Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Organic Amendments
2.3. Experimental Design
2.4. Soil Sampling and Analysis
2.5. Maize Growth and Yield
2.6. Statistical Analyses
3. Results
3.1. Soil Characteristics
3.2. Organic Amendments
3.3. Soil Parameters at the End of the Experiment
3.4. Plant Parameters at the End of the Experiment
4. Discussion
4.1. Effect of Compost and Biochar Addition on Plant Growth and Yield
4.2. Effect of Compost and Biochar Addition on Soil Fertility
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.A.-K.; Adger, N.; Anokhin, Y.A.; Anisimov, O.A.; Arent, D.J.; Barnett, J.; et al. Summary for Policymakers. Available online: https://epic.awi.de/id/eprint/37531/ (accessed on 4 February 2021).
- Serdeczny, A.O.; Baarsch, S.; Coumou, F.; Robinson, D.; Hare, A.; Schaeffer, W.; Perrette, M.; Reinhardt, J. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Chang. 2017, 17, 1585–1600. [Google Scholar] [CrossRef]
- World Population Review. 2019. Available online: http://worldpopulationreview.com/countries/tropical-countries/ (accessed on 7 March 2019).
- Bouman, O.T.; Curtin, D.; Campbell, C.A.; Biederbeck, V.O.; Ukrainetz, H. Soil acidification from long-term use of anhydrous ammonia and urea. Soil Sci. Soc. Am. J. 1995, 59, 1488–1494. [Google Scholar] [CrossRef]
- Sanderman, J.; Heng, T.; Fiske, G.J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580, (corrected in 2018). [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumpel, C.; Amiraslani, F.; Koutika, L.-S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate pledges. Nature 2018, 564, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabbi, A.; Lehmann, J.; Ciais, P.; Loescher, H.W.; Cotrufo, M.F.; Don, A.; SanClements, M.; Schipper, L.; Six, J.; Smith, P.; et al. Aligning agriculture and climate policy. Nat. Clim. Chang. 2017, 7, 307–309. [Google Scholar] [CrossRef]
- Calabi-Floody, M.; Medina, J.; Rumpel, C.; Condron, L.M.; Hernandez, M.; Dumont, M.; Mora, M.L. Smart fertilizers as a strategy for sustainable agriculture. Adv. Agron. 2018, 147, 119–157. [Google Scholar]
- Jeffrey, S.; Vanheijen, F.G.A.; Van der Felde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Ngo, P.T.; Rumpel, C.; Doan, T.T.; Jouquet, P. The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biol. Biochem. 2012, 50, 214–220. [Google Scholar] [CrossRef]
- Ngo, P.T.; Rumpel, C.; Doan, T.T.; Henry-des-Tureaux, T.; Dang, D.K.; Jouquet, P. Use of organic substrates for increasing soil organic matter quality and carbon sequestration of tropical degraded soil (a 3 years mesocosms experiment). Carbon Manag. 2014, 5, 155–168. [Google Scholar] [CrossRef]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Lee, C.H.; Wang, C.C.; Lin, H.H.; Lee, S.S.; Tsange, D.C.W.; Jien, S.H.; Ok, Y.S. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of a Fe-oxide-enriched tropical soil. Sci. Total Environ. 2018, 619–620, 655–671. [Google Scholar] [CrossRef]
- Ngo, P.T.; Rumpel, C.; Janeaud, J.L.; Dang, D.K.; Jouquet, P. Mixing of biochar with organic amendments reduces carbon removal after field exposure under tropical conditions. Ecol. Eng. 2016, 91, 378–380. [Google Scholar] [CrossRef]
- Doan, T.T.; Henry-des-Tureaux, T.; Janeau, J.L.; Rumpel, C.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam. A three years experiment in mesocosms. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- RStudio Team (2020) Integrated Development for R. RStudio, PBC: Boston, MA, USA. Available online: http://www.rstudio.com/ (accessed on 15 March 2019).
- Barthod, J.; Rumpel, C.; Calabi Floody, M.; Bolan, N.; Mora Gil, M.L.; Dignac, M.-F. Addition of worms during composting with red mud and fly ash reduces CO2 emissions and increases plant available nutrient contents. J. Environ. Manag. 2018, 222, 207–215. [Google Scholar] [CrossRef]
- Bass, A.M.; Bird, M.I.; Kay, G.; Muirhead, B. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems. Sci. Total Environ. 2016, 550, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Jouquet, P.; Boquel, E.; Doan, T.T.; Rocoy, M.; Orange, D.; Rumpel, C.; Duc, T.T. Do compost and vermicopost improve marcornutrient retention and plant growth in degraded tropical soils? Compost Sci. Util. 2011, 19, 15–24. [Google Scholar] [CrossRef]
- Vidal, A.; Lenhart, T.; Dignac, M.F.; Biron, P.; Barthod, J.; Vedere, C.; Vaury, V.; Bariac, T.; Rumpel, C. Promoting plant growth and carbon transfer to soil with composts and vermicomposts produced with mineral additives. Geoderma 2020, 174, 114454. [Google Scholar] [CrossRef]
- Aubertin, M.L.; Girardin, C.; Houot, S.; Nobile, C.; Houben, D.; Bena, S.; Le Brech, Y.; Rumpel, C. Biochar-compost interactions as affected by weathering: Effects on biological stability and plant growth. Agronomy 2021. submitted. [Google Scholar]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Regional Assessment of the Change Soil in Asia; Main report; FAO: Rome, Italy, 2015; Chapter 10. [Google Scholar]
- Fischer, D.; Glaser, B. Synergisms between Compost and Biochar for Sustainable Soil Amelioration. In Management of Organic Waste; Kumar, S., Bahrti, A., Eds.; Intechopen: Rijeka, Croatia; Shanghai, China, 2012; pp. 168–196. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.E.; Massiello, C.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Paetsch, L.; Mueller, C.W.; Kögel-Knabner, I.; von Lützow, M.; Girardin, C.; Rumpel, C. Effect of in-situ aged and fresh biochar on soil water holding capacity and microbial C use under drought conditions. Nat. Sci. Rep. 2018, 8, 685. [Google Scholar]
- Crowter, T.W.; van den Hoogen, J.; Wan, J.; Mayes, M.A.; Keiser, A.D.; Mo, L.; Averill, C.; Maynard, D.L. The global soil community and its influence on biogeochemistry. Science 2019, 365, eaav0550. [Google Scholar] [CrossRef] [PubMed]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
Site | Name | pH | OC | N | P2O5 | K2O | Sand | Silt | Clay | Texture |
---|---|---|---|---|---|---|---|---|---|---|
mg·g−1 | % | |||||||||
Vietnam | Acrisol | 4.6 | 21 | 2.2 | 2.6 | 1.9 | 17 | 25 | 58 | Clay |
Laos | Acrisol | 5.1 | 9.7 | 1.5 | 3.7 | 3.9 | 54 | 21 | 25 | Sandy Loam |
Thailand (LDD5) | Ultisol | 5.5 | 3.2 | 0.3 | 19 | 9 | 79 | 11 | 10 | Sandy Loam |
Thailand (LDD10) | Entisol | 5.5 | 7.9 | 0.7 | 11 | 7.2 | 63 | 22 | 15 | Sandy Loam |
Amendment | pH | OC | N | P2O5 | K2O | NO3 | Pa | Ka |
---|---|---|---|---|---|---|---|---|
(mg·g−1) | ||||||||
Cow compost | 7.5 | 216 | 17.1 | 1.9 | 12 | 0.04 | 0.02 | 0.02 |
Bamboo biochar | 8.6 | 558 | 7.5 | 2.8 | 8 | 0.01 | <0.01 | 0.01 |
Sites | Fertilization | pH | OC | N | P2O5 | K2O | NO3 | Pa | Ka | Fauna | Inf |
---|---|---|---|---|---|---|---|---|---|---|---|
mg·g−1 | indiv m−2 | mL·s−1 | |||||||||
Vietnam | M | 4.5(0.1) a | 17.1(0.1) b | 2.0(0.0) | 2.0(0.0) a | 2.4(0.0) | 1.1(0.1) c | 15.1(0.7) a | 8.4(1.2) b | 516(772) | 0.9(0.4) |
MB | 4.4(0.2) b | 20.3(0.0) a | 2.1(0.0) | 1.7(0.0) a | 2.3(0.0) | 2.4(0.1) a | 14.9(1.1) a | 9.1(0.6) b | 60(72) | 1.6(0.7) | |
MC | 4.9(0.2) a | 20.2(0.1) a | 2.1(0.0) | 1.9(0.0) a | 2.3(0.0) | 1.9(0.5) b | 16.2(0.9) a | 13.3(0.8) a | 184(183) | 2.0(1.0) | |
MBC | 4.9(0.1) a | 19.6(0.1) a | 2.1(0.0) | 1.8(0.0)b | 2.3(0.0) | 1.2(0.0) c | 12.0(2.8) b | 9.5(0.9) b | 232(322) | 1.2(0.3) | |
Laos | M | 4.6(0.1) b | 9.7(0.1) | 1.2(0.0) | 0.5(0.0) | 3.4(0.0) b | 1.1(0.1) b | 9.3(1.2) bc | 5.9(0.9) a | 156(89) | 0.6(0.2) |
MB | 4.7(0.1) b | 10.4(0.1) | 0.9(0.0) | 0.5(0.0) | 3.8(0.0) ab | 1.4(0.2) a | 10.9(0.1) ab | 5.3(0.7) a | 100(47) | 0.6(0.2) | |
MC | 5.2(0.1) a | 10.2(0.1) | 1.1(0.0) | 0.4(0.0) | 4.2(0.0) a | 0.6(0.1) c | 11.4(1.1) a | 5.8(0.2) a | 164(111) | 0.6(0.1) | |
MBC | 5.2(0.1) a | 9.6(0.1) | 1.0(0.0) | 0.4(0.0) | 3.9(0.0) ab | 1.2(0.4) ab | 8.7(1.4) c | 4.1(0.4) b | 80(107) | 0.7(0.2) | |
Thai | M | 6.6(0.1) bc | 3.7(0.0) b | 0.3(0.0) | 0.3(0.0) a | 0.1(0.0) a | 0.5(0.1) b | 10.1(0.9) a | 1.6(0.3) | 76(113) | 0.3(0.03) |
(LDD5) | MB | 6.5(0.1) c | 4.7(0.0) a | 0.6(0.0) | 0.1(0.0) b | <0.1(0.0) b | 1.1(0.2) a | 6.1(0.5) b | 2.1(0.2) | 76(141) | 0.1(0.0) |
MC | 6.9(0.1) a | 3.7(0.1) b | 0.4(0.0) | 0.3(0.0) a | 0.1(0.0) a | 0.7(0.4) b | 9.2(1.1) a | 2.3(0.4) | 896(1542) | 0.1(0.0) | |
MBC | 6.7(0.1) b | 3.8(0.1) b | 0.5(0.0) | 0.1(0.0) b | <0.1(0.0) b | 1.1(0.1) a | 6.0(2.8) b | 1.7(0.3) | 8(9.2) | 0.1(0.0) | |
Thai | M | 6.8(0.03) | 8.2(0.1) c | 0.8(0.0) | 0.5(0.0) | 1.3(0.0) b | 1.9(0.3) b | 44.0(4.7) b | 8.9(0.3) bc | 116(170) | 0.1(0.0) |
(LDD10) | MB | 6.9(0.05) | 12.5(0.1) ab | 1.1(0.0) | 0.5(0.0) | 2.3(0.0) a | 2.4(0.3) ab | 47.3(2.6) ab | 9.1(0.4) b | 92(124) | 0.1(0.0) |
MC | 6.8(0.07) | 11.1(0.1) b | 0.9(0.0) | 0.4(0.0) | 2.3(0.0) a | 2.5(0.2) a | 41.8(2.9) b | 8.1(0.9) c | 160(236) | 0.1(0.0) | |
MBC | 6.9(0.12) | 13.4(0.1) a | 1.7(0.2) | 0.5(0.0) | 2.3(0.0) a | 2.8(0.3) a | 51.1(3.3) a | 10.2(0.9) a | 216(192) | 0.1(0.1) |
Sites | Fertilization | Plant Biomass (t·ha−1) | Cob Yield (t·ha−1) | ||
---|---|---|---|---|---|
1st Season | 2nd Season | 1st Season | 2nd Season | ||
Vietnam | M | 63.1(0.1) | 56.8(0.1) b | 4.1(0.8) | 3.7(0.2) c |
MB | 60.8(0.0) | 72.3(0.0) ab | 3.5(0.8) | 4.6(0.1) ab | |
MC | 72.1(0.0) | 81.5(0.1) a | 3.8(0.3) | 4.4(0.2) b | |
MCB | 63.3(0.1) | 81.0(0.0) a | 4.7(0.0) | 4.8(0.2) a | |
Laos | M | 57.9(0.3) | 43.1(0.1) b | 4.3(1.3) | 1.7(0.4) |
MB | 93.6(0.3) | 64.7(0.1) a | 6.4(1.5) | 2.5(0.9) | |
MC | 106.5(0.5) | 67.3(0.1) a | 4.2(1.6) | 1.7(0.6) | |
MCB | 86.4(0.5) | 64.0(0.0) a | 5.4(1.5) | 2.5(0.7) | |
Thai (LDD5) | M | 19.2(0.3) b | 39.4(0.0) | 2.7(0.4) b | 2.7(1.1) |
MB | 24.2(0.6) a | 49.4(0.1) | 4.2(0.6) a | 2.7(0.1) | |
MC | 25.9(0.4) a | 48.8(0.2) | 4.4(0.2) a | 2.2(0.9) | |
MCB | 22.9(0.3) a | 43.7(0.2) | 4.5(0.7) a | 3.3(1.1) | |
Thai (LDD10) | M | 39.2(0.0) | 26.8(0.08) | 3.3(0.01) | 5.9(2.34) |
MB | 41.3(0.0) | 28.0(0.04) | 3.2(0.03) | 5.8(0.70) | |
MC | 38.0(0.0) | 26.3(0.0) | 3.0(0.68) | 5.5(1.70) | |
MCB | 40.2(0.1) | 26.8(0.1) | 2.8(0.26) | 5.2(1.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doan, T.T.; Sisouvanh, P.; Sengkhrua, T.; Sritumboon, S.; Rumpel, C.; Jouquet, P.; Bottinelli, N. Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia. Agronomy 2021, 11, 348. https://doi.org/10.3390/agronomy11020348
Doan TT, Sisouvanh P, Sengkhrua T, Sritumboon S, Rumpel C, Jouquet P, Bottinelli N. Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia. Agronomy. 2021; 11(2):348. https://doi.org/10.3390/agronomy11020348
Chicago/Turabian StyleDoan, Thuy Thu, Phimmasone Sisouvanh, Thanyakan Sengkhrua, Supranee Sritumboon, Cornelia Rumpel, Pascal Jouquet, and Nicolas Bottinelli. 2021. "Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia" Agronomy 11, no. 2: 348. https://doi.org/10.3390/agronomy11020348
APA StyleDoan, T. T., Sisouvanh, P., Sengkhrua, T., Sritumboon, S., Rumpel, C., Jouquet, P., & Bottinelli, N. (2021). Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia. Agronomy, 11(2), 348. https://doi.org/10.3390/agronomy11020348