Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes
Abstract
:1. Introduction
2. LED and Light Spectra
3. Photosynthetic Photon Flux Density (PPFD) and Daily Light Integral (DLI)
4. Toplighting (Overhead) and/or Interlighting (Intracanopy)
5. Light-Emitting Diode Development
6. Greenhouse Technology in Different Climatic Regions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Meinke, H.; Wilson, M.; Marcelis, L.F.M.; Heuvelink, E. Towards delivering on the sustainable development goals in greenhouse production systems. Resour. Conserv. Recycl. 2021, 169, 105379. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: San Francisco, CA, USA, 2015. [Google Scholar]
- Pinho, P.; Halonen, L. Influence of Light on Plant Growth and Development. Handb. Adv. Light. Technol. 2014, 1–14. [Google Scholar] [CrossRef]
- Gupta, S.D.; Agarwal, A. Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment. In Light Emitting Diodes for Agriculture; Springer: Singapore, 2017; pp. 1–25. [Google Scholar] [CrossRef] [PubMed]
- Tamulaitis, G.; Duchovskis, P.; Bliznikas, Z.; Breivė, K.; Ulinskaite, R.; Brazaityte, A.; Novičkovas, A.; Žukauskas, A. High-power light-emitting diode based facility for plant cultivation. J. Phys. D Appl. Phys. 2005, 38, 3182–3187. [Google Scholar] [CrossRef]
- Fankhauser, C.; Chory, J. Light control of plant development. Annu. Rev. Cell Dev. Biol. 1997, 13, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Batschauer, A. Photoreceptors of higher plants. Planta 1998, 206, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Briggs, W.R.; Beck, C.F.; Cashmore, A.R.; Christie, J.M.; Hughes, J.; Jarillo, J.A.; Kagawa, T.; Kanegae, H.; Liscum, E.; Nagatani, A.; et al. The Phototropin Family of Photoreceptors. Plant Cell 2001, 13, 993–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, D.; Kozai, T.; Niu, G.; Zhang, X. Light-Emitting Diodes for Horticulture. In Light-Emitting Diodes; Solid State Lighting Technology and Application Series; Li, J., Zhang, G.Q., Eds.; Springer: Cham, Switzerland, 2019; Volume 4, ISBN 9783319992112. [Google Scholar]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Barta, D.J. Light-emitting Diodes as a Radiation Source for Plants. Am. Soc. Hortic. Sci. 1991, 26, 203–205. [Google Scholar] [CrossRef] [Green Version]
- Loi, M.; Villani, A.; Paciolla, F.; Mul, G.; Paciolla, C. Challenges and Opportunities of Light-Emitting Diode ( LED ) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidant 2021, 10, 42. [Google Scholar] [CrossRef]
- Bula, R.J.; Morrow, R.C.; Tibbitts, T.W.; Corey, R.B. Technology for subsystems of space- based plant growth facilities. In Controlled Ecological Life Support System: CELSS ’89 Workshop; MacElroy, R.D., Ed.; NASA, Ames Research Center: Moffett Field, CA, USA, 1990; pp. 391–408, (NASA-TM-10277) (GWU 14369). [Google Scholar]
- Xu, Y.; Chang, Y.; Chen, G.; Lin, H. The research on LED supplementary lighting system for plants. Optik 2016, 127, 7193–7201. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for energy efficient greenhouse lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shi, Y.; Piao, F.; Sun, Z. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tissue Organ Cult. 2018, 134, 231–240. [Google Scholar] [CrossRef]
- Matsuda, R.; Yamano, T.; Murakami, K.; Fujiwara, K. Effects of spectral distribution and photosynthetic photon flux density for overnight LED light irradiation on tomato seedling growth and leaf injury. Sci. Hortic. 2016, 198, 363–369. [Google Scholar] [CrossRef]
- Gomes, M.A.; Novais, S.M.V.; Abreu, C.M.; Nunes, A.B.; Almeida, J.S.; Valerio, M.E.G.; Macedo, Z.S. White light emission of CdSiO3:Gd,TM (TM=Ni, Cr) phosphors. Mater. Res. Bull. 2020, 126, 3–8. [Google Scholar] [CrossRef]
- Lu, N.; Maruo, T.; Johkan, M.; Hohjo, M. Effects of supplemental lighting with light-emitting diodes (Leds) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environ. Control Biol. 2012, 50, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Izzo, L.G.; Hay Mele, B.; Vitale, L.; Vitale, E.; Arena, C. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environ. Exp. Bot. 2020, 179, 104195. [Google Scholar] [CrossRef]
- Gomez, C.; Mitchell, C.A. Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience 2015, 50, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 50, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Javanmardi, J.; Emami, S. Response of Tomato and Pepper Transplants to Light Spectra Provided by Light Emitting Diodes. Int. J. Veg. Sci. 2013, 19, 138–149. [Google Scholar] [CrossRef]
- Wei, H.; Xiaoxiao, W.; Min, P.; Xiaoying, L.; Lijun, G.; Zhigang, X. Effect Different Spectral LED on Photosynthesis and Distribution of Photosynthate of Cherry Tomato Seedlings. In Proceedings of the 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 78–84. [Google Scholar]
- Garcia, C.; Lopez, R.G. Supplemental Radiation Quality Influences Cucumber, Tomato, and Pepper Transplant Growth and Development. HortScience 2020, 55, 804–811. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Ji, Y.; Ouzounis, T.; Courbier, S.; Kaiser, E.; Nguyen, P.T.; Schouten, H.J.; Visser, R.G.F.; Pierik, R.; Marcelis, L.F.M.; Heuvelink, E. Far-red radiation increases dry mass partitioning to fruits but reduces Botrytis cinerea resistance in tomato. Environ. Exp. Bot. 2019, 168, 103889. [Google Scholar] [CrossRef]
- Hao, X.; Little, C.; Zheng, J.M.; Cao, R. Far-red LEDs improve fruit production in greenhouse tomato grown under high-pressure sodium lighting. Acta Hortic. 2016, 1134, 95–102. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Yang, Q.; LI, T. Overhead supplemental Far-red light stimulates tomato growth under intra-canopy lighting with LEDs. J. Integr. Agric. 2018, 17, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Johkan, M.; Maruo, T.; Hohjo, M.; Tsukagoshi, S.; Ebihara, M.; Nakaminami, A. Effect of supplemental far-red light with blue and red LED lamps on leaf photosynthesis, stomatal regulation and plant development of protected cultivated tomato. Acta Hortic. 2018, 1227, 533–540. [Google Scholar] [CrossRef]
- Eguchi, T.; Hernández, R.; Kubota, C. Far-red and blue light synergistically mitigate intumescence injury of tomato plants grown under ultraviolet-deficit light environment. HortScience 2016, 51, 712–719. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Leoni, B.; Montesano, F.F.; Serio, F.; Signore, A.; Santamaria, P. Supplementary Far-Red Light Did Not Affect Tomato Plant Growth or Yield under Mediterranean Greenhouse Conditions. Agronomy 2020, 10, 1849. [Google Scholar] [CrossRef]
- Kaiser, E.; Ouzounis, T.; Giday, H.; Schipper, R.; Heuvelink, E.; Marcelis, L.F.M. Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. Front. Plant Sci. 2019, 9, 2002. [Google Scholar] [CrossRef] [Green Version]
- Deram, P.; Lefsrud, M.G.; Orsat, V. Supplemental lighting orientation and Red-to-Blue ratio of light-emitting diodes for greenhouse tomato production. HortScience 2014, 49, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED Increases Tomato Yield in mediterranean Semi-Closed Greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux. HortScience 1993, 28, 1197–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mechatronix PAR, PPF, YPF, PPFD and DLI. Available online: https://www.horti-growlight.com/par-ppf-ypf-ppfd-dli (accessed on 20 January 2021).
- Morgan, L. Daily Light Integral (DLI) and Greenhouse Tomato Production. Tomato Mag. 2013, pp. 10–15. Available online: https://www.specmeters.com/assets/1/7/2013_-_DLI_Greenhouse_Tomato1.pdf (accessed on 25 February 2021).
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, C.; Gao, L. Polychromatic Supplemental Lighting from underneath Canopy Is More Effective to Enhance Tomato Plant Development by Improving Leaf Photosynthesis and Stomatal Regulation. Front. Plant Sci. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Lanoue, J.; Leonardos, E.D.; Grodzinski, B. Effects of Light Quality and Intensity on Diurnal Patterns and Rates of Photo-Assimilate Translocation and Transpiration in Tomato Leaves. Front. Plant Sci. 2018, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Velez Ramirez, A.I.; Heuvelink, E.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Continuous Light as a way to increase Greenhouse Tomato Production. In Proceedings of the VIIth International Symposium on Light in Horticultural Systems, Wageningen, The Netherlands, 14–18 October 2012; Volume 956, pp. 51–58. [Google Scholar] [CrossRef]
- Demers, D.A.; Dorais, M.; Wien, C.H.; Gosselin, A. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plants and fruit yields. Sci. Hortic. 1998, 74, 295–306. [Google Scholar] [CrossRef]
- Hikosaka, S.; Iyoki, S.; Hayakumo, M.; Goto, E. Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions. J. Agric. Meteorol 2013, 69, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Zhao, J.; Hu, J.; Jeong, B.R. Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.X.; Xu, Z.G.; Liu, X.Y.; Tang, C.M.; Wang, L.W.; Han, X. lin Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Globig, S.; Rosen, I.; Janes, H.W. Continuous light effects on photosynthesis and carbon metabolism in tomato. Acta Hortic. 1997, 418, 141–151. [Google Scholar] [CrossRef]
- O’Carrigan, A.; Hinde, E.; Lu, N.; Xu, X.Q.; Duan, H.; Huang, G.; Mak, M.; Bellotti, B.; Chen, Z.H. Effects of light irradiance on stomatal regulation and growth of tomato. Environ. Exp. Bot. 2014, 98, 65–73. [Google Scholar] [CrossRef]
- Vanlommel, W.; Huysmans, M.; Bosmans, L.; Vanderbruggen, R.; Van Delm, T. Optimal artificial light intensity for protected tomato cultivation under LEDs. Acta Hortic. 2020, 575–582. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-Emitting Diodes in Horticulture. Hortic. Rev. 2015, 43, 1–88. [Google Scholar] [CrossRef]
- Trouwborst, G.; Hogewoning, S.W.; Harbinson, J.; van Ieperen, W. The influence of light intensity and leaf age on the photosynthetic capacity of leaves within a tomato canopy. J. Hortic. Sci. Biotechnol. 2011, 86, 403–407. [Google Scholar] [CrossRef]
- Ouzounis, T.; Giday, H.; Kjaer, K.H.; Ottosen, C.O. LED or HPS in ornamentals? A case study in roses and campanulas. Eur. J. Hortic. Sci. 2018, 83, 166–172. [Google Scholar] [CrossRef]
- Särkkä, L.E.; Jokinen, K.; Ottosen, C.O.; Kaukoranta, T. Effects of HPS and LED lighting on cucumber leaf photosynthesis, light quality penetration and temperature in the canopy, plant morphology and yield. Agric. Food Sci. 2017, 26, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowska, R.; Dugosz-Grochowska, O.; Koton, A.; Zupnik, M. Effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce grown in two winter cycles. Sci. Hortic. 2015, 187, 80–86. [Google Scholar] [CrossRef]
- Nelson, J.A.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, C.; Morrow, R.C.; Bourget, C.M.; Massa, G.D.; Mitchell, C.A. Comparison of intracanopy light-emitting diode towers and overhead high-pressure sodium lamps for supplemental lighting of greenhouse-grown tomatoes. Horttechnology 2013, 23, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yang, T.; Choi, S.; Wang, Y.; Lin, M.; Liceaga, A.M. Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes. Sci. Hortic. 2019, 108985. [Google Scholar] [CrossRef]
- Kim, H.; Lin, M.; Mitchell, C.A. Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environ. Exp. Bot. 2019, 157, 228–240. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Gunnlaugsson, B.; Adalsteinsson, S. Interlight and plant density in year-round production of tomato at northern latitudes. Acta Hortic. 2006, 711, 71–75. [Google Scholar] [CrossRef]
- Hovi-Pekkanen, T.; Tahvonen, R. Effects of interlighting on yield and external fruit quality in year-round cultivated cucumber. Sci. Hortic. 2008, 116, 152–161. [Google Scholar] [CrossRef]
- Pepin, S.; Fortier, É. Beneficial Effects of Using a 3-D LED Interlighting System for Organic Greenhouse Tomato Grown in Canada under Low Natural Light Conditions. Acta Hortic. 2014, 239–246. [Google Scholar] [CrossRef]
- Dueck, T.A.; Janse, J.; Eveleens, B.A.; Kempkes, F.L.K.; Marcelis, L.F.M. Growth of tomatoes under hybrid LED and HPS lighting. Acta Hortic. 2012, 952, 335–342. [Google Scholar] [CrossRef]
- Hemming, S. Use of natural and artificial light in horticulture -interaction of plant and technology. Proc. VI Int. Symp. Light Hortic. 2011, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Pattison, P.M.; Tsao, J.Y.; Krames, M.R. Light-emitting diode technology status and directions: Opportunities for horticultural lighting. Acta Hortic. 2016, 1134, 413–426. [Google Scholar] [CrossRef] [Green Version]
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED Lighting Systems for Horticulture: Business Growth and Global Distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED Interlighting Improves Yield and Precocity of Greenhouse Tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Nhut, D.T.; Nam, N.B. Light-Emitting Diodes (LEDs): An Artificial Lighting Source for Biological Studies. In Proceedings of the Third International Conference on the Development of Biomedical Engineering in Vietnam, Ho Chi Minh City, Vietnam, 11–14 January 2010; pp. 134–139. [Google Scholar]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Stenitz, B.; Poff, K.L. A single positive phototropic response induced with pulsed light in hypocotyls of Arabidopsis thaliana seedlings. Planta 1986, 168, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, K.; Mory, Y. Method of Cultivating Plant and Illuminator for Cultivating Plant. U.S. Patent 10468155, 10 June 2004. [Google Scholar]
- Olvera-Gonzalez, E.; Alaniz-Lumbreras, D.; Ivanov-Tsonchev, R.; Villa-Hernández, J.; Olvera-Olvera, C.; González-Ramírez, E.; Araiza-Esquivel, M.; Torres-Argüelles, V.; Castaño, V. Intelligent lighting system for plant growth and development. Comput. Electron. Agric. 2013, 92, 48–53. [Google Scholar] [CrossRef]
- Ahn, Y.D.; Bae, S.; Kang, S.J. Power controllable LED system with increased energy efficiency using multi-sensors for plant cultivation. Energies 2017, 10, 1607. [Google Scholar] [CrossRef]
- Stanghellini, C.; van’t Oosfer, B.; Heuvelink, E. Greenhouse Horticulture: Technology for Optimal Crop Production, 1st ed.; Wageningen Academic Publisher: Wageningen, The Netherlands, 2019; ISBN 9789086863297. [Google Scholar]
- Hickman, G.W. International Greenhouse Vegetable Production—Statistics (2018 and 2019). Available online: http://www.cuestaroble.com/listghproducers.htm (accessed on 2 February 2021).
- Campiotti, C.; Viola, C.; Alonzo, G.; Bibbiani, C.; Giagnacovo, G.; Scoccianti, M.; Tumminelli, G. Sustainable greenhouse horticulture in Europe. J. Sustain. Energy 2012, 3, 159–163. [Google Scholar]
- Campiotti, C.A.; Bibbiani, C.; Greco, C. Renewable energy for greenhouse agriculture. J. Sustain. Energy 2019, 20, 152–156. [Google Scholar]
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean Greenhouse Technology. Chron. Horticult. 2004, 44, 28–34. [Google Scholar]
- Costa, J.M.; Heuvelink, E. The Global Tomato Industry. In Tomatoes; CABI Publishing: Wallingford, UK, 2018; pp. 1–27. ISBN 9781780641942. [Google Scholar]
- Shao, L.; Liu, Z.; Li, H.; Zhang, Y.; Dong, M.; Guo, X.; Zhang, H.; Huang, B.; Ni, R.; Li, G.; et al. The impact of global dimming on crop yields is determined by the source–sink imbalance of carbon during grain filling. Glob. Chang. Biol. 2021, 27, 689–708. [Google Scholar] [CrossRef] [PubMed]
- Fluence Introducing the Concept of DLI to the World—Fluence By OSRAM. Available online: https://fluence.science/science-articles/introducing-the-concept-of-dli-to-the-world/ (accessed on 2 February 2021).
Lamp Type | Spectral Output | Energy Use Efficiency | Power Requirements | Life Span |
---|---|---|---|---|
(μmol∙W−1) % | W | Hours | ||
Incandescent | Broad spectrum | 1–5 | 15–1000 | 1000 |
Gas discharge | Broad spectrum | >30 | 5–125 | 1000–30,000 |
High-pressure sodium (HPS) | Broad spectrum | 30–40 | 100–250 | 10,000–30,000 |
Metal halide | Broad spectrum | 25 | 34–4000 | 10,000–20,000 |
Light-emitting diodes (LED) | Specific wavelengths | >40 | 0.1–5 | >50,000 |
Light Spectrum | Wavelength (nm) | Photoreceptor | Physiological Responses |
---|---|---|---|
FR | 730 | phy A | Germination |
R | 660 | phy B | De-etiolation |
R | 660 | phy C-E | Shade avoidance |
Blue/UV-A | 450/330 | CRY 1 | Shade avoidance |
Blue/UV-A | 450/330 | CRY 2 | Flowering |
Blue/UV-A | 450/330 | PHO | Phototropism |
Materials | Formula | Wavelength (nm) | Light Spectra | Forward Voltage (V) |
---|---|---|---|---|
Gallium–Phosphide | GaP | 610–770 | Red | 1.6–2.0 |
Aluminium–Gallium–Arsenide | GaAsP | |||
Gallium–Arsenide–Phosphide | AlGaAs | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Gallium–Phosphide | GaP | 590–610 | Orange | 2.0–2.1 |
Gallium–Arsenide–Phosphide | AlGaP | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Gallium–Phosphide | GaP | 570–590 | Yellow | 2.1–2.2 |
Gallium–Arsenide –Phosphide | GaAsP | |||
Gallium–Phosphide | GaP | 500–570 | Green | 1.9–4.0 |
Aluminium–Gallium–Phosphide | AlGaInP | |||
Aluminium–Gallium–Indium–Phosphide | AlGaInP | |||
Silicon carbide | SiC | 450–500 | Blue | 2.4–3.7 |
Zinc sulfide | ZnS | |||
Gallium–Nitride | GaN | 400–450 | Violet | 2.7–4.0 |
Indium–Gallium–Nitride | InGaN | |||
Blue diode with yellow phosphor | Broad spectrum | White | 3.5 |
Light Spectra | Crop Response | Reference |
---|---|---|
Monochromatic R | Increased upward or downward leaf curling | [21] |
Monochromatic R | Stimulated hypocotyl and epicotyl elongation, cotyledon expansion, plant height, and leaf area | [19] |
Monochromatic R | Lower stem diameter, leaf area, and shoot dry weight | [20] |
Monochromatic R | Enhanced photosynthesis and seedling biomass production | [19] |
Monochromatic B | Increased stomatal conductance | [33] |
Monochromatic B | Induced highest Rubisco content, more compact size, and reduced biomass in tomato seedlings | [19] |
Monochromatic B | Increased vitamin C and TSS, reduced plant height, stimulated growth of lateral shoots, and higher leaf area | [22] |
Monochromatic B | Increased net rate of photosynthesis | [23] |
R + B | Increased total dry matter | [21] |
R + B | Increased photosynthetic pigment content, stomata number, photosynthate distribution, and photosynthetic net rate | [23] |
R + B | Increased average fruit weight | [34] |
R + B | Increased leaf dry weight and fruit number | [35] |
W | Increased yield and fruit growth rate | [18] |
W | Increased net assimilation rate | [16] |
W | Decreased lateral shoot number | [22] |
FR | Increased fruit dry matter weight improving light interception | [31] |
FR | Promoted stem elongation, light interception, plant growth, and fruit production | [27] |
FR | Alleviated intumescence injury | [30] |
FR | Increased plant total biomass production and ripe fruit yield | [15] |
FR | Increased dry matter partitioning to fruits | [26] |
FR | Reduced Botrytis cinerea resistance in tomato | [26] |
FR | Could help prevent stomatal closure and promote root development, ensuring leaf photosynthesis and dry matter production | [29] |
SL PPFD (μmol m−2s−1) | Photoperiod (Hours) | SL DLI (mol m−2d−1) | Reported Efficacy | Reference |
---|---|---|---|---|
50, 150, 200, 300, 450, 550 | 12 | 2.2, 6.5, 8.6, 13.0, 19.4, 23.8 | 300 μmol∙m−2∙s−1 induced highest energy efficiency | [46] |
200 | 16 | 11.5 | Satisfactory growth and photosynthesis | [40] |
110 | 14, 16, 20, 24 | 5.5, 6.3, 7.9, 9.5 | Photoperiods > 14 h did not increase tomato plant growth and yields | [43] |
110, 115, 135 | 16 | 6.3, 6.6, 7.8 | Increasing light intensity induced higher fruit mass and plant biomass | [34] |
300 | 16 | 17.3 | Optimal plant growth | [22] |
110 | 12, 24 | 4.8, 9.5 | Continuous light caused leaf injury | [47] |
200, 500, 1000 | 16 | 11.5, 28.8, 57.6 | PPFD > 500 μmol∙m−2∙s−1 caused leaf stress and physiological disorders | [44] |
200, 500, 1000 | 16 | 11.5, 28.8, 57.6 | Increasing light intensity to promote stomatal closure, reducing gas exchange | [48] |
161, 162, 163, 174, 243, 247, 250, 260, 319, 329 | 18 | 10.4, 10.5, 10.6, 11.3, 15.7, 16.0, 16.2, 16.8, 20.7, 21.3 | Fruit weight and total yield increased linearly with increasing installed light intensity, without loss of fruit quality. Maximum yield potential was not established in the range of light intensities tested | [49] |
50, 100, 150 | 16 | 2.9, 5.8, 8.6 | In terms of power consumption and economic benefits, SL with a PPFD of 100 μmol∙m−2∙s−1 was the best choice to improve the quality of grafted vegetable seedlings | [45] |
Crop | SL PPFD Min (μmol∙m−2∙s−1) | SL PPFD Max (μmol∙m−2∙s−1) | SL DLI Range (mol∙m−2∙d−1) |
---|---|---|---|
Tomato | 170 | 350 | 11–23 |
Pepper | 120 | 300 | 8–20 |
Cucumber | 120 | 350 | 8–23 |
Country | Average DLI (mol∙m−2d−1) | Country | Average DLI (mol∙m−2∙d−1) |
---|---|---|---|
Austria | 21–35 | Italy | 31–35 |
Belarus | 21–25 | Latvia | 16–20 |
Belgium | 21–25 | Lithuania | 16–20 |
Bulgaria | 31–35 | Montenegro | 31–35 |
Croatia | 31–35 | The Netherlands | 21–25 |
Czech Republic | 21–25 | Poland | 21–25 |
Denmark | 16–20 | Portugal | 31–35 |
Estonia | 10–15 | Romania | 26–30 |
France | 26–30 | Spain | 31–40 |
Germany | 16–20 | Switzerland | 26–30 |
Greece | 36–40 | Turkey | 31–40 |
Hungary | 26–30 | Ukraine | 21–30 |
Ireland | 16–20 | United Kingdom | 10–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy 2021, 11, 835. https://doi.org/10.3390/agronomy11050835
Palmitessa OD, Pantaleo MA, Santamaria P. Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy. 2021; 11(5):835. https://doi.org/10.3390/agronomy11050835
Chicago/Turabian StylePalmitessa, Onofrio Davide, Marco Antonio Pantaleo, and Pietro Santamaria. 2021. "Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes" Agronomy 11, no. 5: 835. https://doi.org/10.3390/agronomy11050835
APA StylePalmitessa, O. D., Pantaleo, M. A., & Santamaria, P. (2021). Applications and Development of LEDs as Supplementary Lighting for Tomato at Different Latitudes. Agronomy, 11(5), 835. https://doi.org/10.3390/agronomy11050835