Agrotechnical Biofortification as a Method to Increase Selenium Content in Spring Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
3. Results
3.1. Average Yield of Wheat Grain
3.2. Selenium Content in Grain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and Human Health: An Update. Curr. Environ. Health. Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef] [PubMed]
- Fordyce, F.M. Selenium deficiency and toxicity in the environment. In Essentials of Medical Geology; Springer: Dordrecht, The Netherlands, 2013; pp. 375–416. [Google Scholar]
- Wu, Q.; Rayman, M.P.; Lv, H.; Schomburg, L.; Cui, B.; Gao, C.; Chen, P.; Zhuang, G.; Zhang, Z.; Peng, X.; et al. Low population selenium status is associated with increased prevalence of thyroid disease. J. Clin. Endocrinol. Metab. 2015, 100, 4037–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Q.; Liang, X.; Nong, K.; Gong, Z.; Qin, T.; Qin, X.; Wang, D.; Zhu, Y. Advances in Research on the Toxicological Effects of Selenium. Bull. Environ. Contam. Toxicol. 2021, 1–12. [Google Scholar] [CrossRef]
- Ratajczak, M.; Gietka-Czernel, M. The role of selenium in the human body. Adv. Med. Sci. 2016, 12, 929–933. (In Polish) [Google Scholar]
- Kieliszek, M.; Błażejak, S. Selenium: Significance, and outlook for supplementation. Nutrition 2013, 29, 713–718. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Zhang, S.P.; Liu, C.W.; Cai, Y.Q. The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK1 cells. Toxicol. Vitr. 2009, 23, 288–294. [Google Scholar] [CrossRef]
- Sönmez, F. The Importance of Selenium Fertilization in Wheat. Available online: https://www.researchgate.net/profile/Fatih_Cig2/publication/348351662_BREEDING_PHYSIOLOGY_QUALITY_FERTILIZATION_PRACTICE_PRODUCTIONS_AND_IMPROVEMENT_CEREAL_GRAIN_CEREAL_GRAIN_PRODUCTIONS_AND_IMPROVEMENT_EDITOR/links/5ff9803745851553a02e93bb/BREEDING-PHYSIOLOGY-QUALITY-FERTILIZATION-PRACTICE-PRODUCTIONS-AND-IMPROVEMENT-CEREAL-GRAIN-CEREAL-GRAIN-PRODUCTIONS-AND-IMPROVEMENT-EDITOR.pdf#page=174 (accessed on 12 January 2021).
- Hou, J.; Wang, T.; Liu, M.; Li, S.; Chen, J.; Liu, C.; Zhang, H.; Wang, Y.; Liu, Z.; Liang, N.; et al. Suboptimal selenium supply—A continuing problem in Keshan disease areas in Heilongjiang province. Biol. Trace Elem. Res. 2011, 143, 1255–1263. [Google Scholar] [CrossRef]
- Żarczynska, K.; Sobiech, P.; Radwinska, J.; Rekawek, W. Effects of selenium on animal health. J. Elem. 2013, 18, 330. [Google Scholar] [CrossRef] [Green Version]
- Tardy, A.L.; Ballesta, A.A.; Yilmaz, G.C.; Dan, M.; Ramirez, D.M.; Lam, H.Y.; Azais-Braesco, V.; Pouteau, E. Adult’s Dietary Intakes of Selected Vitamins & Minerals Essential for Energy Metabolism and Cognition: A Comparison Across Countries & Genders (FS10-04-19). Curr. Dev. Nutr. 2019, 3, 1501. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Yang, L.; Wang, Y.B.; Zhao, S.; Huang, W.L.; Ma, L. Analysis of Keshan disease investigation result in Yunnan province in 2008. Chin. J. Endemiol. 2010, 29, 93–95. [Google Scholar]
- Zhang, B.; Yang, L.; Wang, W.; Li, Y.; Li, H. Quantification and comparison of soil elements in the Tibetan plateau Kaschin-beck disease area: A case study in Zamtang County, Sichuan Province, China. Biol. Trace Elem. Res. 2010, 138, 69–78. [Google Scholar] [CrossRef]
- Yang, C.; Yao, H.; Wu, Y.; Sun, G.; Yang, W.; Li, Z.; Shang, L. Status and risks of selenium deficiency in a traditional selenium-deficient area in Northeast China. Sci. Total Environ. 2021, 762, 144103. [Google Scholar] [CrossRef] [PubMed]
- Keskes-Ammar, L.; Feki-Chakroun, N.; Rebai, T.; Sahnoun, Z.; Ghozzi, H.; Hammami, S.; Zghal, K.; Fki, H.; Damak, J.; Bahloul, A. Sperm oxidative stress and the effect of an oral vitamin E and selenium suplement on semen quality in infertile men. Arch. Androl. 2003, 49, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Rocourt, C.; Cheng, W.H. Selenoproteins and the aging brain. Mech. Ageing Dev. 2010, 131, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Klecha, B.; Bukowska, B. Selenium in the human body—Characteristics of the element and potential therapeutic application. Bromatol. Toxicol. Chem. 2016, 4, 818–829. (In Polish) [Google Scholar]
- Jones, G.D.; Droz, B.; Greve, P.; Gottschalk, P.; Poffet, D.; McGrath, S.P.; Seneviratne, S.I.; Smith, P.; Winkel, L.H. Selenium deficiency risk predicted to increase under future climate change. Proc. Natl. Acad. Sci. USA 2017, 11, 2848–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauhan, R.; Awasthi, S.; Srivastava, S.; Dwivedi, S.; Pilon-Smits, E.A.; Dhankher, O.P.; Tripathi, R.D. Understanding selenium metabolism in plants and its role as a beneficial element. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1937–1958. [Google Scholar] [CrossRef]
- Winkel, L.H.; Vriens, B.; Jones, G.D.; Schneider, L.S.; Pilon-Smits, E.; Bañuelos, G.S. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients 2015, 7, 4199–4239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, R.; Wei, C.; Tud, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Andrade, F.R.; Silva, G.N.; Guimarães, K.C.; Barreto, H.B.F.; Souza, K.R.D.; Guilherme, L.R.G.; Faquin, V.; Reis, A.R. Selenium protects rice plants from water deficit stress. Ecotoxicol. Environ. Saf. 2018, 164, 562–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.Q.; Chu, J.Z.; Ba, C.J. Antioxidant responses of wheat seedlings to exogenous selenium supply under enhanced ultraviolet-B. Biol. Trace Elem. Res. 2010, 136, 96–105. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Shi, G.Q.; Zhang, X. Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem. 2017, 219, 179–184. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, B.; Han, Z.; Wang, W.; Chi, Q.; Zhou, J.; Nie, L.; Xu, S.; Liu, D.; et al. Concentration and distribution of selenium in soils of mainland China, and implications for human health. J. Geochem. Explor. 2021, 220, 106654. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Lopes, A.; Ávila, F.W.; Guilherme, L.R.G. Selenium behavior in the soil environment and its implication for human health. Ciência Agrotecnologia 2017, 41, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.; El-Ramady, H.; Santos, E.F.; Gratão, P.L.; Schomburg, L. Overview of selenium deficiency and toxicity worldwide: Affected areas, selenium-related health issues, and case studies. In Selenium in Plants; Springer: Gewerbestrasse, Switzerland, 2017; pp. 209–230. [Google Scholar]
- Rayman, M.P. Selenium in cancer prevention: A review of the evidence and mechanism of action. Proc. Nutr. Soc. 2005, 64, 527–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, U.; Fayiga, A.; Sonon, L. Selenium in the soil-plant environment: A review. Int. J. Appl. Agric. Sci. 2017, 3, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; West, K.P.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Hefferon, K.L. Nutritionally enhanced food crops; progress and perspectives. Int. J. Mol. Sci. 2015, 16, 3895–3914. [Google Scholar] [CrossRef]
- O’Hare, T.J. Biofortification of vegetables for the developed world. Acta Hortic. 2015, 1106, 1–8. [Google Scholar] [CrossRef]
- Godecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- Lenaerts, B.; Demont, M. The global burden of chronic and hidden hunger revisited: New panel data evidence spanning 1990–2017. Glob. Food Secur. 2021, 28, 100480. [Google Scholar] [CrossRef]
- Vlaic, R.A.; Mure¸san, C.C.; Muste, S.; Mure¸san, A.; Muresan, V.; Suharoschi, R.; Petru¸t, G.; Mihai, M. Food Fortification through Innovative Technologies. In Food Engineering; IntechOpen: London, UK, 2019; p. 177. [Google Scholar]
- White, P.J.; Broadley, M.R. Biofortifying crops whith essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweather-Tait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; McGrath, S.P.; et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.R.; Root, T.; Kork-alainen, K.; Hartikainen, H.; Salminen, P.; Hietaniemi, V.; Aspila, A.; et al. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Livestock and Supply Normative instruction. Rules on Definitions, Requirements, Specifications, Guarantees, Product Registration, Authorizations, Packaging, Labeling, Tax Documents, Advertisements and Tolerances of Fertilizers Are Established Minerals Intended for Agriculture. No. 46 of 22 November 2016. Available online: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/insumos-agricolas/fertilizantes/legislacao/in-46-de-22-11-2016-fert-minerais-dou-7-12-16.pdf (accessed on 14 January 2021).
- De lima Lessa, J.H.; Araujo, A.M.; Ferreira, L.A.; Junior, E.C.; De Oliveira, C.; Corguinha, A.P.; Martins, F.A.D.; Carvalho, H.W.P.; Guilherme, L.R.G.; Lopes, G. Agronomic biofortification of rice (Oryza sativa L.) with selenium and its effect on element distributions in biofortified grains. Plant Soil 2019, 444, 331–342. [Google Scholar] [CrossRef]
- Zou, C.; Du, Y.; Rashid, A.; Ram, H.; Savasli, E.; Pieterse, P.J.; Ortiz-Monasterio, I.; Yazici, A.; Kaur, C.; Mahmood, K.; et al. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J. Agric. Food Chem. 2019, 67, 8096–8106. [Google Scholar] [CrossRef] [Green Version]
- Haug, A.; Graham, R.D.; Christophersen, O.A.; Lyons, G.H. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2017, 19, 209–228. [Google Scholar] [CrossRef] [Green Version]
- Hawkesford, M.J.; Zhao, F.J. Strategies for increasing the selenium content of wheat. J. Cereal Sci. 2007, 46, 282–292. [Google Scholar] [CrossRef]
- Święcicki, W.K.; Surma, M.; Koziara, W.; Skrzypczak, G.; Szukała, J.; Bartkowiak-Broda, I.; Zimny, J.; Banaszak, Z.; Marciniak, K. Modern technologies in plant production—Friendly to humans and the environment. Pol. J. Agron. 2011, 7, 102–112. (In Polish) [Google Scholar]
- Wang, M.; Ali, F.; Wang, M.; Quang, T.D.; Zhou, F.; Bañuelos, G.S.; Liang, D. Understanding boosting selenium accumulation in wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. Environ. Sci. Pollut. Res. 2020, 27, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Acuña, J.J.; Jorquera, M.A.; Barra, P.J.; Crowley, D.E.; de la Luz Mora, M. Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils 2013, 49, 175–185. [Google Scholar] [CrossRef]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; Campos, P.S.; Ribeiro-Barros, A.I.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Laurie, S.; Faber, M.; Adebola, P.; Belete, A. Biofortification of sweet potato for food and nutrition security in South Africa. Food Res. Int. 2015, 76, 962–970. [Google Scholar] [CrossRef]
- Mechora, Š.; Germ, M.; Stibilj, V. Selenium compounds in selenium-enriched cabbage. Pure Appl. Chem. 2012, 84, 259–268. [Google Scholar] [CrossRef]
- Bañuelos, G.S. Irrigation of broccoli and canola with boron and selenium-laden effluent. J. Environ. Qual. 2002, 31, 1802–1808. [Google Scholar] [CrossRef]
- Skoczylas, Ł.; Tabaszewska, M.; Smoleń, S.; Słupski, J.; Liszka-Skoczylas, M.; Barański, R. Carrots (Daucus carota L.) Biofortified with Iodine and Selenium as a Raw Material for the Production of Juice with Additional Nutritional Functions. Agronomy 2020, 10, 1360. [Google Scholar] [CrossRef]
- Rahman, M.M.; Erskine, W.; Zaman, M.S.; Thavarajah, P.; Thavarajah, D.; Siddique, K.H.M. Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): Farmers’ field survey and genotype× environment effect. Food Res. Int. 2013, 54, 1596–1604. [Google Scholar] [CrossRef]
- Motesharezadeh, B.; Ghorbani, S.; & Alikhani, H.A. The effect of selenium biofortification in alfalfa (Medicago sativa). J. Plant Nutr. 2020, 43, 240–250. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.; Zhou, F.; Wand, M.; Yu, D.; Liang, D. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Gerla, P.; Sharif, M.; Korom, S. Geochemical processes controlling the spatial distribution of selenium in soil and water, west central South Dakota, USA. Environ. Earth Sci. 2011, 62, 1551–1560. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Selenium concentrations of common weeds and agricultural crops grown in the seleniferous soils of northwestern India. Sci. Total Environ. 2009, 407, 6150–6156. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Liu, Y.; Dong, G.; Wu, H. Effect of boiling and frying on the selenium content, speciation, and in vitro bioaccessibility of selenium-biofortified potato (Solanum tuberosum L.). Food Chem. 2021, 348, 129150. [Google Scholar] [CrossRef]
- Ros, G.; Rotterdam, A.; Bussink, D.; Bindraban, P. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil 2016, 404, 99–112. [Google Scholar] [CrossRef]
- Neal, R.H.; Sposito, G.; Holtzclaw, K.M.; Traina, S.J. Selenite adsorption on alluvial soils: Soil Composition and pH effects. Soil Sci. Soc. Am. J. 1987, 51, 1161–1165. [Google Scholar] [CrossRef]
- Li, H.F.; McGrath, S.P.; Zhao, F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008, 178, 92–102. [Google Scholar] [CrossRef]
- Manojlović, M.S.; Lončarić, Z.; Cabilovski, R.R.; Popović, B.; Karalić, K.; Ivezić, V.; Ademi, A.; Singh, B.R. Biofortification of wheat cultivars with selenium. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 715–724. [Google Scholar] [CrossRef]
- Kashin, V.K.; Shubina, O.I. Biological effect and selenium accumulation in wheat under conditions of selenium deficient biogeochemical province. Chem. Sustain. Dev. 2011, 19, 145–150. [Google Scholar]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Bukhari, M.A. Supplemental selenium improves wheat grain yield and quality through alterations in biochemical processes under normal and water deficit conditions. Food Chem. 2015, 175, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lara, T.S.; de Lima Lessa, J.H.; de Souza, K.R.D.; Corguinha, A.P.B.; Martins, F.A.D.; Lopes, G.; Guilherme, L.R.G. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. J. Food Compos. Anal. 2019, 81, 10–18. [Google Scholar] [CrossRef]
- Ekanayake, L.J.; Tharavarajah, D.; Vial, E.; Schatz, B.; McGee, R.; Thavarajah, P. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop. Res. 2015, 177, 9–14. [Google Scholar] [CrossRef]
- Ramkissoon, C. Selenium Dynamics in Cereal Biofortification: Optimising Fertiliser Strategies and Assessing Residual Fate. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2020. Available online: https://digital.library.adelaide.edu.au/dspace/handle/2440/126970 (accessed on 10 January 2021).
- Ducsay, L.; Ložek, O.; Varga, L. The influence of selenium soil application on its content in spring wheat. Plant Soil Environ. 2009, 55, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Grant, C.A.; Buckley, W.T.; Wu, R. Effect of selenium fertilizer source and rate on grain yield and selenium and cadmium concentration of durum wheat. Can. J. Plant Sci. 2007, 87, 703–708. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, M.; Adhikari, B. Advances in selenium-enriched foods: From the farm to the fork. Trends Food Sci. Technol. 2018, 76, 1–5. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Working Group World Reference Base for Soil Resources. The International Union of Soil Sciences. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Available online: http://www.fao.org/soils-portal/data-hub/soil-classification/world-reference-base/en/ (accessed on 12 December 2020).
- Radawiec, A.; Szulc, W.; Rutkowska, B. Selenium Biofortification of Wheat as a Strategy to Improve Human Nutrition. Agriculture 2021, 11, 144. [Google Scholar] [CrossRef]
- British Standard ISO 11466. Available online: https://www.iso.org/standard/19418.html (accessed on 20 January 2021).
- Norm, P. PN-R-04013: 1988. Chemical and Agricultural Analysis of Plants. Determination of Air-Dry and Dry Mass; Polish Committee for Standardization: Warsaw, Poland, 1988. [Google Scholar]
- Lazo-Vélez, M.A.; Chávez-Santoscoy, A.; Serna-Saldivar, S.O. Selenium-enriched breads and their benefits in human nutrition and health as affected by agronomic, milling, and baking factors. Cereal Chem. 2015, 92, 134–144. [Google Scholar] [CrossRef]
- White, P.J.; Bowen, H.C.; Parmaguru, P.; Fritz, M.; Spracklen, W.P.; Spiby, R.E.; Meacham, M.C.; Mead, A.; Harriman, M.; Trueman, L.J.; et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004, 55, 1927–1937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawaz, F.; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.; Shabbir, R.N.; Hussain, R.A. Selenium supply methods and time of application influence spring wheat (Triticum aestivum L.) yield under water deficit conditions. J. Agric. Sci. 2017, 155, 643–656. [Google Scholar] [CrossRef]
- Curtin, D.; Hanson, R.; Van Der Weerden, T.J. Effect of selenium fertiliser formulation and rate of application on selenium concentrations in irrigated and dryland wheat (Triticum aestivum). N. Z. J. Crop Hortic. Sci. 2008, 36, 1–7. [Google Scholar] [CrossRef] [Green Version]
- De Vita, P.; Platani, C.; Fragasso, M.; Ficco, D.B.M.; Colecchia, S.A.; Del Nobile, M.A.; Padalino, L.; Di Gennaro, S.; Petrozza, A. Selenium-enriched durum wheat improves the nutritional profile of pasta without altering its organoleptic properties. Food Chem. 2017, 214, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.A. The Atlas of Endemic Diseases and Their Environment; Science Press: Beijing, China, 1989. [Google Scholar]
- Kaur, N.; Sharma, S.; Kaur, S.; Nayyar, H. Selenium in agriculture: A nutrient or contaminant for crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Rodrigo, S.; Santamaria, O.; Poblaciones, M.J. Selenium application timing: Influence in wheat grain and flour selenium accumulation under mediterranean conditions. J. Agric. Sci. 2014, 6, 23. [Google Scholar] [CrossRef]
- Curtin, D.; Hanson, R.; Lindley, T.N.; Butler, R.C. Selenium concentration in wheat (Triticum aestivum) grain as influenced by method, rate, and timing of sodium selenate application. N. Z. J. Crop Hortic. Sci. 2006, 34, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Ngigi, P.B.; Lachat, C.; Masinde, P.W.; Du Laing, G. Agronomic biofortification of maize and beans in Kenya through selenium fertilization. Environ. Geochem. Health 2019, 41, 2577–2591. [Google Scholar] [CrossRef]
- Xia, Q.; Yang, Z.P.; Xue, N.W.; Dai, X.J.; Zhang, X.; Gao, Z.Q. effect of foliar application of selenium on nutrient concentration and yield of colored-grain wheat in China. Appl. Ecol. Environ. Res. 2019, 17, 2187–2202. [Google Scholar] [CrossRef]
- Reis, H.P.G.; Barcelos, J.P.Q.; Junior, E.F.; Santos, E.F.; Silva, V.M.; Moraes, M.F.; Putti, F.F.; Reis, A.R. Agronomic biofortification of upland rice with selenium and nitrogen and its relation to grain quality. J. Cereal Sci. 2018, 79, 508–515. [Google Scholar] [CrossRef]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Bañuelos, G.S.; Freeman, J.; Arroyo, I. Accumulation and speciation of selenium in biofortified vegetables grown under high boron and saline field conditions. Food Chem. X 2020, 5, 100073. [Google Scholar] [CrossRef]
Months | 2018 | 2019 | ||
---|---|---|---|---|
Precipitation [mm] | Air Temperature [°C] | Precipitation [mm] | Air Temperature [°C] | |
JAN | 28.1 | 1.0 | 36.0 | −1.6 |
FEB | 9.7 | −3.4 | 34.7 | 3.2 |
MAR | 23.6 | 0.4 | 34.2 | 6.2 |
APR | 28.0 | 13.2 | 11.9 | 9.8 |
MAY | 53.5 | 17.0 | 47.5 | 13.2 |
JUN | 25.2 | 18.7 | 24.1 | 22.0 |
JUL | 158.4 | 20.6 | 64.3 | 19.0 |
AUG | 42.2 | 20.3 | 69.5 | 20.1 |
SEP | 66.6 | 15.3 | 79.1 | 14.0 |
OCT | 45.7 | 9.7 | 21.6 | 10.4 |
NOV | 11.5 | 4.2 | 13.6 | 6.0 |
DEC | 53.4 | 1.8 | 34.2 | 0.6 |
Treatment | Dose of Se | Total Dose of Se | |
---|---|---|---|
Control | C | 0.00 | 0.00 |
Grain application | G | 50.00 µmol grain | 50.00 µmol |
Soil application | S | 5.00 g·ha−1 soil | 5.00 g·ha−1 |
Grain and soil application | G + S | 50.00 µmol grain + 5.00 g·ha−1 soil | 50.00 µmol + 5.00 g·ha−1 |
Grain and foliar application (G + F) | G + F1 | 50.00 µmol grain + 5.00 g·ha−1 foliar | 50.00 µmol + 5.00 g·ha−1 |
G + F2 | 50.00 µmol grain + 5.00 g·ha−1 foliar | 50.00 µmol + 5.00 g·ha−1 | |
G + F3 | 50.00 µmol grain + 5.00 g·ha−1 foliar | 50.00 µmol + 5.00 g·ha−1 | |
G + F4 | 50.00 µmol grain + 5.00 g·ha−1 foliar | 50.00 µmol + 5.00 g·ha−1 | |
G + F1-2 | 50.00 µmol grain + 2.5 g·ha−1 foliar in each treatment | 50.00 µmol + 5.00 g·ha−1 | |
G + F1-3 | 50.00 µmol grain + 1.67 g·ha−1 foliar in each treatment | 50.00 µmol + 5.00 g·ha−1 | |
G + F1-4 | 50.00 µmol grain + 1.25 g·ha−1 foliar in each treatment | 50.00 µmol + 5.00 g·ha−1 | |
Grain and soil application combined with foliar application (G + S+F) | G + S+F1 | 50.00 µmol grain + 5.00 g·ha−1 soil + 5.00 g·ha−1 foliar | 50.00 µmol + 10.00 g·ha−1 |
G + S+F2 | 50.00 µmol grain + 5.00 g·ha−1 soil + 5.00 g·ha−1 foliar | 50.00 µmol + 10.00 g·ha−1 | |
G + S+F3 | 50.00 µmol grain + 5.00 g·ha−1 soil + 5.00 g·ha−1 foliar | 50.00 µmol + 10.00 g·ha−1 | |
G + S+F4 | 50.00 µmol grain + 5.00 g·ha−1 soil + 5.00 g·ha−1 foliar | 50.00 µmol + 10.00 g·ha−1 | |
G + S+F1-2 | 50.00 µmol grain + 5.00 g·ha−1 soil + 2.50 g·ha−1 foliar in each treatment | 50.00 µmol + 10.00 g·ha−1 | |
G + S+F1-3 | 50.00 µmol grain + 5.00 g·ha−1 soil + 1.67 g·ha−1 foliar in each treatment | 50.00 µmol + 10.00 g·ha−1 | |
G + S+F1-4 | 50.00 µmol grain + 5.00 g·ha−1 soil + 1.25 g·ha−1 foliar in each treatment | 50.00 µmol + 10.00 g·ha−1 |
Experience Factor | Selenium | Yield |
---|---|---|
year | 0.702 | 0.000 |
fertilization | 0.003 | 0.583 |
application time | 0.000 | 0.107 |
year * fertilization | 0.108 | 0.213 |
year * application time | 0.527 | 0.974 |
fertilization * application time | 0.120 | 0.914 |
year * fertilization * application time | 0.810 | 0.993 |
Combination of Foliar Application | Dose 50.00 µmol + 5.00 g·ha−1 Se G + F | Dose 50.00 µmol + 10.00 g·ha−1 Se G + S+ F | p-Value |
---|---|---|---|
F1 | 0.257 | 0.271 | 0.912 |
F2 | 0.290 | 0.481 | 0.081 |
F3 | 0.282 | 0.271 | 0.878 |
F4 | 0.211 | 0.311 | 0.109 |
F1-2 | 0.375 | 0.696 | 0.002 |
F1-3 | 0.302 | 0.350 | 0.626 |
F1-4 | 0.229 | 0.212 | 0.777 |
All experiment | 0.278 | 0.370 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radawiec, A.; Szulc, W.; Rutkowska, B. Agrotechnical Biofortification as a Method to Increase Selenium Content in Spring Wheat. Agronomy 2021, 11, 541. https://doi.org/10.3390/agronomy11030541
Radawiec A, Szulc W, Rutkowska B. Agrotechnical Biofortification as a Method to Increase Selenium Content in Spring Wheat. Agronomy. 2021; 11(3):541. https://doi.org/10.3390/agronomy11030541
Chicago/Turabian StyleRadawiec, Aleksandra, Wiesław Szulc, and Beata Rutkowska. 2021. "Agrotechnical Biofortification as a Method to Increase Selenium Content in Spring Wheat" Agronomy 11, no. 3: 541. https://doi.org/10.3390/agronomy11030541
APA StyleRadawiec, A., Szulc, W., & Rutkowska, B. (2021). Agrotechnical Biofortification as a Method to Increase Selenium Content in Spring Wheat. Agronomy, 11(3), 541. https://doi.org/10.3390/agronomy11030541