Genetic Diversity of Barley Foliar Fungal Pathogens
Abstract
:1. Introduction
1.1. Blumeria graminis (DC.) E. O. Speer f. sp. hordei emend. É. J. Marchal (anamorph: Oidium monilioides Link)
1.2. Pyrenophora teres Drechsler (anamorph: Drechslera teres (Sacc.) Shoem.)
1.3. Rhynchosporium commune Zaffarano, McDonald, and Linde
1.4. Cochliobolus sativus (Ito and Kurib.) Drechs. ex. Dastur) (anamorph: Bipolaris sorokiniana (Sacc.) Shoem.)
1.5. Pyrenophora graminea Ito and Kuribayashi (anamorph: Drechslera graminea (Rabenh. ex. Schlech.) Shoemaker)
1.6. Puccinia hordei G. Otth.
1.7. Effect of Genomic Structure of Barley Leaf Pathogens on Genetic Variation
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- IGC. 2019. Available online: https://www.igc.int/en/default.aspx (accessed on 28 September 2020).
- Ellwood, S.; Piscetek, V.; Mair, W.; Lawrence, J.; Lopez-Ruiz, F.; Rawlinson, C. Genetic variation of Pyrenophora teres f. teres isolates in Western Australia and emergence of a Cyp51A fungicide resistance mutation. Plant Pathol. 2019, 68, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, N.J.; Cools, H.J.; Sierotzki, H.; Shaw, M.W.; Knogge, W.; Kelly, S.L.; Kelly, D.E.; Fraaije, B.A. Paralog re-emergence: A novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol. Biol. Evol. 2014, 31, 1793–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohd-Assaad, N.; McDonald, B.A.; Croll, D. Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Mol. Ecol. 2016, 25, 6124–6142. [Google Scholar] [CrossRef]
- Palumbi, S.R. Humans as the world’s greatest evolutionary force. Science 2001, 293, 1786–1790. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A.; Linde, C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 2002, 124, 163–180. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biffen, R.H. Mendel’s laws of inheritance and wheat breeding. J. Agric. Sci. 1905, 1, 4–48. [Google Scholar] [CrossRef] [Green Version]
- Kolmer, J. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 1996, 34, 435–455. [Google Scholar] [CrossRef]
- Brown, J.; Foster, E.; O’hara, R. Adaptation of powdery mildew populations to cereal varieties in relation to durable and non-durable resistance. In The Gene-for-Gene Relationship in Plant-Parasite Interaction; Crute, I., Holub, E., Burdon, J., Eds.; CABI: Wallingford, UK, 1997; pp. 119–138. [Google Scholar]
- Mes, J.J.; Haring, M.A.; Cornelissen, B.J. Foxy: An active family of short interspersed nuclear elements from Fusarium oxysporum. Mol. Gen. Genet. MGG 2000, 263, 271–280. [Google Scholar] [CrossRef]
- Milgroom, M.G. Recombination and the multilocus structure of fungal populations. Annu. Rev. Phytopathol. 1996, 34, 457–477. [Google Scholar] [CrossRef]
- Leslie, J.F.; Klein, K.K. Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics 1996, 144, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Staskawicz, B.J.; Mudgett, M.B.; Dangl, J.L.; Galan, J.E. Common and contrasting themes of plant and animal diseases. Science 2001, 292, 2285–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, J.H.; Wolfe, M. Genetics of powdery mildew resistance in barley. Crit. Rev. Plant Sci. 1994, 13, 97–119. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Kosman, E. Virulence phenotypes of Blumeria graminis f. sp. hordei in South Africa. Eur. J. Plant Pathol. 2013, 136, 113–121. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M. Domestication of plants in the Old World; UK Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Conry, M.; Dunne, B. Influence of number and timing of fungicide applications on the yield and quality of early and later-sown spring malting barley grown in the south-east of Ireland. J. Agric. Sci. 2001, 136, 159–167. [Google Scholar] [CrossRef]
- Zhang, Z.; Henderson, C.; Perfect, E.; Carver, T.; Thomas, B.; Skamnioti, P.; Gurr, S. Of genes and genomes, needles and haystacks: Blumeria graminis and functionality. Mol. Plant Pathol. 2005, 6, 561–575. [Google Scholar] [CrossRef]
- Schulze-Lefert, P.; Panstruga, R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011, 16, 117–125. [Google Scholar] [CrossRef]
- Troch, V.; Audenaert, K.; Wyand, R.A.; Haesaert, G.; Höfte, M.; Brown, J.K. Formae speciales of cereal powdery mildew: Close or distant relatives? Mol. Plant Pathol. 2014, 15, 304–314. [Google Scholar] [CrossRef]
- Gordon, T.; Martyn, R. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 1997, 35, 111–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menardo, F.; Wicker, T.; Keller, B. Reconstructing the evolutionary history of powdery mildew lineages (Blumeria graminis) at different evolutionary time scales with NGS data. Genome Biol. Evol. 2017, 9, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Panstruga, R.; Spanu, P.D. Powdery mildew genomes reloaded. New Phytol. 2014, 202, 13–14. [Google Scholar] [CrossRef]
- Menardo, F.; Praz, C.R.; Wyder, S.; Ben-David, R.; Bourras, S.; Matsumae, H.; McNally, K.E.; Parlange, F.; Riba, A.; Roffler, S. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat. Genet. 2016, 48, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.C.; Hackett, C.A.; Guy, D.C. Diversity and complexity of Erysiphe graminis f. sp. hordei collected from barley cultivar mixtures or barley plots treated with a resistance elicitor. Eur. J. Plant Pathol. 1998, 104, 925–931. [Google Scholar] [CrossRef]
- Dreiseitl, A.; Dinoor, A.; Kosman, E. Virulence and diversity of Blumeria graminis f. sp. hordei in Israel and in the Czech Republic. Plant Dis. 2006, 90, 1031–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreiseitl, A.; Wang, J. Virulence and diversity of Blumeria graminis f. sp. hordei in East China. Eur. J. Plant Pathol. 2007, 117, 357–368. [Google Scholar] [CrossRef]
- Bousset, L.; de Vallavieille-Pope, C. Effect of sexual recombination on pathotype frequencies in barley powdery mildew populations of artificially inoculated field plots. Eur. J. Plant Pathol. 2003, 109, 13–24. [Google Scholar] [CrossRef]
- Müller, K.; McDermott, J.M.; Wolfe, M.S.; Limpert, E. Analysis of diversity in populations of plant pathogens: The barley powdery mildew pathogen across Europe. Eur. J. Plant Pathol. 1996, 102, 385–395. [Google Scholar] [CrossRef]
- Wolfe, M.; McDermott, J. Population genetics of plant pathogen interactions: The example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annu. Rev. Phytopathol. 1994, 32, 89–113. [Google Scholar] [CrossRef]
- Tucker, M.; Moffat, C.; Ellwood, S.; Tan, K.-C.; Jayasena, K.; Oliver, R. Development of genetic SSR markers in Blumeria graminis f. sp. hordei and application to isolates from Australia. Plant Pathol. 2015, 64, 337–343. [Google Scholar] [CrossRef]
- Shaw, M. Modeling stochastic processes in plant pathology. Annu. Rev. Phytopathol. 1994, 32, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.; Hovmøller, M.S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 2002, 297, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhou, Y.; Shang, Y.; Hua, W.; Wang, J.; Jia, Q.; Liu, M.; Yang, J. Genetic evidence of local adaption and long distance migration in Blumeria graminis f. sp. hordei populations from China. J. Gen. Plant Pathol. 2016, 82, 69–81. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Wang, J.-M.; Jia, Q.-J.; Yang, J.-M.; Zhou, Y.-J.; Feng, L.; Wei, H.; Shang, Y. Pathotypes and genetic diversity of Blumeria graminis f. sp. hordei in the winter barley regions in China. Agric. Sci. China 2010, 9, 1787–1798. [Google Scholar] [CrossRef]
- Wyand, R.A.; Brown, J.K. Genetic and forma specialis diversity in Blumeria graminis of cereals and its implications for host-pathogen co-evolution. Mol. Plant Pathol. 2003, 4, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.K. Chance and selection in the evolution of barley mildew. Trends Microbiol. 1994, 2, 470–475. [Google Scholar] [CrossRef]
- Hovmøller, M.; Caffier, V.; Jalli, M. The European barley powdery mildew virulence survey and disease nursery 1993–1999. Agronomie 2000, 20, 729–743. [Google Scholar] [CrossRef]
- Tucker, M.; Jayasena, K.; Ellwood, S.; Oliver, R. Pathotype variation of barley powdery mildew in Western Australia. Australas. Plant Pathol. 2013, 42, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In Proceedings of the European Workshop on Integrated Control of Cereal Mildews: Virulence Patterns and Their Change, Risoe (Denmark), Roskilde, Denmark, 23–25 January 1990. [Google Scholar]
- Jensen, H.R.; Dreiseitl, A.; Sadiki, M.; Schoen, D.J. High diversity, low spatial structure and rapid pathotype evolution in Moroccan populations of Blumeria graminis f. sp. hordei. Eur. J. Plant Pathol. 2013, 136, 323–336. [Google Scholar] [CrossRef]
- Andrivon, D.; De Vallavieille-Pope, C. Racial diversity and complexity in regional populations of Erysiphe graminis f. sp. hordei in France over a 5-year period. Plant Pathol. 1993, 42, 443–464. [Google Scholar] [CrossRef]
- Caffier, V.; de Vallavieille-Pope, C.; Brown, J. Segregation of avirulences and genetic basis of infection types in Erysiphe graminis f. sp. hordei. Phytopathology 1996, 86, 1112–1121. [Google Scholar] [CrossRef]
- Dreiseitl, A. Adaptation of Blumeria graminis f. sp. hordei to barley resistance genes in the Czech Republic in 1971–2000. Plant Soil Environ. 2003, 49, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.; Fox, H.; Harrouni, M.; Alami, A.E. Environmental challenges in the Rif mountains, northern Morocco. Environ. Conserv. 1998, 25, 354–365. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Bailey, E.; Amri, A.; El-Felah, M.; Nassif, F.; Rezgui, S.; Yahyaoui, A. Farmer participation in barley breeding in Syria, Morocco and Tunisia. Euphytica 2001, 122, 521–536. [Google Scholar] [CrossRef]
- Mboup, M.; Bahri, B.; Leconte, M.; De Vallavieille-Pope, C.; Kaltz, O.; Enjalbert, J. Genetic structure and local adaptation of European wheat yellow rust populations: The role of temperature-specific adaptation. Evol. Appl. 2012, 5, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.; Brändle, U.; Koller, B.; Limpert, E.; McDermott, J.; Müller, K.; Schaffner, D. Barley mildew in Europe: Population biology and host resistance. Euphytica 1992, 63, 125–139. [Google Scholar] [CrossRef]
- Brown, J.K.; Le Boulaire, S.; Evans, N. Genetics of responses to morpholine-type fungicides and of avirulences in Erysiphe graminis f. sp. hordei. Eur. J. Plant Pathol. 1996, 102, 479–490. [Google Scholar] [CrossRef]
- Brown, J.K.; Jessop, A.C.; Rezanoor, N.H. Genetic uniformity in barley and its powdery mildew pathogen. Proc. R. Soc. London Ser. B Biol. Sci. 1991, 246, 83–90. [Google Scholar]
- Büschges, R.; Hollricher, K.; Panstruga, R.; Simons, G.; Wolter, M.; Frijters, A.; Van Daelen, R.; van der Lee, T.; Diergaarde, P.; Groenendijk, J. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 1997, 88, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Andolfo, G.; Iovieno, P.; Ricciardi, L.; Lotti, C.; Filippone, E.; Pavan, S.; Ercolano, M.R. Evolutionary conservation of MLO gene promoter signatures. BMC Plant Biol. 2019, 19, 150. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Genes for resistance to powdery mildew in European barley cultivars registered in the Czech Republic from 2011 to 2015. Plant Breed. 2017, 136, 351–356. [Google Scholar] [CrossRef]
- Niks, R.E.; Qi, X.; Marcel, T.C. Quantitative resistance to biotrophic filamentous plant pathogens: Concepts, misconceptions, and mechanisms. Annu. Rev. Phytopathol. 2015, 53, 445–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, M.; Howlett, B.; Hollaway, G. Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: A review. Crop Pasture Sci. 2009, 60, 303–315. [Google Scholar] [CrossRef]
- Liu, Z.; Ellwood, S.R.; Oliver, R.P.; Friesen, T.L. Pyrenophora teres: Profile of an increasingly damaging barley pathogen. Mol. Plant Pathol. 2011, 12, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, A.; Turkington, T.K.; Askarian, H.; Tekauz, A.; Xi, K.; Tucker, J.R.; Kutcher, H.R.; Strelkov, S.E. Virulence of Pyrenophora teres populations in western Canada. Can. J. Plant Pathol. 2016, 38, 183–196. [Google Scholar] [CrossRef]
- Mathre, D. Compendium of Barley Diseases; APS Press: Paul, MN, USA, 1997. [Google Scholar]
- Peever, T.L.; Milgroom, M.G. Genetic structure of Pyrenophora teres populations determined with random amplified polymorphic DNA markers. Can. J. Bot. 1994, 72, 915–923. [Google Scholar] [CrossRef]
- Rau, D.; Brown, A.H.; Brubaker, C.L.; Attene, G.; Balmas, V.; Saba, E.; Papa, R. Population genetic structure of Pyrenophora teres Drechs. the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, R.; Sail, T.; Bryngelsson, T. Genetic diversity for random amplified polymorphic DNA (RAPD) markers in two Swedish populations of Pyrenophora teres. Can. J. Plant Pathol. 2000, 22, 258–264. [Google Scholar] [CrossRef]
- Serenius, M.; Manninen, O.; Wallwork, H.; Williams, K. Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. Mycol. Res. 2007, 111, 213–223. [Google Scholar] [CrossRef]
- Statkevičiūtė, G.; Brazauskas, G.; Semaškienė, R.; Leistrumaitė, A.; Dabkevičius, Z. Pyrenophora teres genetic diversity as detected by ISSR analysis. Agriculture 2010, 97, 91–98. [Google Scholar]
- Lehmensiek, A.; Bester-Van Der Merwe, A.; Sutherland, M.; Platz, G.; Kriel, W.; Potgieter, G.; Prins, R. Population structure of South African and Australian Pyrenophora teres isolates. Plant Pathol. 2010, 59, 504–515. [Google Scholar] [CrossRef] [Green Version]
- McLean, M.; Keiper, F.; Hollaway, G. Genetic and pathogenic diversity in Pyrenophora teres f. maculata in barley crops of Victoria, Australia. Australas. Plant Pathol. 2010, 39, 319–325. [Google Scholar]
- McLean, M.; Martin, A.; Gupta, S.; Sutherland, M.; Hollaway, G.; Platz, G. Validation of a new spot form of net blotch differential set and evidence for hybridisation between the spot and net forms of net blotch in Australia. Australas. Plant Pathol. 2014, 43, 223–233. [Google Scholar] [CrossRef]
- Çelik Oğuz, A.; Ölmez, F.; Karakaya, A. Genetic diversity of net blotch pathogens of barley in Turkey. Int. J. Agric. Biol. 2019, 21, 1089–1096. [Google Scholar]
- Ronen, M.; Sela, H.; Fridman, E.; Perl-Treves, R.; Kopahnke, D.; Moreau, A.; Ben-David, R.; Harel, A. Characterization of the barley net blotch pathosystem at the center of origin of host and pathogen. Pathogens 2019, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, A.; Turkington, T.K.; Kebede, B.; Tekauz, A.; Kutcher, H.R.; Kirkham, C.; Xi, K.; Kumar, K.; Tucker, J.R.; Strelkov, S.E. Prevalence of mating type idiomorphs in Pyrenophora teres f. teres and P. teres f. maculata populations from the Canadian prairies. Can. J. Plant Pathol. 2015, 37, 52–60. [Google Scholar] [CrossRef]
- Karakaya, A.; Katırcıoğlu, Y.Z.; Aktaş, H. Studies on the biology of Drechslera teres under Ankara conditions. Tarım Bilimleri Derg. (J. Agric. Sci.) 2004, 10, 133–135. [Google Scholar]
- Çelik Oğuz, A.; Ölmez, F.; Karakaya, A. Mating type idiomorphs of Pyrenophora teres in Turkey. Zemdirb. Agric. 2018, 105, 271–278. [Google Scholar] [CrossRef]
- Leišova, L.; Minariˇḱova, V.; Kučera, L.; Ovesná, J. Genetic diversity of Pyrenophora teres isolates as detected by AFLP analysis. J. Phytopathol. 2005, 153, 569–578. [Google Scholar] [CrossRef]
- Leisova, L.; Kucera, L.; Minarikova, V.; Ovesna, J. AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol. 2005, 54, 66–73. [Google Scholar] [CrossRef]
- Lu, S.; Platz, G.J.; Edwards, M.C.; Friesen, T.L. Mating type locus-specific polymerase chain reaction markers for differentiation of Pyrenophora teres f. teres and P. teres f. maculata, the causal agents of barley net blotch. Phytopathology 2010, 100, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Beishenkanova, B.; Karakaya, A.; Çelik Oğuz, A. The use of an alternative differential set for determination of Pyrenophora teres f. maculata pathotypes. Tarım Bilimleri Derg. (J. Agric. Sci.) 2020, 26, 395–405. [Google Scholar] [CrossRef]
- Yazıcı, B.; Karakaya, A.; Çelik Oğuz, A.; Mert, Z. Determination of the seedling reactions of some barley cultivars to Drechslera teres f. teres. Bitki Koruma Bülteni (Plant Prot. Bull.) 2015, 55, 239–245. [Google Scholar]
- Steffenson, B.J.; Webster, R. Pathotype diversity of Pyrenophora teres f. teres on barley. Phytopathology 1992, 82, 170–177. [Google Scholar] [CrossRef]
- Çelik Oğuz, A.; Karakaya, A. Pathotypes of Pyrenophora teres on barley in Turkey. Phytopathol. Mediterr. 2017, 56, 224–234. [Google Scholar]
- Rau, D.; Attene, G.; Brown, A.H.; Nanni, L.; Maier, F.J.; Balmas, V.; Saba, E.; Schäfer, W.; Papa, R. Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley “net blotch” disease. Curr. Genet. 2007, 51, 377–392. [Google Scholar] [CrossRef]
- Serenius, M.; Mironenko, N.; Manninen, O. Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing net blotch of barley in Finland. Mycol. Res. 2005, 109, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, J.; Justesen, A. Genetic relationship of Pyrenophora graminea, P. teres f. maculata and P. teres f. teres assessed by RAPD analysis. J. Phytopathol. 2007, 155, 76–83. [Google Scholar] [CrossRef]
- Burdon, J.; Silk, J. Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology 1997, 87, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Deadman, M.; Cooke, B. An analysis of rain-mediated dispersal of Drechslera teres conidia in field plots of spring barley. Ann. Appl. Biol. 1989, 115, 209–214. [Google Scholar] [CrossRef]
- Hampton, J. The role of seed-borne inoculum in the epidemiology of net blotch of barley in New Zealand. N. Z. J. Exp. Agric. 1980, 8, 297–299. [Google Scholar] [CrossRef]
- Liu, Z.; Zhong, S.; Stasko, A.; Edwards, M.; Friesen, T. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Phytopathology 2012, 102, 539–546. [Google Scholar] [CrossRef]
- Linde, C.C.; Smith, L.M. Host specialisation and disparate evolution of Pyrenophora teres f. teres on barley and barley grass. BMC Evol. Biol. 2019, 19, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oudemans, C.A.J.A. Observations Mycologiques. In Verslag van de vergadering der Wis- en Natuurkundige Afdeeling; Koninklijke Akademie van Wetenschappen te Amsterdam: Amsterdam, The Netherlands, 1897; Volume 6, pp. 86–92. [Google Scholar]
- Davis, J. Notes on parasitic fungi in Wisconsin—V. Trans. Wis. Acad. Sci. Arts Lett. 1919, 19, 690–704. [Google Scholar]
- Zaffarano, P.L.; McDonald, B.A.; Linde, C.C. Two new species of Rhynchosporium. Mycologia 2011, 103, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Avrova, A.; Knogge, W. Rhynchosporium commune: A persistent threat to barley cultivation. Mol. Plant Pathol. 2012, 13, 986–997. [Google Scholar] [CrossRef]
- Shipton, W.; Boyd, W.; Ali, S. Scald of barley. Rev. Plant Pathol. 1974, 53, 839–861. [Google Scholar]
- McDonald, B.A.; Zhan, J.; Burdon, J.J. Genetic structure of Rhynchosporium secalis in Australia. Phytopathology 1999, 89, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Bouajila, A.; Abang, M.M.; Haouas, S.; Udupa, S.; Rezgui, S.; Baum, M.; Yahyaoui, A. Genetic diversity of Rhynchosporium secalis in Tunisia as revealed by pathotype, AFLP, and microsatellite analyses. Mycopathologia 2007, 163, 281–294. [Google Scholar] [CrossRef]
- Stefansson, T.S.; Willi, Y.; Croll, D.; McDonald, B.A. An assay for quantitative virulence in Rhynchosporium commune reveals an association between effector genotype and virulence. Plant Pathol. 2014, 63, 405–414. [Google Scholar] [CrossRef]
- Azamparsa, M.R.; Karakaya, A. Determination of the pathotypes of Rhynchosporium commune (Zaffarona, McDonald & Linde) in some regions of Turkey. Bitki Koruma Bülteni (Plant Prot. Bull.) 2020, 60, 5–14. [Google Scholar]
- Fowler, A.; Owen, H. Studies on leaf blotch of barley (Rhynchosporium secalis). Trans. Br. Mycol. Soc. 1971, 56, 137–152. [Google Scholar] [CrossRef]
- Ali, S.; Mayfield, A.; Clare, B. Pathogenicity of 203 isolates of Rhynchosporium secalis on 21 barley cultivars. Physiol. Plant Pathol. 1976, 9, 135–143. [Google Scholar] [CrossRef]
- Ceoloni, C. Race differentiation and search for sources of resistance to Rhynchosporium secalis in barley in Italy. Euphytica 1980, 29, 547–553. [Google Scholar] [CrossRef]
- Abbott, D.; Burdon, J.; Jarosz, A.; Brown, A.; Muller, W.; Read, B. The relationship between seedling infection types and field reactions to leaf scald in Clipper barley backcross lines. Aust. J. Agric. Res. 1991, 42, 801–809. [Google Scholar] [CrossRef]
- Jorgensen, H.L. Pathogenic variation of Rhynchosporium secalis in Denmark and sources of resistance in barley. Plant Dis. 1995, 79, 297–301. [Google Scholar]
- Tekauz, A. Pathogenic variation in Rhynchosporium secalis on barley in Canada. Can. J. Plant Pathol. 1991, 13, 298–304. [Google Scholar] [CrossRef]
- Goodwin, S.B. The barley scald pathogen Rhynchosporium secalis is closely related to the discomycetes Tapesia and Pyrenopeziza. Mycol. Res. 2002, 106, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.; Donnellan, S.; Smyl, C.; Scott, L.; Wallwork, H. Molecular variation in Rhynchosporium secalis isolates obtained from hotspots. Australas. Plant Pathol. 2003, 32, 257–262. [Google Scholar] [CrossRef]
- Arzanlou, M.; Karimi, K.; Mirabi, F. Some evidence for skewed mating type distribution in Iranian populations of Rhynchosporium commune, the cause of barley scald disease. J. Plant Prot. Res. 2016, 56, 237–243. [Google Scholar] [CrossRef]
- Seifollahi, E.; Sharifnabi, B.; Javan-Nikkhah, M.; Linde, C. Low genetic diversity of Rhynchosporium commune in Iran, a secondary centre of barley origin. Plant Pathol. 2018, 67, 1725–1734. [Google Scholar] [CrossRef]
- Çelik Oğuz, A.; Ölmez, F.; Karakaya, A.; Azamparsa, M.R. Genetic variation and mating type distribution of Rhynchosporium commune in Turkey. Physiol. Mol. Plant Pathol. 2021, 114, 101614. [Google Scholar] [CrossRef]
- Linde, C.C.; Zala, M.; Ceccarelli, S.; McDonald, B.A. Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet. Biol. 2003, 40, 115–125. [Google Scholar] [CrossRef]
- Zaffarano, P.L.; McDonald, B.A.; Zala, M.; Linde, C.C. Global hierarchical gene diversity analysis suggests the Fertile Crescent is not the center of origin of the barley scald pathogen Rhynchosporium secalis. Phytopathology 2006, 96, 941–950. [Google Scholar] [CrossRef] [Green Version]
- Linde, C.C.; Zala, M.; McDonald, B.A. Molecular evidence for recent founder populations and human-mediated migration in the barley scald pathogen Rhynchosporium secalis. Mol. Phylogenetics Evol. 2009, 51, 454–464. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A. How can research on pathogen population biology suggest disease management strategies? The example of barley scald (Rhynchosporium commune). Plant Pathol. 2015, 64, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.J.; Fitt, B.D. Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis. Curr. Genet. 2003, 44, 277–286. [Google Scholar] [CrossRef]
- Brunner, P.C.; Schürch, S.; McDonald, B.A. The origin and colonization history of the barley scald pathogen Rhynchosporium secalis. J. Evol. Biol. 2007, 20, 1311–1321. [Google Scholar] [CrossRef]
- Von Korff, M.; Udupa, S.; Yahyaoui, A.; Baum, M. Genetic variation among Rhynchosporium secalis populations of West Asia and North Africa as revealed by RAPD and AFLP analysis. J. Phytopathol. 2004, 152, 106–113. [Google Scholar] [CrossRef]
- Salamati, S.; Zhan, J.; Burdon, J.J.; McDonald, B.A. The genetic structure of field populations of Rhynchosporium secalis from three continents suggests moderate gene flow and regular recombination. Phytopathology 2000, 90, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Locke, T.; Phillips, A. The occurrence of carbendazim resistance in Rhynchosporium secalis on winter barley in England and Wales in 1992 and 1993. Plant Pathol. 1995, 44, 294–300. [Google Scholar] [CrossRef]
- Taggart, P.; Locke, T.; Phillips, A.; Pask, N.; Hollomon, D.; Kendall, S.; Cooke, L.; Mercer, P. Benzimidazole resistance in Rhynchosporium secalis and its effect on barley leaf blotch control in the UK. Crop Prot. 1999, 18, 239–243. [Google Scholar] [CrossRef]
- Robbertse, B.; Van Der Rijst, M.; Van Aarde, I.; Lennox, C.; Crous, P. DMI sensitivity and cross-resistance patterns of Rhynchosporium secalis isolates from South Africa. Crop Prot. 2001, 20, 97–102. [Google Scholar] [CrossRef]
- Cooke, L.; Locke, T.; Lockley, K.; Phillips, A.; Sadiq, M.; Coll, R.; Black, L.; Taggart, P.; Mercer, P. The effect of fungicide programmes based on epoxiconazole on the control and DMI sensitivity of Rhynchosporium secalis in winter barley. Crop Prot. 2004, 23, 393–406. [Google Scholar] [CrossRef]
- Brunner, P.C.; Stefansson, T.S.; Fountaine, J.; Richina, V.; McDonald, B.A. A global analysis of CYP51 diversity and azole sensitivity in Rhynchosporium commune. Phytopathology 2016, 106, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Karakaya, A.; Mert, Z.; Oğuz, A.Ç.; Ertaș, M.; Karagöz, A. Determination of the diseases occurring on naturally growing wild barley (Hordeum spontaneum) field populations. Rad. Poljopr. Fak. Univ. U Sarajev. (Work. Fac. Agric. Univ. Sarajevo) 2016, 61, 291–295. [Google Scholar]
- Karakaya, A.; Çelik Oğuz, A.; Saraç Sivrikaya, I. Diseases occurring on Hordeum bulbosum field populations at Bingöl province of Turkey. Rad. Poljopr. Fak. Univ. U Sarajev. (Work. Fac. Agric. Univ. Sarajevo) 2020, 65, 75–82. [Google Scholar]
- Kumar, J.; Schäfer, P.; Hückelhoven, R.; Langen, G.; Baltruschat, H.; Stein, E.; Nagarajan, S.; Kogel, K.H. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control. Mol. Plant Pathol. 2002, 3, 185–195. [Google Scholar] [CrossRef]
- Acharya, K.; Dutta, A.K.; Pradhan, P. ‘Bipolaris sorokiniana’ (Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. Aust. J. Crop Sci. 2011, 5, 1064. [Google Scholar]
- Gupta, P.; Chand, R.; Vasistha, N.; Pandey, S.; Kumar, U.; Mishra, V.; Joshi, A. Spot blotch disease of wheat: The current status of research on genetics and breeding. Plant Pathol. 2018, 67, 508–531. [Google Scholar] [CrossRef]
- Murray, T.D.; Parry, D.W.; Cattlin, N.D. A Color Handbook of Diseases of small grain Cereal Crops; Iowa State University Press: Iowa, IA, USA, 1998. [Google Scholar]
- Sharma, R.; Duveiller, E. Advancement toward new spot blotch resistant wheats in South Asia. Crop Sci. 2007, 47, 961–968. [Google Scholar] [CrossRef]
- Bockus, W.W.; Bowden, R.L.; Hunger, R.M.; Murray, T.; Smiley, R. Compendium of Wheat Diseases and Pests; American Phytopathological Society (APS Press): St. Paul, MN, USA, 2010; p. 171. [Google Scholar]
- Valjavec-Gratian, M.; Steffenson, B. Pathotypes of Cochliobolus sativus on barley in North Dakota. Plant Dis. 1997, 81, 1275–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, M.; Jawhar, M. Virulence spectrum to barley (Hordeum vulgare L.) in some isolates of Cochliobolus sativus from Syria. J. Plant Pathol. 2002, 84, 35–39. [Google Scholar]
- Arabi, M.; Jawhar, M. Identification of Cochliobolus sativus (spot blotch) isolates expressing differential virulence on barley genotypes in Syria. J. Phytopathol. 2004, 152, 461–464. [Google Scholar] [CrossRef]
- Meldrum, S.; Platz, D.; Ogle, H. Pathotypes of Cochliobolus sativus on barley in Australia. Australas. Plant Pathol. 2004, 33, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Ghazvini, H.; Tekauz, A. Virulence diversity in the population of Bipolaris sorokiniana. Plant Dis. 2007, 91, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Leng, Y.; Wang, R.; Ali, S.; Zhao, M.; Zhong, S. Sources and genetics of spot blotch resistance to a new pathotype of Cochliobolus sativus in the USDA National small grains collection. Plant Dis. 2016, 100, 1988–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazvini, H.; Tekauz, A. Molecular diversity in the barley pathogen Bipolaris sorokiniana (Cochliobolus sativus). Australas. Plant Pathol. 2012, 41, 283–293. [Google Scholar] [CrossRef]
- Zhong, S.; Steffenson, B.J. Virulence and molecular diversity in Cochliobolus sativus. Phytopathology 2001, 91, 469–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinline, R. Studies on the perfect stage of Helminthosporium sativum. Can. J. Bot. 1951, 29, 467–478. [Google Scholar] [CrossRef]
- Zhong, S.; Steffenson, B.J. Genetic and molecular characterization of mating type genes in Cochliobolus sativus. Mycologia 2001, 93, 852–863. [Google Scholar] [CrossRef]
- Tinline, R. Cochliobolus sativus: V. heterokaryosis and parasexuality. Can. J. Bot. 1962, 40, 425–437. [Google Scholar] [CrossRef]
- Tinline, R. Cochliobolus sativus, a pathogen of wide host range. In Advances in Plant Pathology. Genetics of Plant Pathogenic Fungi; Ingram, D., Williams, P., Eds.; Academic Press: London, UK, 1988; Volume 6, pp. 113–122. [Google Scholar]
- Posada, D.; Crandall, K.A.; Holmes, E.C. Recombination in evolutionary genomics. Annu. Rev. Genet. 2002, 36, 75–97. [Google Scholar] [CrossRef] [Green Version]
- Tinline, R. Cochliobolus sativus: IV. Drug-resistant, color, and nutritionally exacting mutants. Can. J. Bot. 1961, 39, 1695–1704. [Google Scholar] [CrossRef]
- Zhong, S.; Steffenson, B.J. Molecular karyotyping and chromosome length polymorphism in Cochliobolus sativus. Mycol. Res. 2007, 111, 78–86. [Google Scholar] [CrossRef]
- Leisova-Svobodova, L.; Minarikova, V.; Kucera, L.; Pereyra, S. Structure of the Cochliobolus sativus population variability. Plant Pathol. 2012, 61, 709–718. [Google Scholar] [CrossRef]
- Guo, H.; Yao, Q.; Chen, L.; Wang, F.; Lang, X.; Pang, Y.; Feng, J.; Zhou, J.; Lin, R.; Xu, S. Virulence and molecular diversity in the Cochliobolus sativus population causing barley spot blotch in China. Plant Dis. 2019, 103, 2252–2262. [Google Scholar] [CrossRef]
- Al-Sadi, A. Variation in resistance to spot blotch and the aggressiveness of Bipolaris sorokiniana on barley and wheat cultivars. J. Plant Pathol. 2016, 97–103. [Google Scholar]
- Knight, N.; Platz, G.; Lehmensiek, A.; Sutherland, M. An investigation of genetic variation among Australian isolates of Bipolaris sorokiniana from different cereal tissues and comparison of their abilities to cause spot blotch on barley. Australas. Plant Pathol. 2010, 39, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Baturo-Ciesniewska, A. Genetic variability and pathogenicity among polish isolates of Bipolaris sorokiniana from spring barley. J. Plant Pathol. 2011, 93, 291–302. [Google Scholar]
- Weikert-Oliveira, R.; Resende, M.; Valerio, H.; Caligiorne, R.; Paiva, E. Genetic variation among pathogens causing “Helminthosporium” diseases of rice, maize and wheat. Fitopatol. Bras. 2002, 27, 639–643. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, R.; Singh, V.B.; Shukla, R.; Gurjar, M.S.; Gupta, S.; Sharma, T.R. URP-based DNA fingerprinting of Bipolaris sorokiniana isolates causing spot blotch of wheat. J. Phytopathol. 2010, 158, 210–216. [Google Scholar] [CrossRef]
- Arabi, M.; Jawhar, M. Heterogeneity in Pyrenophora graminea as revealed by ITS-RFLP. J. Plant Pathol. 2007, 89, 391–395. [Google Scholar]
- Bakri, Y.; Arabi, M.; Jawhar, M. Heterogeneity in the ITS of the ribosomal DNA of Pyrenophora graminea isolates differing in xylanase and amylase production. Microbiology 2011, 80, 492–495. [Google Scholar] [CrossRef]
- Ghannam, A.; Alek, H.; Doumani, S.; Mansour, D.; Arabi, M.I. Deciphering the transcriptional regulation and spatiotemporal distribution of immunity response in barley to Pyrenophora graminea fungal invasion. BMC Genom. 2016, 17, 256. [Google Scholar] [CrossRef] [Green Version]
- Karakaya, A.; Mert, Z.; Oğuz, A.Ç.; Çetin, L. Distribution of barley stripe disease in Central Anatolia, Turkey. Selcuk J. Agric. Food Sci. 2016, 30, 59–61. [Google Scholar]
- Si, E.; Yang, S.; Li, B.; Ma, X.; Wang, S.; Wang, H. Pathogenic analysis, rDNA-ITS and genetic diversity of Pyrenophora graminea in Gansu Province. J. Plant Prot. 2017, 44, 84–92. [Google Scholar]
- Gatti, A.; Rizza, F.; Delogu, G.; Terzi, V.; Porta-Puglia, A. Physiological and biochemical variability in a population of Drechslera graminea. J. Genet. Breed. 1992, 46, 179–186. [Google Scholar]
- Jawhar, M.; Sangwan, R.; Arabi, M. Identification of Drechslera graminea isolates by cultural characters and RAPD analysis. Cereal Res. Commun. 2000, 28, 87–93. [Google Scholar] [CrossRef]
- Ulus, C.; Karakaya, A. Assessment of the seedling reactions of some Turkish barley cultivars to barley stripe. Tarım Bilimleri Derg. (J. Agric. Sci.) 2007, 13, 409–412. [Google Scholar]
- Çelik Oğuz, A.; Karakaya, A.; Ergün, N. Determination of the reactions of some Turkish hulless barley lines to Drechslera graminea. Rad. Poljopr. Fak. Univ. U Sarajev. (Work. Fac. Agric. Univ. Sarajevo) 2017, 62, 196–202. [Google Scholar]
- Çelik Oğuz, A. Resistance of wild barley (Hordeum spontaneum) and barley landraces to leaf stripe (Drechslera graminea). Phytopathol. Mediterr. 2019, 58, 485–495. [Google Scholar]
- Taylor, E.J.; Konstantinova, P.; Leigh, F.; Bates, J.A.; Lee, D. Gypsy-like retrotransposons in Pyrenophora: An abundant and informative class of molecular markers. Genome 2004, 47, 519–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, M.; Jawhar, M.; Al-Safadi, B.; MirAli, N. Yield responses of barley to leaf stripe (Pyrenophora graminea) under experimental conditions in southern Syria. J. Phytopathol. 2004, 152, 519–523. [Google Scholar] [CrossRef]
- Jawhar, M.; Arabi, M. Genetic variability among Pyrenophora graminea isolates. Australas. Plant Pathol. 2006, 35, 279–281. [Google Scholar] [CrossRef]
- Zein, I.; Jawhar, M.; Arabi, M.I.E. Efficiency of IRAP and ITS-RFLP marker systems in accessing genetic variation of Pyrenophora graminea. Genet. Mol. Biol. 2010, 33, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, B.G.; Yoder, O. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet. Biol. 2000, 31, 1–5. [Google Scholar] [CrossRef]
- Dokhanchi, H.; Babai-Ahari, A.; Arzanlou, M. Distribution of mating type alleles in Iranian populations of Pyrenophora graminea, the causal agent of barley leaf stripe disease, using a multiplex PCR approach. Eur. J. Plant Pathol. 2020, 156, 343–354. [Google Scholar] [CrossRef]
- Ficsor, A.; Bakonyi, J.; Csősz, M.; Tomcsányi, A.; Varga, J.; Tóth, B. Occurrence of barley pathogenic Pyrenophora species and their mating types in Hungary. Cereal Res. Commun. 2014, 42, 612–619. [Google Scholar] [CrossRef]
- Smedegard, P. The perithecial and pycnidial stages of Pyrenophora teres and P. graminea in Denmark. Friesia 1972, 10, 61–68. [Google Scholar]
- Tekauz, A. Reaction of Canadian barley cultivars to Pyrenophora graminea, the incitant of leaf stripe. Can. J. Plant Pathol. 1983, 5, 294–301. [Google Scholar] [CrossRef]
- Waalwijk, C.; Mendes, O.; Verstappen, E.C.; de Waard, M.A.; Kema, G.H. Isolation and characterization of the mating-type idiomorphs from the wheat septoria leaf blotch fungus Mycosphaerella graminicola. Fungal Genet. Biol. 2002, 35, 277–286. [Google Scholar] [CrossRef]
- Al-Daoude, A.M.; Nabulsi, I.; MirAli, N. Molecular phylogeny of Pyrenophora graminea as determined by RAPD and ISSR fingerprints. J. Plant Biol. Res. 2012, 1, 25–35. [Google Scholar]
- Bayraktar, H.; Akan, K. Genetic characterization of Pyrenophora graminea isolates and the reactions of some barley cultivars to leaf stripe disease under greenhouse conditions. Turk. J. Agric. For. 2012, 36, 329–339. [Google Scholar]
- Arabi, M.; Jawhar, M. Genetic variation among Syrian Pyrenophora graminea isolates as determined by protein profile analysis. Adv. Hortic. Sci. 2004, 18, 132–137. [Google Scholar]
- Arabi, M.; Jawhar, M. Molecular and pathogenic variation identified among Pyrenophora graminea vegetative compatibility groups. J. Plant Biol. Res. 2012, 1, 101–106. [Google Scholar]
- Si, E.; Meng, Y.; Ma, X.; Li, B.; Wang, J.; Ren, P.; Yao, L.; Yang, K.; Zhang, Y.; Shang, X. Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe. Eur. J. Plant Pathol. 2019, 154, 227–241. [Google Scholar] [CrossRef]
- Littlefield, L.J. Biology of the Plant Rusts: An Introduction; Iowa State University Press: Iowa, IA, USA, 1981; p. 103. [Google Scholar]
- Cotterill, P.; Rees, R.; Platz, G.; Dill-Macky, R. Effects of leaf rust on selected Australian barleys. Aust. J. Exp. Agric. 1992, 32, 747–751. [Google Scholar] [CrossRef]
- Park, R. Pathogenic specialization and pathotype distribution of Puccinia hordei in Australia, 1992 to 2001. Plant Dis. 2003, 87, 1311–1316. [Google Scholar] [CrossRef] [Green Version]
- Cotterill, P.; Park, R.; Rees, R. Pathogenic specialization of Puccinia hordei Otth. in Australia, 1966–1990. Aust. J. Agric. Res. 1995, 46, 127–134. [Google Scholar]
- Waterhouse, W.L. Studies in the inheritance of resistance to leaf rust, Puccinia anomala Rostr., in crosses of barley. J. Royal. Soc. Nsw 1927, 61, 218–247. [Google Scholar]
- Arnst, B.; Martens, J.; Wright, G.; Burnett, P.; Sanderson, F. Incidence, importance and virulence of Puccinia hordei on barley in New Zealand. Ann. Appl. Biol. 1979, 92, 185–190. [Google Scholar] [CrossRef]
- Griffey, C.; Das, M.; Baldwin, R.; Waldenmaier, C. Yield losses in winter barley resulting from a new race of Puccinia hordei in North America. Plant Dis. 1994, 78, 256–260. [Google Scholar] [CrossRef]
- Anikster, Y. Parasitic specialization of Puccinia hordei in Israel. Phytopathology 1984, 74, 1061–1064. [Google Scholar] [CrossRef]
- Kavak, H. First record of leaf rust caused by Puccinia hordei on Hordeum vulgare ssp. spontaneum in Turkey. Plant Pathol. 2004, 53, 258. [Google Scholar] [CrossRef]
- Anikster, Y.; Wahl, I. Coevolution of the rust fungi on Gramineae and Liliaceae and their hosts. Annu. Rev. Phytopathol. 1979, 17, 367–403. [Google Scholar] [CrossRef]
- Elmansour, H.; Singh, D.; Dracatos, P.M.; Park, R. Identification and characterization of seedling and adult plant resistance to Puccinia hordei in selected African barley germplasm. Euphytica 2017, 213, 119. [Google Scholar] [CrossRef]
- Wallwork, H.; Preece, P.; Cotterill, P. Puccinia hordei on barley and Ornithogalum umbellatum in South Australia. Australas. Plant Pathol. 1992, 21, 95–97. [Google Scholar] [CrossRef]
- Park, R.; Poulsen, D.; Barr, A.; Cakir, M.; Moody, D.; Raman, H.; Read, B. Mapping genes for resistance to Puccinia hordei in barley. Aust. J. Agric. Res. 2003, 54, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Park, R. Annual Report: 2009–2010 Cereal Rust Survey, The University of Sydney; Plant Breeding Institute: Cobbitty, Australia, 2010; pp. 1–12. [Google Scholar]
- Newton, A.; Caten, C.; Johnson, R. Variation for isozymes and double-stranded RNA among isolates of Puccinia striiformis and two other cereal rusts. Plant Pathol. 1985, 34, 235–247. [Google Scholar] [CrossRef]
- Jennings, J.; Newton, A.; Buck, K. Detection of polymorphism in Puccinia hordei using RFLP and RAPD markers, differential cultivars, and analysis of the intergenic spacer region of rDNA. J. Phytopathol. 1997, 145, 511–519. [Google Scholar] [CrossRef]
- Sun, Y.; Neate, S.; Zhong, S.; Steffenson, B.J.; Friesen, T. Amplified fragment length polymorphism and virulence polymorphism in Puccinia hordei. Can. J. Plant Pathol. 2007, 29, 25–34. [Google Scholar] [CrossRef]
- Karaoglu, H.; Park, R. Isolation and characterization of microsatellite markers for the causal agent of barley leaf rust, Puccinia hordei. Australas. Plant Pathol. 2014, 43, 47–52. [Google Scholar] [CrossRef]
- Sandhu, K.; Karaoglu, H.; Park, R. Pathogenic and genetic diversity in Puccinia hordei Otth in Australasia. J. Plant Breed. Crop Sci. 2016, 8, 197–205. [Google Scholar]
- Bailey, J.; Karaoglu, H.; Wellings, C.; Park, R. Isolation and characterization of 25 genome-derived simple sequence repeat markers for Puccinia striiformis f. sp. tritici. Mol. Ecol. Resour. 2013, 13, 760–762. [Google Scholar]
- Karaoglu, H.; Lee, C.M.Y.; Park, R. Simple sequence repeats in Puccinia graminis: Abundance, cross-formae speciales and intra-species utility, and development of novel markers. Australas. Plant Pathol. 2013, 42, 271–281. [Google Scholar] [CrossRef]
- Luig, N. Epidemiology in Australia and New Zealand. In The Cereal Rusts, Volume II: Diseases, Distribution, Epidemiology, and Control; Roelfs, A.P., Bushnell, W.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1985; pp. 301–328. [Google Scholar]
- Möller, M.; Stukenbrock, E.H. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 2017, 15, 756. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, C.; Rasmussen, S.W.; Giese, H. A genetic map of Blumeria graminis based on functional genes, avirulence genes, and molecular markers. Fungal Genet. Biol. 2002, 35, 235–246. [Google Scholar] [CrossRef]
- Both, M.; Csukai, M.; Stumpf, M.P.; Spanu, P.D. Gene expression profiles of Blumeria graminis indicate dynamic changes to primary metabolism during development of an obligate biotrophic pathogen. Plant Cell 2005, 17, 2107–2122. [Google Scholar] [CrossRef] [Green Version]
- Spanu, P.D.; Abbott, J.C.; Amselem, J.; Burgis, T.A.; Soanes, D.M.; Stüber, K.; van Themaat, E.V.L.; Brown, J.K.; Butcher, S.A.; Gurr, S.J. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 2010, 330, 1543–1546. [Google Scholar] [CrossRef]
- Hacquard, S.; Kracher, B.; Maekawa, T.; Vernaldi, S.; Schulze-Lefert, P.; van Themaat, E.V.L. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl. Acad. Sci. USA 2013, 110, E2219–E2228. [Google Scholar] [CrossRef] [Green Version]
- Oberhaensli, S.; Parlange, F.; Buchmann, J.P.; Jenny, F.H.; Abbott, J.C.; Burgis, T.A.; Spanu, P.D.; Keller, B.; Wicker, T. Comparative sequence analysis of wheat and barley powdery mildew fungi reveals gene colinearity, dates divergence and indicates host-pathogen co-evolution. Fungal Genet. Biol. 2011, 48, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Komínková, E.; Dreiseitl, A.; Malečková, E.; Doležel, J.; Valárik, M. Genetic diversity of Blumeria graminis f. sp. hordei in Central Europe and its comparison with Australian population. PLoS ONE 2016, 11, e0167099. [Google Scholar]
- Amselem, J.; Lebrun, M.-H.; Quesneville, H. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genom. 2015, 16, 141. [Google Scholar] [CrossRef] [Green Version]
- Frantzeskakis, L.; Kracher, B.; Kusch, S.; Yoshikawa-Maekawa, M.; Bauer, S.; Pedersen, C.; Spanu, P.D.; Maekawa, T.; Schulze-Lefert, P.; Panstruga, R. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genom. 2018, 19, 381. [Google Scholar] [CrossRef] [Green Version]
- Kusch, S.; Ahmadinejad, N.; Panstruga, R.; Kuhn, H. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f. sp. hordei). BMC Genom. 2014, 15, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, S.M.; Kuhn, H.; Micali, C.; Liller, C.; Kwaaitaal, M.; Panstruga, R. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Mol. Plant Pathol. 2014, 15, 535–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, G.; Pedersen, C.; Thordal-Christensen, H. Identification of eight effector candidate genes involved in early aggressiveness of the barley powdery mildew fungus. Plant Pathol. 2016, 65, 953–958. [Google Scholar] [CrossRef]
- Menardo, F.; Praz, C.R.; Wicker, T.; Keller, B. Rapid turnover of effectors in grass powdery mildew (Blumeria graminis). BMC Evol. Biol. 2017, 17, 223. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.A.; Schwerdt, J.G.; Shirley, N.J.; Xing, X.; Hsieh, Y.S.; Srivastava, V.; Bulone, V.; Little, A. Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro. Cell Surf. 2019, 5, 100030. [Google Scholar] [CrossRef] [PubMed]
- Halterman, D.; Zhou, F.; Wei, F.; Wise, R.P.; Schulze-Lefert, P. The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J. 2001, 25, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Skamnioti, P.; Pedersen, C.; Al-Chaarani, G.R.; Holefors, A.; Thordal-Christensen, H.; Brown, J.K.; Ridout, C.J. Genetics of avirulence genes in Blumeria graminis f. sp. hordei and physical mapping of AVRa22 and AVRa12. Fungal Genet. Biol. 2008, 45, 243–252. [Google Scholar] [CrossRef]
- Lu, X.; Kracher, B.; Saur, I.M.; Bauer, S.; Ellwood, S.R.; Wise, R.; Yaeno, T.; Maekawa, T.; Schulze-Lefert, P. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen. Proc. Natl. Acad. Sci. USA 2016, 113, E6486–E6495. [Google Scholar] [CrossRef] [Green Version]
- Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. Front. Plant Sci. 2017, 8, 202. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, S.R.; Liu, Z.; Syme, R.A.; Lai, Z.; Hane, J.K.; Keiper, F.; Moffat, C.S.; Oliver, R.P.; Friesen, T.L. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol. 2010, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Friesen, T.L.; Faris, J.D.; Solomon, P.S.; Oliver, R.P. Host-specific toxins: Effectors of necrotrophic pathogenicity. Cell. Microbiol. 2008, 10, 1421–1428. [Google Scholar] [CrossRef]
- Ismail, I.; Godfrey, D.; Able, A. Fungal growth, proteinaceous toxins and virulence of Pyrenophora teres f. teres on barley. Australas. Plant Pathol. 2014, 43, 535–546. [Google Scholar]
- Ismail, I.; Godfrey, D.; Able, A. Proteomic analysis reveals the potential involvement of xylanase from Pyrenophora teres f. teres in net form net blotch disease of barley. Australas. Plant Pathol. 2014, 43, 715–726. [Google Scholar] [CrossRef]
- Liu, Z.; Holmes, D.J.; Faris, J.D.; Chao, S.; Brueggeman, R.S.; Edwards, M.C.; Friesen, T.L. Necrotrophic effector-triggered susceptibility (NETS) underlies the barley—Pyrenophora teres f. teres interaction specific to chromosome 6H. Mol. Plant Pathol. 2015, 16, 188–200. [Google Scholar] [CrossRef]
- Wyatt, N.A.; Richards, J.K.; Brueggeman, R.S.; Friesen, T.L. Reference assembly and annotation of the Pyrenophora teres f. teres isolate 0–1. G3 Genes Genomes Genet. 2018, 8, 1–8. [Google Scholar]
- Weiland, J.J.; Steffenson, B.J.; Cartwright, R.D.; Webster, R.K. Identification of molecular genetic markers in Pyrenophora teres f. teres associated with low virulence on ‘Harbin’ barley. Phytopathology 1999, 89, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, Z.; Faris, J.D.; Weiland, J.J.; Steffenson, B.J.; Friesen, T.L. Genetic mapping of Pyrenophora teres f. teres genes conferring avirulence on barley. Fungal Genet. Biol. 2007, 44, 323–329. [Google Scholar] [CrossRef]
- Beattie, A.D.; Scoles, G.J.; Rossnagel, B.G. Identification of molecular markers linked to a Pyrenophora teres avirulence gene. Phytopathology 2007, 97, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, N.A.; Richards, J.K.; Brueggeman, R.S.; Friesen, T.L. A comparative genomic analysis of the barley pathogen Pyrenophora teres f. teres identifies subtelomeric regions as drivers of virulence. Mol. Plant Microbe Interact. 2020, 33, 173–188. [Google Scholar] [CrossRef]
- Syme, R.A.; Martin, A.; Wyatt, N.A.; Lawrence, J.A.; Muria-Gonzalez, M.J.; Friesen, T.L.; Ellwood, S.R. Transposable element genomic fissuring in Pyrenophora teres is associated with genome expansion and dynamics of host–pathogen genetic interactions. Front. Genet. 2018, 9, 130. [Google Scholar] [CrossRef]
- Muria-Gonzalez, M.J.; Zulak, K.G.; Allegaert, E.; Oliver, R.P.; Ellwood, S.R. Profile of the in vitro secretome of the barley net blotch fungus, Pyrenophora teres f. teres. Physiol. Mol. Plant Pathol. 2020, 109, 101451. [Google Scholar] [CrossRef]
- Wyatt, N.A.; Friesen, T.L. Four reference quality genome assemblies of Pyrenophora teres f. maculata: A resource for studying the barley spot form net blotch interaction. Mol. Plant Microbe Interact. 2020, 34, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Wevelsiep, L.; Rupping, E.; Knogge, W. Stimulation of barley plasmalemma H+-ATPase by phytotoxic peptides from the fungal pathogen Rhynchosporium secalis. Plant Physiol. 1993, 101, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Zaffarano, P.L.; McDonald, B.A.; Linde, C.C. Phylogeographical analyses reveal global migration patterns of the barley scald pathogen Rhynchosporium secalis. Mol. Ecol. 2009, 18, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Schürch, S.; Linde, C.C.; Knogge, W.; Jackson, L.F.; McDonald, B.A. Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene NIP1. Mol. Plant Microbe Interact. 2004, 17, 1114–1125. [Google Scholar] [CrossRef] [Green Version]
- Kirsten, S.; Navarro-Quezada, A.; Penselin, D.; Wenzel, C.; Matern, A.; Leitner, A.; Baum, T.; Seiffert, U.; Knogge, W. Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance. Mol. Plant Microbe Interact. 2012, 25, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Gamble, M. Molecular characterisation of the Rhynchosporium commune interaction with barley. Ph.D. Thesis, University of Dundee, Dundee, Scotland, 2016. [Google Scholar]
- Mohd-Assaad, N.; McDonald, B.A.; Croll, D. The emergence of the multi-species NIP1 effector in Rhynchosporium was accompanied by high rates of gene duplications and losses. Environ. Microbiol. 2019, 21, 2677–2695. [Google Scholar] [CrossRef] [PubMed]
- Siersleben, S.; Penselin, D.; Wenzel, C.; Albert, S.; Knogge, W. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune. Eukaryot. Cell 2014, 13, 1026–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torriani, S.F.; Penselin, D.; Knogge, W.; Felder, M.; Taudien, S.; Platzer, M.; McDonald, B.A.; Brunner, P.C. Comparative analysis of mitochondrial genomes from closely related Rhynchosporium species reveals extensive intron invasion. Fungal Genet. Biol. 2014, 62, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Penselin, D.; Münsterkötter, M.; Kirsten, S.; Felder, M.; Taudien, S.; Platzer, M.; Ashelford, K.; Paskiewicz, K.H.; Harrison, R.J.; Hughes, D.J. Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genom. 2016, 17, 953. [Google Scholar] [CrossRef] [Green Version]
- Von Felten, A.; Zaffarano, P.L.; McDonald, B.A. Electrophoretic karyotypes of Rhynchosporium commune, R. secalis and R. agropyri. Eur. J. Plant Pathol. 2011, 129, 529–537. [Google Scholar] [CrossRef]
- Zhu, W.; Zhan, J.; McDonald, B.A. Evidence for local adaptation and pleiotropic effects associated with melanization in a plant pathogenic fungus. Fungal Genet. Biol. 2018, 115, 33–40. [Google Scholar] [CrossRef]
- Rohe, M.; Gierlich, A.; Hermann, H.; Hahn, M.; Schmidt, B.; Rosahl, S.; Knogge, W. The race-specific elicitor, NIP1, from the barley pathogen, Rhynchosporium secalis, determines avirulence on host plants of the Rrs1 resistance genotype. EMBO J. 1995, 14, 4168–4177. [Google Scholar] [CrossRef]
- Ohm, R.A.; Feau, N.; Henrissat, B.; Schoch, C.L.; Horwitz, B.A.; Barry, K.W.; Condon, B.J.; Copeland, A.C.; Dhillon, B.; Glaser, F. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 2012, 8, e1003037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condon, B.J.; Leng, Y.; Wu, D.; Bushley, K.E.; Ohm, R.A.; Otillar, R.; Martin, J.; Schackwitz, W.; Grimwood, J.; MohdZainudin, N. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet. 2013, 9, e1003233. [Google Scholar] [CrossRef] [Green Version]
- Chand, R.; Kumar, M.; Kushwaha, C.; Shah, K.; Joshi, A.K. Role of melanin in release of extracellular enzymes and selection of aggressive isolates of Bipolaris sorokiniana in barley. Curr. Microbiol. 2014, 69, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Aich, S.; Singh, R.K.; Kundu, P.; Pandey, S.P.; Datta, S. Genome-wide characterization of cellulases from the hemi-biotrophic plant pathogen, Bipolaris sorokiniana, reveals the presence of a highly stable GH7 endoglucanase. Biotechnol. Biofuels 2017, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.C.; Ahren, D.; Simpfendorfer, S.; Milgate, A.; Solomon, P.S. The discovery of the virulence gene ToxA in the wheat and barley pathogen Bipolaris sorokiniana. Mol. Plant Pathol. 2018, 19, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Zhang, J.; Song, Z.; Liu, M.; Hu, J.; Hou, C.; Zhu, G.; Jiang, L.; Xia, X.; Quinn, R.J. Genome-and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Appl. Microbiol. Biotechnol. 2019, 103, 5167–5181. [Google Scholar] [CrossRef]
- Song, N.; Geng, Y.; Li, X. The mitochondrial genome of the phytopathogenic fungus Bipolaris sorokiniana and the utility of mitochondrial genome to infer phylogeny of Dothideomycetes. Front. Microbiol. 2020, 11, 863. [Google Scholar] [CrossRef]
- Pathak, G.M.; Gurjar, G.S.; Kadoo, N.Y. Insights of Bipolaris sorokiniana secretome-an in silico approach. Biologia 2020, 75, 2367–2381. [Google Scholar] [CrossRef]
- Liang, Q.; Li, B.; Wang, J.; Ren, P.; Yao, L.; Meng, Y.; Si, E.; Shang, X.; Wang, H. PGPBS, a mitogen-activated protein kinase kinase, is required for vegetative differentiation, cell wall integrity, and pathogenicity of the barley leaf stripe fungus Pyrenophora graminea. Gene 2019, 696, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Si, E.; Meng, Y.; Ma, X.; Li, B.; Wang, J.; Yao, L.; Yang, K.; Zhang, Y.; Shang, X.; Wang, H. Genome resource for barley leaf stripe pathogen Pyrenophora graminea. Plant Dis. 2020, 104, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Kullman, B.; Teterin, W. Estimation of fungal genome size: Comparison of image cytometry and photometric cytometry. Folia Cryptog. Est. 2006, 42, 43–56. [Google Scholar]
- Park, R.F.; Golegaonkar, P.G.; Derevnina, L.; Sandhu, K.S.; Karaoglu, H.; Elmansour, H.M.; Dracatos, P.M.; Singh, D. Leaf rust of cultivated barley: Pathology and control. Annu. Rev. Phytopathol. 2015, 53, 565–589. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Zhang, P.; Dong, C.; Upadhyaya, N.M.; Zhou, Q.; Dodds, P.; Park, R.F. De novo genome assembly and comparative genomics of the barley leaf rust pathogen Puccinia hordei identifies candidates for three avirulence genes. G3 Genes Genomes Genet. 2019, 9, 3263–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichler, W. XLI.—Some rules in ectoparasitism. J. Nat. Hist. 1948, 1, 588–598. [Google Scholar] [CrossRef]
Blumeria graminis (DC.) E. O. Speer f. sp. hordei emend. É. J. Marchal (anamorph: Oidium monilioides Link) | |
A genetic map based on functional genes, avirulence genes, and molecular markers | Pedersen et al., 2002 [199] |
Gene expression profiles | Both et al., 2005 [200] |
Sequencing of the Bgh genome | Spanu et al., 2010 [201] |
Genome structure and transcriptional programs in divergent hosts | Hacquard et al., 2013 [202] |
Transposable elements (TEs) | |
Different formae speciales of B. graminis | Oberhaensli et al., 2011 [203] |
Unique and reliable presence/absence variation (PAV) markers | Komínková et al., 2016 [204] |
Lifestyles of pathogens | Amselem et al., 2015 [205] |
Update of genome sequence and transposable element (TE) families | Frantzeskakis et al., 2018 [206] |
Proteome analysis | Kusch et al., 2014 [207] |
Evolutionary history | Menardo et al., 2017 [23] |
Effector genes | Schmidt et al., 2014 [208] |
Aguilar et al., 2016 [209] | |
Menardo et al., 2017 [210] | |
Pham et al., 2019 [211] | |
Avr genes | Halterman et al., 2001 [212] |
Pedersen et al., 2002 [199] | |
Skamnioti et al., 2008 [213] | |
Lu et al., 2016 [214] | |
Dreiseitl, 2017 [215] | |
Pyrenophora teres Drechsler (anamorph: Drechslera teres (Sacc.) Shoem.) | |
Pyrenophora teres f. teres | |
Genome assembly using Illumina sequencing | Ellwood et al., 2010 [216] |
Effector genes | Friesen et al., 2008 [217] |
Ismail et al., 2014 [218,219] | |
Liu et al., 2015 [220] | |
Wyatt et al., 2018 [221] | |
Avr genes | Weiland et al. 1999 [222] |
Lai et al., 2007 [223] | |
Beattie et al., 2007 [224] | |
Wyatt et al., 2018 [221] | |
Genomic analysis comparison and identification sub-telomeric regions | Wyatt et al., 2020 [225] |
Updated isolate 0-1 reference genome assembly and annotation | Wyatt et al., 2018 [221] |
Transposable elements (TEs) | Syme et al., 2018 [226] |
In vitro secretome profile | Muria-Gonzalez et al., 2020 [227] |
Pyrenophora teres f. maculata | |
The first P. teres f. maculata genome sequence and transposable elements (TEs) | Syme et al., 2018 [226] |
Four reference quality genome assemblies | Wyatt and Friesen 2020 [228] |
Rhynchosporium commune Zaffarano, McDonald, and Linde | |
Necrosis inducing peptides (NIP1, NIP2, and NIP3) were identified | Wevelsiep et al. 1993 [229] |
A phylogeographical analysis using nuclear DNA sequences | Zaffarano et al., 2009 [230] |
Necrosis-inducing protein (NIP) effectors | Schürch et al., 2004 [231] |
Kirsten et al., 2012 [232] | |
Stefansson et al., 2014 [95] | |
Gamble et al., 2016 [233] | |
Mohd-Assaad et al., 2019 [234] | |
Identification and characterization of the PFP1 gene | Siersleben et al., 2014 [235] |
Sequencing and annotation of the complete mitochondrial (mt) genomes of four closely related Rhynchosporium species | Torriani et al., 2014 [236] |
Comparative population genomics studies | Torriani et al., 2014 [236] |
Penselin et al., 2016 [237] | |
Mohd-Assaad et al., 2019 [234] | |
Genome plasticity | von Felten et al., 2011 [238] |
Zhu et al., 2018 [239] | |
Avr genes | Rohe et al., 1995 [240] |
Cochliobolus sativus (Ito and Kurib.) Drechs. ex. Dastur) (anamorph: Bipolaris sorokiniana (Sacc.) Shoem.)) | |
Genome sequence (34.4 mbp, isolate ND90Pr) | Ohm et al., 2012 [241] |
Comparative genome structure, secondary metabolite, and effector coding capacity | Condon et al., 2013 [242] |
Extracellular enzymes | Chand et al., 2014 [243] |
Identities and role of the cell wall-degrading enzymes (CWDE) | Aich et al., 2017 [244] |
Detection of the virulence gene ToxA in the wheat and barley | McDonald et al., 2018 [245] |
Isolation and structural elucidation of chlorinated metabolites | Han et al., 2019 [246] |
The mitochondrial genome and phylogeny | Song et al., 2020 [247] |
Secretome analysis | Pathak et al., 2020 [248] |
Pyrenophora graminea Ito and Kuribayashi (anamorph: Drechslera graminea (Rabenh. ex. Schlech.) Shoemaker) | |
Candidate gene screening | Ghannam et al., 2016 [153] |
Transposable elements | Taylor et al., 2004 [161] |
Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation | Si et al., 2019 [175] |
Characterization of the pgpbs gene, a mitogen-activated protein kinase kinase | Liang et al., 2019 [249] |
The first genome resource | Si et al., 2020 [250] |
Puccinia hordei G. Otth. | |
Puccinia hordei genome predicted by cytometry study | Kullman and Teterin 2006 [251] |
Effector genes, genomic and transcriptomic comparisons | Park 2015 [252] |
Diagnostic simple sequence repeat (SSR) markers | Karaoglu and Park 2014 [193] |
Avr genes and the first genome assembly | Chen et al., 2019 [253] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelik Oğuz, A.; Karakaya, A. Genetic Diversity of Barley Foliar Fungal Pathogens. Agronomy 2021, 11, 434. https://doi.org/10.3390/agronomy11030434
Çelik Oğuz A, Karakaya A. Genetic Diversity of Barley Foliar Fungal Pathogens. Agronomy. 2021; 11(3):434. https://doi.org/10.3390/agronomy11030434
Chicago/Turabian StyleÇelik Oğuz, Arzu, and Aziz Karakaya. 2021. "Genetic Diversity of Barley Foliar Fungal Pathogens" Agronomy 11, no. 3: 434. https://doi.org/10.3390/agronomy11030434
APA StyleÇelik Oğuz, A., & Karakaya, A. (2021). Genetic Diversity of Barley Foliar Fungal Pathogens. Agronomy, 11(3), 434. https://doi.org/10.3390/agronomy11030434