N.; Scharf, P.C.; Davis, J.G.; Kitchen, N.R.; Sudduth, K.A. Economically Optimal Nitrogen Rate Reduces Soil Residual Nitrate. J. Environ. Qual. 2007, 36, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Laboski, C.A.M.; Bandura, C.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernández, F.G.; Franzen, D.W.; Kitchen, N.R.; Nafziger, E.D.; Sawyer, J.E.; et al. Is NUE a useful metric of sustainability? In Annual Meetings Abstracts; ASA, CSSA, and SSSA: Madison, WI, USA, 2019. [Google Scholar]
- Basu, N.B.; Thompson, S.E.; Rao, P.S.C. Hydrologic and Biogeochemical Functioning of Intensively Managed Catchments: A Synthesis of Top-down Analyses. Water Resour. Res. 2011, 47, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Randall, G.W.; Huggins, D.R.; Russelle, M.P.; Fuchs, D.J.; Nelson, W.W.; Anderson, J.L. Nitrate Losses through Subsurface Tile Drainage in Conservation Reserve Program, Alfalfa, and Row Crop Systems. J. Environ. Qual. 1997, 26, 1240–1247. [Google Scholar] [CrossRef]
- Spackman, J.A. Fate of Pre-Plant and Split-Applied 15Nitrogen Enriched Urea in Corn. Doctoral Dissertation, University of Minnesota, St. Paul, MN, USA, August 2020. [Google Scholar]
- Robertson, G.P. Nitrogen use efficiency in row crop agriculture: Crop nitrogen use and soil nitrogen loss. In Ecology in Agriculture; Jackson, L.E., Ed.; Academic Press: New York, NY, USA, 1997; pp. 347–365. [Google Scholar]
- Binford, G.D.; Blackmer, A.M.; Cerrato, M.E. Relationships between Corn Yields and Soil Nitrate in Late Spring. Agron. J. 1992, 84, 53–59. [Google Scholar] [CrossRef]
- Spackman, J.A. Nitrogen Fertilizer Rate, Source, and Application Timing Effects on Soil Nitrogen and Corn Yield. Master’s Thesis, University of Minnesota, St. Paul, MN, USA, 2018. [Google Scholar]
CEC | pH | P | K | Ca | Mg | SO4-S | OM | Sand | Silt | Clay | FC 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
(meq 100 g−1) | (mg kg−1) | (g kg−1) | |||||||||
21 | 6.1 | 24 | 215 | 3571 | 623 | 9.3 | 49.5 | 360 | 290 | 350 | 302 |
Year | Hybrid | Planting | Harvest | Fert. Application 1 | Soil Sampling | |||
---|---|---|---|---|---|---|---|---|
PL | SP | In Season | Postharvest | Next Spring 2 | ||||
2014 | DK 53-78 RIB | 24-May | 21-October | 22-May | 20-June | 20-June | 30-October | 30-April |
2015 | DK 48-12 RIB | 4-May | 12-October | 30-April | 2-June | 9-June | 6-November | 4-May |
2016 | DK 48-12 RIB | 16-May | 17-October | 6-May | 20-June | 20-June | 20-October | 8-May |
2017 | P9929 AMXT | 12-May | 25-October | 26-May | 20-June | 20-June | 3-November | 21-May |
2018 | P9929 AMXT | 17-May | 24-October | 21-May | 2-July | 25-June | 31-October | 31-May |
2019 | P9929 AMXT | 16-May | 29-October | 31-May | 12-July | 1-July | 20-November | 13-May |
Year | Timing 1 | ONR | Grain Yield at ONR | Grain Yield at MRTN | Margin at ONR 2 | Margin at MRTN | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 | Mg grain ha−1 | USD ha−1 | |||||||||
D | U | D | U | D | U | D | U | D | U | ||
2014 | PL | 167 | 143 | 11.8 | 11.7 | 11.6 | 11.8 | 1706 | 1711 | 1694 | 1725 |
2015 | PL | 121 | 224 | 13.4 | 13.3 | 13.4 | 11.6 | 1997 | 1891 | 1976 | 1694 |
2016 | PL | 103 | 136 | 13.6 | 14.0 | 13.3 | 14.0 | 2045 | 2078 | 1961 | 2070 |
2017 | PL | 174 | 224 | 13.6 | 13.4 | 13.3 | 11.1 | 1982 | 1907 | 1961 | 1615 |
2018 | PL | 224 | 224 | 14.9 | 12.8 | 13.0 | 10.8 | 2142 | 1812 | 1913 | 1568 |
2019 | PL | 134 | 224 | 11.1 | 12.3 | 11.1 | 9.7 | 1625 | 1734 | 1615 | 1395 |
2014 | SP | - | - | - | - | - | - | - | - | - | - |
2015 | SP | 157 | 179 3 | 13.6 | 13.1 | 13.5 | 11.3 | 1972 | 1874 | 1967 | 1622 |
2016 | SP | 87 | 179 3 | 13.5 | 14.2 | 12.3 | 13.8 | 2018 | 2047 | 1779 | 2014 |
2017 | SP | 224 | 224 | 14.1 | 12.9 | 12.8 | 11.2 | 1992 | 1803 | 1857 | 1606 |
2018 | SP | 194 | 187 | 14.3 | 13.2 | 13.6 | 12.7 | 2049 | 1883 | 1983 | 1841 |
2019 | SP | 176 | 176 | 12.8 | 11.7 | 12.4 | 11.3 | 1830 | 1657 | 1794 | 1622 |
Year | Residual TINFall (kg N ha−1) | Residual TINDiff (kg N ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
Drained | Undrained | Drained | Undrained | |||||
PL 1 | SP 2 | PL | SP | PL | SP | PL | SP | |
2014 | 63a | 58a | 63a | 52a | 4a | 3a | 10a | −10a |
2015 | 105ab | 110a | 74c | 79bc | 35a | 35a | 39a | 19a |
2016 | 85b | 101ab | 87b | 116a | 23a | 18a | 13a | 40a |
2017 | 89a | 98a | 86a | 95a | 13a | 19a | 2a | 21a |
2018 | 88a | 81a | 82a | 93a | 28a | 37a | 32a | 44a |
2019 | 99a | 98a | 90a | 93a | 23a | 27a | 36a | 49a |
Mean | 88a | 91a | 80a | 88a | 21a | 23a | 22a | 27a |
Year | Soil N30V6 Intensity | Optimal Soil N30V6 | ||
---|---|---|---|---|
kg N ha−1 | mg kg−1 | |||
Drained | Undrained | Drained | Undrained | |
2014 | 28a 1 | 34a | - | - |
2015 | 56a | 59a | - | - |
2016 | 41a | 49a | - | - |
2017 | 37a | 30a | 23 (13.6) 2 | 25 (13.4) |
2018 | 11a | 8b | 15 (14.9) | 6 (12.8) |
2019 | 20a | 25a | 17 (11.1) | 18 (12.3) |
Mean | 28a | 29a | 18 (13.2) | 16 (12.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiao, G.D.; Fernández, F.G.; Naeve, S.L. Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy 2021, 11, 2491. https://doi.org/10.3390/agronomy11122491
Paiao GD, Fernández FG, Naeve SL. Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy. 2021; 11(12):2491. https://doi.org/10.3390/agronomy11122491
Chicago/Turabian StylePaiao, Gabriel Dias, Fabián G. Fernández, and Seth L. Naeve. 2021. "Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest" Agronomy 11, no. 12: 2491. https://doi.org/10.3390/agronomy11122491
APA StylePaiao, G. D., Fernández, F. G., & Naeve, S. L. (2021). Drainage Conditions Influence Corn-Nitrogen Management in the US Upper Midwest. Agronomy, 11(12), 2491. https://doi.org/10.3390/agronomy11122491