Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Soil Sample Analyses
2.3. Quality Characteristics of Harvested Corn Grains
2.4. Statistical Analysis
3. Results and Discussion
3.1. Grain Yield
3.2. Quality Characteristics of Harvested Corn Grains
3.3. Correlation and Evaluation of the Yield, Soil Properties and Quality Characteristics vs. the Genotype and Environment on Maize Cultivation
3.4. GE Interaction for Yield, Protein and Fiber Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duvick, D.N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Adv. Agron. 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Bruulsema, T.W.; Tollenaar, M.; Heckman, J.R. Boosting crop yields in the next century. Better Crops 2000, 84, 9–13. [Google Scholar]
- Frei, O.M. Changes in yield physiology of corn as a result of breeding in northern Europe. Maydica 2000, 45, 173–183. [Google Scholar]
- Rosegrant, M.W.; Cai, X.; Cline, S.A. Global Water Outlook to 2025: Averting an Impending Crisis; International Food Policy Research Institute and International Water Management Institute: Washington, DC, USA; Colombo, Sri Lanka, 2002. [Google Scholar]
- Tardieu, F. Plant response to environmental conditions: Assessing potential production, water demand, and negative effects of water deficit. Front. Physiol. 2013, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMichael, B.; Quisenberry, J. The impact of the soil environment on the growth of root systems. Environ. Exp. Bot. 1993, 33, 53–61. [Google Scholar] [CrossRef]
- Pardo, A.; Amato, M.; Chiarandà, F.Q. Relationships between soil structure, root distribution and water uptake of chickpea (Cicer arietinum L.). Plant growth and water distribution. Eur. J. Agron. 2000, 13, 39–45. [Google Scholar] [CrossRef]
- Kang, M.S. Using Genotype-by-Environment Interaction for Crop Cultivar Development. Adv. Agron. 1997, 62, 199–252. [Google Scholar] [CrossRef]
- Kang, M.S. Breeding: Genotype-by-environment interaction. In Encyclopedia of Plant and Crop Science; Goodman, R.M., Ed.; Marcel-Dekker: New York, NY, USA, 2004; pp. 218–221. [Google Scholar]
- Kang, M.S. Genotype-environment interaction: Progress and prospects. In Quantitative Genetics, Genomics, and Plant Breeding; Kang, M.S., Ed.; CABI Publ.: Wallingford, DC, USA; Oxon, UK,, 2002; pp. 221–243. [Google Scholar]
- Annicchiarico, P. Genotype × Environment Interaction—Challenges and Opportunities for Plant Breeding and Cultivar Recommendations; FAO Plant Production and Protection Papers: Rome, Italy, 2002. [Google Scholar]
- Fan, X.-M.; Kang, M.S.; Chen, H.; Zhang, Y.; Tan, J.; Xu, C. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China. Agron. J. 2007, 99, 220–228. [Google Scholar] [CrossRef]
- Flores, F.; Moreno, M.; Cubero, J. A comparison of univariate and multivariate methods to analyze G×E interaction. Field Crop. Res. 1998, 56, 271–286. [Google Scholar] [CrossRef]
- Baker, R.J. Tests for Crossover Genotype-Environmental Interactions. Can. J. Plant Sci. 1988, 68, 405–410. [Google Scholar] [CrossRef]
- Kang, M.S.; Balzarini, M.G.; Guerra, J.L.L. Genotype-by-environment interaction. In Genetic Analysis of Complex Traits Using SAS; Saxton, A.M., Ed.; SAS Publ., SAS Inst.: Cary, NC, USA, 2004; pp. 69–96. [Google Scholar]
- Lu’Quez, J.E.; Aguirrezabal, L.A.N.; Aguero, M.E.; Pereyra, V.R. Stability and Adaptability of Cultivars in Non-balanced Yield Trials. Comparison of Methods for Selecting ’High Oleic’ Sunflower hybrids for Grain Yield and Quality. J. Agron. Crop. Sci. 2002, 188, 225–234. [Google Scholar] [CrossRef]
- Signor, C.-L.; Dousse, S.; Lorgeou, J.; Denis, J.-B.; Bonhomme, R.; Carolo, P.; Charcosset, A. Interpretation of Genotype × Environment Interactions for Early Maize Hybrids over 12 Years. Crop. Sci. 2001, 41, 663–669. [Google Scholar] [CrossRef]
- Nehe, A.; Akin, B.; Sanal, T.; Evlice, A.K.; Ünsal, R.; Dinçer, N.; Demir, L.; Geren, H.; Sevim, I.; Orhan, Ş.; et al. Genotype x environment interaction and genetic gain for grain yield and grain quality traits in Turkish spring wheat released between 1964 and 2010. PLoS ONE 2019, 14, e0219432. [Google Scholar] [CrossRef] [Green Version]
- Gauch, H.G. A Simple Protocol for AMMI Analysis of Yield Trials. Crop. Sci. 2013, 53, 1860–1869. [Google Scholar] [CrossRef]
- Mitrović, B.; Stanisavljevi, D.; Treski, S.; Stojaković, M.; Ivanović, M.; Bekavac, G.; Rajković, M. Evaluation of experimental maize hybrids tested in multi-location trials using ammi and gge biplot analyses. Turk. J. Field Crops 2012, 17, 35–40. [Google Scholar]
- Kaya, Y.; Palta, C.; Taner, S. Additive Main Effects and Multiplicative Interactions Analysis of Yield Performances in Bread Wheat Genotypes across Environments. Turk. J. Agric. For. 2002, 26, 275–279. [Google Scholar]
- Li, W.; Yan, Z.-H.; Wei, Y.-M.; Lan, X.-J.; Zheng, Y.-L. Evaluation of Genotype x Environment Interactions in Chinese Spring Wheat by the AMMI Model, Correlation and Path Analysis. J. Agron. Crop. Sci. 2006, 192, 221–227. [Google Scholar] [CrossRef]
- Agahi, K.; Ahmadi, J.; Oghan, H.A.; Fotokian, M.H.; Orang, S.F. Analysis of genotype × environment interaction for seed yield in spring oilseed rape using the AMMI model. Crop. Breed. Appl. Biotechnol. 2020, 20, 26502012. [Google Scholar] [CrossRef]
- Mafouasson, H.N.A.; Gracen, V.; Yeboah, M.A.; Ntsomboh-Ntsefong, G.; Tandzi, L.N.; Mutengwa, C.S. Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines. Agronomy 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Hongyu, K.; García-Peña, M.; De Araújo, L.B.; Dias, C.T.D.S. Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biom. Lett. 2014, 51, 89–102. [Google Scholar] [CrossRef] [Green Version]
- International Standard Organisation (ISO). ISO 11260:1994. Soil Quality—Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution; ISO: Geneva, Switzerland, 1994. [Google Scholar]
- International Standard Organisation (ISO). ISO 14870:2001. Soil Quality—Extraction of Trace Elements by Buffered DTPA Solution; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- Bingham, F.T. Boron. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Agronomy Monograph No. 9; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; SSSA: Madison, WI, USA, 1982; pp. 431–447. [Google Scholar]
- International Standard Organisation (ISO). ISO 11261:1995. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- International Standard Organisation (ISO). ISO 14235:1998. Soil Quality—Determination of Organic Carbon by sulfochromic Oxidation; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- International Standard Organisation (ISO). ISO 11263:1994. Soil Quality—Determination of Phosphorus—Spectrometric Determination of Phosphorus Soluble in Sodium Hydrogen Carbonate Solution; ISO: Geneva, Switzerland, 1994. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle and size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Mult, Z.; Akay, H.; Köse Özge, D.E. Grain yield, quality traits and grain yield stability of local oat cultivars. J. Soil Sci. Plant Nutr. 2018, 18, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Peterson, D.M.; Wesenberg, D.M.; Burrup, D.E.; Erickson, C.A. Relationships among Agronomic Traits and Grain Composition in Oat Genotypes Grown in Different Environments. Crop. Sci. 2005, 45, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.M.; O’Brien, L.; Eagles, H.A.; Solah, V.; Jayasena, V. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 2008, 59, 95–111. [Google Scholar] [CrossRef]
- Kaya, Y.; Ii, I.; Akcura, M. Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Sci. Technol. 2014, 34, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Doehlert, D.C.; McMullen, M.S.; Hammond, J.J. Genotypic and Environmental Effects on Grain Yield and Quality of Oat Grown in North Dakota. Crop. Sci. 2001, 41, 1066–1072. [Google Scholar] [CrossRef]
- Gurmu, F.; Shimelis, H.; Laing, M.; Mashilo, J. Genotype-by-environment interaction analysis of nutritional composition in newly-developed sweetpotato clones. J. Food Compos. Anal. 2020, 88, 103426. [Google Scholar] [CrossRef]
- Juhos, K.; Szabó, S.; Ladányi, M. Explore the influence of soil quality on crop yield using statistically-derived pedological indicators. Ecol. Indic. 2016, 63, 366–373. [Google Scholar] [CrossRef]
- Nehe, A.; Misra, S.; Murchie, E.; Chinnathambi, K.; Foulkes, M. Genetic variation in N-use efficiency and associated traits in Indian wheat cultivars. Field Crop. Res. 2018, 225, 152–162. [Google Scholar] [CrossRef]
- Mohammed, A. Genotype by environment interaction and yield stability analysis of open pollinated maize varieties using AMMI model in Afar Regional State, Ethiopia. J. Plant Breed. Crop. Sci. 2020, 12, 8–15. [Google Scholar] [CrossRef]
- Júnior, L.A.Y.B.; Da Silva, C.P.; De Oliveira, L.A.; Nuvunga, J.J.; Pires, L.P.M.; Von Pinho, R.G.; Balestre, M. AMMI Bayesian Models to Study Stability and Adaptability in Maize. Agron. J. 2018, 110, 1765–1776. [Google Scholar] [CrossRef]
- De Oliveira, R.L.; Von Pinho, R.G.; Ferreira, D.F.; Pires, L.P.M.; Melo, W.M.C. Selection Index in the Study of Adaptability and Stability in Maize. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tarakanovas, P.; Ruzgas, V. Additive main effect and multiplicative interaction analysis of grain yield of wheat varieties in Lithuania. Agron. Res. 2006, 4, 91–98. [Google Scholar]
- Brancourt-Hulmel, M.; Lecomte, C. Effect of Environmental Variates on Genotype × Environment Interaction of Winter Wheat. Crop. Sci. 2003, 43, 608–617. [Google Scholar] [CrossRef]
- Taghouti, M.; Gaboun, F.; Nsarellah, N.; Rhrib, R.; El-Haila, M.; Kamar, M.; Abbad-Andaloussi, F.; Udupa, S.M. Genotype x environment interaction for quality traits in durum wheat cultivars adapted to different environments. Afr. J. Biotechnol. 2010, 9, 3054–3062. [Google Scholar] [CrossRef]
- Ramburan, S.; Zhou, M.; Labuschagne, M. Interpretation of genotype × environment interactions of sugarcane: Identifying significant environmental factors. Field Crops Res. 2011, 124, 392–399. [Google Scholar] [CrossRef]
- Farshadfar, E.; Sabaghpour, S.H.; Zali, H. Comparison of parametric and non-parametric stability statistics for selecting stable chickpea (Cicer arietinum L.) genotypes under diverse environments. AJCS 2012, 6, 514–524. [Google Scholar]
- Oikeh, S.O.; Menkir, A.; Maziya-Dixon, B.; Welch, R.M.; Glahn, R.P.; Gauch, G. Environmental stability of iron and zinc concentrations in grain of elite early-maturing tropical maize genotypes grown under field conditions. J. Agric. Sci. 2004, 142, 543–551. [Google Scholar] [CrossRef]
- Pixley, K.V.; Bjarnason, M.S. Stability of Grain Yield, Endosperm Modification, and Protein Quality of Hybrid and Open-Pollinated Quality Protein Maize (QPM) Cultivars. Crop. Sci. 2002, 42, 1882–1890. [Google Scholar] [CrossRef]
Genotype | Environment | Yield (kg/ha) | Protein (%) | Fiber (%) | Lightness |
---|---|---|---|---|---|
GEN1 | ENV1 | 17,643 ± 456 Bb | 8.10 ± 0.02 Αd | 3.60 ± 0.01 Bb | 37.85 ± 0.69 Ba |
ENV2 | 12,805 ± 1361 Eb | 8.15 ± 0.04 Αb | 4.08 ± 0.06 Aa | 78.88 ± 0.24 A | |
ENV3 | 14,466 ± 74 Db | 7.24 ± 0.02 Dd | 2.24 ± 0.02 Gd | 37.83 ± 0.25 Bc | |
ENV4 | 13,993 ± 785 Da | 7.42 ± 0.08 Ca | 3.53 ± 0.02 Ba | 77.17 ± 0.36 A | |
ENV5 | 15,860 ± 710 Cc | 7.91 ± 0.01 Bb | 3.12 ± 0.01 Db | 35.53 ± 0.57 Bc | |
ENV6 | 18,659 ± 226 ABb | 6.83 ± 0.02 Ec | 3.44 ± 0.01 Ca | 77.17 ± 0.25 A | |
ENV7 | 18,456 ± 784 ABab | 6.23 ± 0.01 Hd | 1.37 ± 0.02 Id | 36.96 ± 0.45 Bb | |
ENV8 | 18,600 ± 306 ABa | 6.65 ± 0.03 Fc | 2.38 ± 0.01 Fb | 78.23 ± 0.52 Aa | |
ENV9 | 19,087 ± 471 Aa | 6.38 ± 0.01 Gb | 1.99 ± 0.01 Hd | 36.83 ± 0.26 Bc | |
ENV10 | 19,288 ± 289 Ab | 6.81 ± 0.02 Ea | 2.75 ± 0.02 Eb | 75.52 ± 0.85 A | |
GEN2 | ENV1 | 17,137 ± 191 Bc | 8.61 ± 0.02 Ac | 3.52 ± 0.01 Ac | 38.05 ± 0.81 Ca |
ENV2 | 15,470 ± 449 Ca | 8.62 ± 0.02 Aa | 3.51 ± 0.01 Ac | 73.05 ± 0.25 A | |
ENV3 | 15,917 ± 338 Ca | 7.47 ± 0.02 Cc | 2.39 ± 0.02 Gc | 41.99 ± 0.65 BCa | |
ENV4 | 13,617 ± 370 Da | 7.42 ± 0.03 Ca | 2.69 ± 0.02 Ed | 72.72 ± 0.88 A | |
ENV5 | 13,657 ± 51 Dd | 7.42 ± 0.03 Cc | 3.02 ± 0.02 Bc | 42.58 ± 0.65 Ba | |
ENV6 | 17,317 ± 613 Bb | 7.95 ± 0.03 Ba | 2.81 ± 0.02 Db | 71.53 ± 0.48 A | |
ENV7 | 16,747 ± 417 Bb | 6.99 ± 0.03 Dc | 2.82 ± 0.02 Da | 41.75 ± 0.52 BCa | |
ENV8 | 17,410 ± 676 Bb | 6.31 ± 0.02 Fd | 2.60 ± 0.03 Fa | 71.53 ± 0.62 Ab | |
ENV9 | 18,113 ± 86 Ab | 6.10 ± 0.01 Jb | 2.86 ± 0.03 Ca | 42.53 ± 0.45 Ba | |
ENV10 | 18,244 ± 182 Ac | 6.69 ± 0.02 Ea | 3.52 ± 0.02 Aa | 75.20 ± 0.48 A | |
GEN3 | ENV1 | 18,557 ± 88 Ba | 8.86 ± 0.02 Ab | 3.14 ± 0.01 Cd | 35.50 ± 0.25 Ba |
ENV2 | 16,986 ± 386 Ca | 8.07 ± 0.04 Cc | 3.90 ± 0.01 Ab | 74.83 ± 0.93 A | |
ENV3 | 15,670 ± 625 Da | 8.66 ± 0.01 Ba | 2.56 ± 0.01 Gb | 36.68 ± 0.43 Bd | |
ENV4 | 13,220 ± 569 Ea | 7.04 ± 0.08 FGc | 2.85 ± 0.03 Eb | 72.22 ± 0.26 A | |
ENV5 | 19,103 ± 440 ABa | 7.13 ± 0.02 Fd | 3.33 ± 0.02 Ba | 36.49 ± 0.29 Bc | |
ENV6 | 19,312 ± 112 ABc | 7.06 ± 0.02F Gb | 2.72 ± 0.02 Fc | 70.15 ± 0.48 A | |
ENV7 | 14,787 ± 1140 Dc | 7.81 ± 0.03 Db | 2.43 ± 0.01 Ib | 34.28 ± 0.52 Bb | |
ENV8 | 18,810 ± 608 Ba | 6.89 ± 0.01 Gb | 1.79 ± 0.01 Jd | 70.01 ± 0.48 Ab | |
ENV9 | 19,107 ± 179 ABa | 7.56 ± 0.03 Ea | 2.49 ± 0.03 Hc | 39.48 ± 0.47 Bb | |
ENV10 | 20,032 ± 179 Aa | 6.86 ± 0.03 Ga | 2.89 ± 0.02 Db | 71.65 ± 0.45 A | |
GEN4 | ENV1 | 18,430 ± 161 BCa | 8.96 ± 0.02 Aa | 3.90 ± 0.01 Aa | 34.62 ± 0.34 Eb |
ENV2 | 15,887 ± 659 Ea | 8.13 ± 0.02 Bb | 3.12 ± 0.01 Cd | 76.35 ± 0.45 A | |
ENV3 | 14,083 ± 245 Fb | 7.61 ± 0.01 Db | 3.55 ± 0.02 Ba | 39.62 ± 0.70 Db | |
ENV4 | 12,077 ± 166 Gb | 7.24 ± 0.03 Eb | 2.73 ± 0.02 Dc | 73.31 ± 0.55 B | |
ENV5 | 17,670 ± 207 CDb | 8.02 ± 0.02 Ca | 2.37 ± 0.02 Ed | 38.22 ± 0.45 Db | |
ENV6 | 20,070 ± 346 Aa | 6.48 ± 0.02 Fd | 2.56 ± 0.03 DEd | 71.72 ± 0.35 BC | |
ENV7 | 19,040 ± 1151 Ba | 8.00 ± 0.02 Ca | 1.43 ± 0.01 Hc | 34.79 ± 0.47 Eb | |
ENV8 | 15,946 ± 423 Ec | 7.60 ± 0.03 Da | 2.11 ± 0.02 Fc | 69.42 ± 0.46 Cb | |
ENV9 | 17,477 ± 625 Db | 6.13 ± 0.02 Hb | 2.53 ± 0.03 DEb | 38.73 ± 0.74 Dbc | |
ENV10 | 17,887 ± 160 CDc | 6.33 ± 0.02 Gb | 1.64 ± 0.04 Gc | 72.98 ± 0.82 B | |
Genotype | Environment | a | b | Texture (N) | Ash (%) |
GEN1 | ENV1 | 3.88 ± 0.29 ABc | 34.77 ± 0.55 Bb | 20.49 ± 0.72 CD | 1.65 ± 0.01 Aa |
ENV2 | 4.81 ± 0.55 AB | 49.41 ± 0.20 A | 19.99 ± 0.30 Dab | 1.18 ± 0.02 Jc | |
ENV3 | 4.37 ± 0.15 ABd | 35.37 ± 0.26 Bc | 12.53 ± 0.59 Fb | 1.41 ± 0.01 Ba | |
ENV4 | 3.87 ± 0.74 AB | 50.67 ± 0.72 A | 23.69 ± 0.62 BCa | 1.39 ± 0.02 Cc | |
ENV5 | 4.36 ± 0.15 ABc | 35.09 ± 0.65 Bc | 17.97 ± 0.25 DEb | 1.37 ± 0.02 Cb | |
ENV6 | 2.70 ± 0.15 Bb | 47.57 ± 0.56 A | 19.44 ± 0.32 Abc | 1.23 ± 0.04 Fb | |
ENV7 | 5.13 ± 0.26 A | 34.47 ± 0.54 Bbc | 14.80 ± 0.40 EFbc | 1.15 ± 0.01 Hc | |
ENV8 | 5.66 ± 0.09 A | 49.38 ± 0.29 Aa | 26.28 ± 0.20 Ha | 1.09 ± 0.02 Ic | |
ENV9 | 5.12 ± 0.15 Ab | 38.15 ± 0.63 Bc | 17.05 ± 0.52 DE | 1.31 ± 0.03 Db | |
ENV10 | 2.80 ± 0.08 B | 52.98 ± 0.27 A | 30.09 ± 0.39 Aa | 1.27 ± 0.03 Ec | |
GEN2 | ENV1 | 7.47 ± 0.71 a | 47.08 ± 0.46 Ba | 21.63 ± 0.41 BCD | 1.39 ± 0.01 Dd |
ENV2 | 7.17 ± 0.15 | 50.57 ± 0.26 AB | 22.48 ± 0.59 ABCa | 1.46 ± 0.03 Ca | |
ENV3 | 6.45 ± 0.08 a | 51.10 ± 0.77 ABa | 17.96 ± 0.52 DEa | 1.43 ± 0.02 Ca | |
ENV4 | 4.90 ± 0.26 | 53.07 ± 0.86 AB | 25.68 ± 0.72 Aa | 1.74 ± 0.02 Bb | |
ENV5 | 7.70 ± 0.28 a | 55.22 ± 0.74 ABa | 23.18 ± 0.65 ABa | 1.21 ± 0.02 Fc | |
ENV6 | 5.21 ± 0.22 b | 49.70 ± 0.52 AB | 24.88 ± 0.72 ABa | 2.40 ± 0.03 Aa | |
ENV7 | 7.64 ± 0.09 a | 52.40 ± 0.48 ABa | 13.51 ± 0.55 Fc | 1.11 ± 0.03 Hd | |
ENV8 | 5.21 ± 0.14 | 49.70 ± 0.52 ABa | 18.89 ± 0.65 CDEb | 0.73 ± 0.04 Id | |
ENV9 | 7.74 ± 0.26 a | 51.15 ± 0.74 ABa | 15.47 ± 0.35 EF | 1.31 ± 0.01 Eb | |
ENV10 | 5.25 ± 0.21 | 58.90 ± 0.59 A | 23.48 ± 0.62 ABb | 1.17 ± 0.02 Gd | |
GEN3 | ENV1 | 4.66 ± 0.45 Bbc | 37.70 ± 0.41 Cb | 22.30 ± 0.42 A | 1.54 ± 0.01 Ab |
ENV2 | 3.61 ± 0.46 B | 44.27 ± 0.82 ABC | 15.68 ± 0.15 Bc | 1.13 ± 0.02 Ed | |
ENV3 | 4.38 ± 0.06 Bc | 41.81 ± 0.46 BCb | 15.84 ± 0.43 Bab | 1.27 ± 0.02 Cb | |
ENV4 | 6.91 ± 0.52 A | 52.27 ± 0.74 A | 17.40 ± 0.83 Bb | 1.05 ± 0.02 Fd | |
ENV5 | 5.15 ± 0.09 Bd | 37.60 ± 0.14 Cb | 22.49 ± 0.25 Aa | 1.01 ± 0.03 Fd | |
ENV6 | 4.64 ± 0.08 Bb | 39.35 ± 0.25 C | 21.21 ± 0.56 Ab | 1.11 ± 0.04 Ec | |
ENV7 | 5.15 ± 0.12 Bb | 37.97 ± 0.18 Cb | 17.06 ± 0.48 Ba | 1.20 ± 0.03 Db | |
ENV8 | 4.64 ± 0.07 B | 39.35 ± 0.22 Ca | 17.22 ± 0.25 Bbc | 1.25 ± 0.02 Ca | |
ENV9 | 5.05 ± 0.14 Bb | 44.67 ± 0.26 ABCb | 15.30 ± 0.45 B | 1.50 ± 0.02 Aa | |
ENV10 | 4.84 ± 0.15 B | 50.06 ± 0.28 AB | 20.59 ± 0.25 Ac | 1.34 ± 0.02 Bb | |
GEN4 | ENV1 | 5.26 ± 0.14 Bb | 35.16 ± 0.94 Cb | 21.38 ± 0.48 A | 1.48 ± 0.01 Bc |
ENV2 | 5.48 ± 0.25 B | 50.64 ± 0.84 A | 18.64 ± 0.53 Bbc | 1.33 ± 0.03 Db | |
ENV3 | 5.70 ± 0.08 Bb | 40.95 ± 0.77 ABCb | 13.47 ± 0.52 Db | 1.25 ± 0.01 Eb | |
ENV4 | 5.97 ± 0.63 B | 50.08 ± 0.74 A | 18.75 ± 0.72 Bb | 1.84 ± 0.02 Aa | |
ENV5 | 5.49 ± 0.49 Bb | 39.35 ± 0.72 BCb | 18.34 ± 0.65 Bb | 1.43 ± 0.01 Ca | |
ENV6 | 8.80 ± 0.15 Aa | 47.72 ± 0.74 AB | 18.63 ± 0.37 Ba | 1.03 ± 0.01 Gd | |
ENV7 | 6.62 ± 0.12 Ba | 31.85 ± 0.65 Cc | 15.84 ± 0.36 Cab | 1.32 ± 0.02 Da | |
ENV8 | 5.91 ± 0.23 B | 35.91 ± 0.67 Db | 13.38 ± 0.47 Dc | 1.21 ± 0.03 Fb | |
ENV9 | 5.47 ± 0.27 Bb | 40.53 ± 0.45 ABCc | 15.46 ± 0.45 C | 1.49 ± 0.01 Ba | |
ENV10 | 6.90 ± 0.18 B | 49.78 ± 0.68 AB | 18.10 ± 0.52 Bc | 1.50 ± 0.01 Ba |
Yield | AMMI Model Family | ||||
---|---|---|---|---|---|
Genotype | 0 | 1 | 2 | F | |
3 | GEN3 | 10 | 6 | 7 | 6 |
4 | GEN4 | 2 | 2 | ||
2 | GEN2 | 1 | |||
1 | GEN1 | 4 | 1 | 1 | |
Mega-environments | 1 | 2 | 3 | 4 | |
Protein | |||||
Genotype | 0 | 1 | 2 | F | |
3 | GEN3 | 10 | 5 | 2 | 3 |
4 | GEN4 | 4 | 4 | ||
2 | GEN2 | 5 | 4 | 3 | |
Mega-environments | 1 | 2 | 3 | 3 | |
The other 1 genotype never win and so it’s not listed | |||||
Fiber | |||||
Genotype | 0 | 1 | 2 | F | |
2 | GEN2 | 10 | 8 | 5 | 4 |
3 | GEN3 | 1 | |||
1 | GEN1 | 3 | 3 | ||
4 | GEN4 | 2 | 2 | 2 | |
Mega-environments | 1 | 2 | 3 | 4 | |
AMMI F denotes the full model. |
Yield | Protein | Fiber | ||||
---|---|---|---|---|---|---|
GENOTYPE | Code | IPC1 Score | Code | IPC1 Score | Code | IPC1 Score |
GEN3 | 49.60 | GEN3 | 0.79 | GEN2 | 0.65 | |
GEN4 | 13.60 | GEN4 | 0.57 | GEN3 | 0.45 | |
GEN2 | −26.06 | GEN1 | −0.62 | GEN1 | 0.04 | |
GEN1 | −37.13 | GEN2 | −0.73 | GEN4 | −1.14 | |
ENVIRONMENT | ||||||
ENV5 | 41.74 | ENV7 | 0.72 | ENV10 | 0.76 | |
ENV2 | 28.32 | ENV3 | 0.43 | ENV7 | 0.51 | |
ENV6 | 8.50 | ENV9 | 0.34 | ENV5 | 0.28 | |
ENV1 | 4.81 | ENV8 | 0.33 | ENV2 | 0.15 | |
ENV10 | −0.33 | ENV1 | 0.20 | ENV6 | −0.04 | |
ENV3 | −6.36 | ENV10 | −0.27 | ENV8 | −0.09 | |
ENV8 | −8.78 | ENV5 | −0.29 | ENV9 | −0.09 | |
ENV9 | −8.95 | ENV4 | −0.41 | ENV4 | −0.15 | |
ENV4 | −21.51 | ENV2 | −0.41 | ENV1 | −0.50 | |
ENV7 | −37.45 | ENV6 | −0.64 | ENV3 | −0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsenios, N.; Sparangis, P.; Chanioti, S.; Giannoglou, M.; Leonidakis, D.; Christopoulos, M.V.; Katsaros, G.; Efthimiadou, A. Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy 2021, 11, 357. https://doi.org/10.3390/agronomy11020357
Katsenios N, Sparangis P, Chanioti S, Giannoglou M, Leonidakis D, Christopoulos MV, Katsaros G, Efthimiadou A. Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy. 2021; 11(2):357. https://doi.org/10.3390/agronomy11020357
Chicago/Turabian StyleKatsenios, Nikolaos, Panagiotis Sparangis, Sofia Chanioti, Marianna Giannoglou, Dimitris Leonidakis, Miltiadis V. Christopoulos, George Katsaros, and Aspasia Efthimiadou. 2021. "Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece" Agronomy 11, no. 2: 357. https://doi.org/10.3390/agronomy11020357
APA StyleKatsenios, N., Sparangis, P., Chanioti, S., Giannoglou, M., Leonidakis, D., Christopoulos, M. V., Katsaros, G., & Efthimiadou, A. (2021). Genotype × Environment Interaction of Yield and Grain Quality Traits of Maize Hybrids in Greece. Agronomy, 11(2), 357. https://doi.org/10.3390/agronomy11020357