The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Research Material
2.2. Chemical Analyses
2.3. Statistical Analyses
3. Results and Discussion
3.1. Onion Bulb Yield
3.2. Nutritional Composition Parameters
3.3. Associations between Composition Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gebska, M.; Grontkowska, A.; Swiderek, W.; Golebiewska, B. Farmer awareness and implementation of sustainable agriculture practices in different types of farms in Poland. Sustainability 2020, 12, 8022. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Krull, E.S.; Skjemstad, J.O.; Baldock, J.A. Functions of soil organic matter and the effect on soil properties. In Grains Research & Development Corporation Project No CSO 00029; CSIRO Land & Water: Glen Osmond, Australia, 2009; ISBN 0957959745. [Google Scholar]
- Leifert, C.; Ball, K.; Volakakis, N.; Cooper, J.M. Control of enteric pathogens in ready-to-eat vegetable crops in organic and “low input” production systems: A HACCP-based approach. J. Appl. Microbiol. 2008, 105, 931–950. [Google Scholar] [CrossRef] [PubMed]
- Nygaard Sørensen, J.; Thorup-Kristensen, K. Plant-based fertilizer for organic production. Acta Hortic. 2010, 852, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Baslam, M.; Mitsui, T.; Sueyoshi, K.; Ohyama, T. Recent advances in carbon and nitrogen metabolism in C3 plants. Int. J. Mol. Sci. 2021, 22, 1–39. [Google Scholar]
- Nicastro, H.L.; Ross, S.A.; Milner, J.A. Garlic and onions: Their cancer prevention properties. Cancer Prev. Res. 2015, 8, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Shade, J.; Cattell Noll, L.; Seufert, V.; Galloway, J.N.; Erisman, J.W. Decreasing reactive nitrogen losses in organic agricultural systems. Org. Agric. 2020. [Google Scholar] [CrossRef]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bettoni, M.M.; Mogor, Á.F.; Pauletti, V.; Goicoechea, N.; Aranjuelo, I.; Garmendia, I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Compos. Anal. 2016, 51, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phyther. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef]
- Banerjee, S.K.; Maulik, S.K. Effect of garlic on cardiovascular disorders: A review. Nutr. J. 2002, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wilson, E.A.; Demmig-Adams, B. Antioxidant, anti-inflammatory, and antimicrobial properties of garlic and onions. Nutr. Food Sci. 2007, 37, 178–183. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phyther. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J.D. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants 2019, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Burns, J. Phenolic Antioxidants in Red Wine: Content and Activity; University of Glasgow: Glasgow, UK, 2000. [Google Scholar]
- Huyut, Z.; Beydemir, Ş.; Gülçin, I. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Science 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Preuss, A.; De Vos, R.C.H.; D’Amico, E.; Perrotta, G.; Bovy, A.G.; Martens, S.; Rosati, C. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits. Plant Cell Environ. 2009, 32, 1117–1131. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Srednicka-Tober, D.; Hallmann, E.; Kopczynska, K.; Zarzynska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. Capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar] [CrossRef]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biol. Technol. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowskif, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Harris, R. An Introduction to R. Quant. Geogr. Basics 2018, 3, 250–286. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandil, A.A.; Sharief, A.E.; Fathalla, F.H. Effect of organic and mineral fertilizers on vegetative growth, bulb yield and quality of onion cultivars. Esci J. Crop Prod. 2013, 2, 91–100. [Google Scholar]
- Yoldas, F.; Ceylan, S.; Mordogan, N.; Esetlili, B.C. Effect of organic and inorganic fertilizers on yield and mineral content of onion (Allium cepa L.). Afr. J. Biotechnol. 2011, 10, 11488–11492. [Google Scholar]
- Al-Fraihat, A.H. Impact of different fertilizer sources on vegetative growth, yield, quality and storability of onion. Int. Invent. Yournal Agric. Soil Sci. 2016, 4, 1–8. [Google Scholar]
- Gererufael, L.A.; Abraham, N.T.; Reda, T.B. Growth and yield of onion (Allium cepa L.) as affected by farmyard manure and nitrogen fertilizer application in Tahtay Koraro District, Northwestern Zone of Tigray, Ethiopia. Vegetos 2020, 33, 617–627. [Google Scholar] [CrossRef]
- Kaniszewski, S.; Babik, I.; Babik, J. Pelletized legume plants as fertilizer for vegetables in organic farming. In Proceedings of the NUTRIHORT: Nutrient Management, Innovative Techniques and Nutrient Legislation in Intensive Horticulture for an Improved Water Quality, Ghent, Belgium, 16–18 September 2013; D’Haene, K., Vandecasteele, B., De Vis, R., Crappé, S., Callens, D., Mechant, E., Hofman, G., De Neve, S., Eds.; Institute for Agricultural and Fisheries Research: Merelbeke, Belgium, 2013; pp. 330–336. [Google Scholar]
- Yassen, A.A.; Khalid, K.A. Influence of organic fertilizers on the yield, essential oil and mineral content of onion. Int. Agrophysics 2009, 23, 183–188. [Google Scholar]
- Spiess, E.; Prasuhn, V.; Stauffer, W. Einfluss von organischer und mineralischer Düngung auf die Nährstoffauswaschung. Agrar. Schweiz 2011, 2, 376–381. [Google Scholar]
- Milan, M.B.; Dejan, U.; Nenad, C. Onion yield and yield contributing characters as affected by organic fertilizers. F. Veg. Crop. Res. 2011, 48, 341–346. [Google Scholar]
- Bogevska, Z.; Agic, R.; Skopje, F.; Popsimonova, G. Reducing and total sugar content in onion during storage in the republic of Macedonia. Aгpoзнa 2016, 17, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Malik, G.; Shabir, A.; Shah, R.A.; Nissar, R.; Masoodi, L.; Selvakumar, R.; Nabi, S.U.; Kirmani, S.N. Sugars and pungency of different day length adapted onions (Allium cepa L.) grown in long day temperate climate of Kashmir valley. Int. J. Chem. Stud. 2020, 8, 3790–3794. [Google Scholar] [CrossRef]
- Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Di Matteo, M. Chemical composition and antioxidant properties of five white onion (Allium cepa L.) landraces. J. Food Qual. 2017, 2017, 6873651. [Google Scholar] [CrossRef] [Green Version]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.; Srednicka-Tober, D.; Barański, M.; Sanderson, R.; Leifert, C.; Seal, C. Methods for comparing data across differently designed agronomic studies: Examples of different meta-analysis methods used to compare relative composition of plant foods grown using organic or conventional production methods and a protocol for a systemati. J. Agric. Food Chem. 2013, 61, 7173–7180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity, and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. F. Crop. Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Pakos, P.; Seal, C.; Rosa, E.A.S.; Markellou, E.; Iversen, P.O.; et al. Effect of organic and conventional production methods on fruit yield and nutritional quality parameters in three traditional cretan grape varieties: Results from a farm survey. Foods 2021, 10, 476. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Seal, C.; Rosa, E.A.S.; Iversen, P.O.; Vigar, V.; Barkla, B.; et al. Effects of production region, production systems and grape type/variety on nutritional quality parameters of table grapes; results from a UK retail survey. Foods 2020, 9, 1874. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Wegener, C.; Jansen, G.; Jurgens, H.-U. Influence of drought and wounding stress on soluble phenols and proteins in potato tubers. Sustain. Agric. Res. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Tarrago-trani, M.T.; Phillips, K.M.; Cotty, M. Matrix-specific method validation for quantitative analysis of vitamin C in diverse foods. J. Food Compos. Anal. 2012, 26, 12–25. [Google Scholar] [CrossRef]
- Elhassaneen, Y.A.; Sanad, M.I. Phenolics, selenium, vitamin C, amino acids and pungency levels and antioxidant activities of two egyptian onion varieties. Am. J. Food Technol. 2009, 4, 241–254. [Google Scholar] [CrossRef]
- Ren, F.; Reilly, K.; Kerry, J.P.; Gaffney, M.; Hossain, M.; Rai, D.K. Higher antioxidant activity, total flavonols, and specific quercetin glucosides in two different onion (Allium cepa L.) varieties grown under organic production: Results from a 6-year field study. J. Agric. Food Chem. 2017, 65, 5122–5132. [Google Scholar] [CrossRef] [Green Version]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Reilly, K.; Valverde, J.; Finn, L.; Gaffney, M.; Rai, D.K.; Brunton, N. A note on the effectiveness of selenium supplementation of Irish-grown Allium crops. Ir. J. Agric. Food Res. 2014, 53, 91–99. [Google Scholar]
- Abidi, W.; Jiménez, S.; Moreno, M.Á.; Gogorcena, Y. Evaluation of antioxidant compounds and total sugar content in a nectarine [Prunus persica (L.) Batsch] progeny. Int. J. Mol. Sci. 2011, 12, 6919–6935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Font i Forcada, C.; Oraguzie, N.; Igartua, E.; Moreno, M.; Gogorcena, Y. Population structure and marker–trait associations for pomological traits in peach and nectarine cultivars. Tree Genet. Genomes 2013, 9, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in plants: From functions to biofortification. Antioxid 2019, 8, 519. [Google Scholar] [CrossRef] [Green Version]
- Marín, L.; Gutiérrez-Del-Río, I.; Entrialgo-Cadierno, R.; Villar, C.J.; Lombó, F. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS ONE 2018, 13, e0207278. [Google Scholar] [CrossRef] [Green Version]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
Fertilization Regime 1 | 2012 | 2013 | 2014 |
---|---|---|---|
control N 0 | 61.2 b 2 | 25.0 c | 45.9 d |
control N 100 | 62.0 b | 28.1 bc | 51.0 cd |
control N 50 + 50 | 78.2 a | 36.3 ab | 67.3 b |
Ekofert K 120 | 74.8 a | 36.6 ab | 63.3 bc |
Ekofert K 180 | 76.6 a | 39.1 a | 81.8 a |
Ekofert K 240 | 78.4 a | 40.2 a | 65.8 b |
Ekofert L 120 | 71.6 ab | 36.4 ab | 65.2 b |
Ekofert L 180 | 75.8 a | 38.7 a | 83.7 a |
Ekofert L 240 | 78.0 a | 41.5 a | 72.3 ab |
Factor | Dry Matter 1 | Total Sugars 1 | Reducing Sugars 1 | Organic Acids 1 | Vitamin C 2 |
---|---|---|---|---|---|
Cultivation Season (CS) | |||||
2012 | 13.4 ± 0.2 a 3 | 10.58 ± 0.20 a | 3.52 ± 0.10 a | 0.22 ± 0.01 b | 23.8 ± 0.7 a |
2013 | 13.8 ± 0.1 a | 3.10 ± 0.14 b | 2.19 ± 0.07 b | 0.17 ± 0.01 c | 15.1 ± 0.3 b |
2014 | 12.8 ± 0.1 b | 3.47 ± 0.23 b | 2.04 ± 0.04 b | 0.25 ± 0.01 a | 13.3 ± 0.3 c |
Fertilization Regime (FR) 4 | |||||
control N 0 | 13.6 ± 0.2 | 5.79 ± 1.27 | 2.75 ± 0.34 | 0.23 ± 0.01 | 20.1 ± 2.7 |
control N 100 | 13.1 ± 0.2 | 5.20 ± 1.17 | 2.64 ± 0.20 | 0.22 ± 0.01 | 17.9 ± 2.1 |
control N 50 + 50 | 13.2 ± 0.5 | 5.06 ± 0.82 | 2.71 ± 0.14 | 0.22 ± 0.01 | 17.8 ± 1.3 |
Ekofert K 120 | 13.0 ± 0.2 | 5.64 ± 1.11 | 2.20 ± 0.15 | 0.21 ± 0.01 | 18.2 ± 1.5 |
Ekofert K 180 | 13.2 ± 0.2 | 5.78 ± 1.15 | 2.46 ± 0.19 | 0.21 ± 0.01 | 16.6 ± 1.4 |
Ekofert K 240 | 13.7 ± 0.3 | 5.93 ± 0.93 | 2.57 ± 0.23 | 0.22 ± 0.02 | 18.3 ± 1.3 |
Ekofert L 120 | 13.3 ± 0.2 | 6.55 ± 1.26 | 2.58 ± 0.15 | 0.21 ± 0.01 | 16.0 ± 0.7 |
Ekofert L 180 | 13.6 ± 0.2 | 5.88 ± 1.03 | 2.58 ± 0.30 | 0.21 ± 0.01 | 16.5 ± 1.4 |
Ekofert L 240 | 13.3 ± 0.1 | 5.63 ± 0.98 | 2.74 ± 0.32 | 0.21 ± 0.01 | 15.2 ± 0.7 |
ANOVA p-values | |||||
CS | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
FR | NS 5 | 0.021 | 0.004 | NS | <0.001 |
CS × FR | <0.001 | <0.001 | <0.001 | 0.047 | <0.001 |
Factor | Flavonoids (Sum) | Quercetin-3-O-Rutinoside | Quercetin-3-O-Glucoside | Myricetin | Quercetin | Kaempferol |
---|---|---|---|---|---|---|
Cultivation Season (CS) | ||||||
2012 | 44.2 ± 1.8 | 2.38 ± 0.14 b 1 | 10.6 ± 0.2 | 2.29 ± 0.18 b | 24.8 ± 1.3 | 4.19 ± 0.45 a |
2013 | 45.7 ± 1.9 | 2.44 ± 0.13 b | 11.0 ± 0.2 | 2.35 ± 0.18 b | 25.6 ± 1.4 | 4.35 ± 0.47 a |
2014 | 49.0 ± 1.1 | 4.87 ± 0.21 a | 11.1 ± 0.4 | 4.89 ± 0.29 a | 25.3 ± 0.7 | 2.78 ± 0.09 b |
Fertilization Regime (FR) 2 | ||||||
control N 0 | 46.2 ± 1.7 | 3.77 ± 0.37 | 11.4 ± 0.7 | 2.71 ± 0.24 | 25.4 ± 1.5 | 2.95 ± 0.51 |
control N 100 | 48.0 ± 3.6 | 3.34 ± 0.35 | 11.3 ± 0.4 | 3.24 ± 0.52 | 26.7 ± 2.9 | 3.38 ± 0.21 |
control N 50 + 50 | 45.7 ± 2.8 | 3.00 ± 0.34 | 10.3 ± 0.5 | 2.51 ± 0.27 | 24.9 ± 1.9 | 5.02 ± 0.57 |
Ekofert K 120 | 43.3 ± 2.7 | 3.32 ± 0.33 | 10.7 ± 0.3 | 2.96 ± 0.52 | 21.6 ± 1.2 | 4.66 ± 1.01 |
Ekofert K 180 | 44.7 ± 2.6 | 2.89 ± 0.28 | 10.6 ± 0.9 | 4.52 ± 1.02 | 23.8 ± 1.2 | 2.86 ± 0.22 |
Ekofert K 240 | 46.1 ± 3.7 | 3.00 ± 0.57 | 10.8 ± 0.3 | 3.14 ± 0.47 | 26.3 ± 3.1 | 2.90 ± 0.18 |
Ekofert L 120 | 42.3 ± 3.0 | 3.08 ± 0.42 | 10.5 ± 0.2 | 2.86 ± 0.49 | 23.6 ± 1.9 | 2.31 ± 0.39 |
Ekofert L 180 | 44.9 ± 2.8 | 3.24 ± 0.49 | 11.5 ± 0.4 | 2.86 ± 0.37 | 24.5 ± 1.7 | 2.76 ± 0.38 |
Ekofert L 240 | 55.6 ± 1.6 | 3.45 ± 0.71 | 11.0 ± 0.4 | 3.78 ± 0.27 | 30.2 ± 1.3 | 7.11 ± 0.88 |
ANOVA p-values | ||||||
CS | NS 3 | <0.001 | NS | <0.001 | NS | <0.001 |
FR | NS | NS | NS | <0.001 | NS | <0.001 |
CS × FR | NS | 0.001 | 0.005 | <0.001 | NS | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Hallmann, E.; Góralska-Walczak, R.; Kopczyńska, K.; Rembiałkowska, E.; Górski, J.; Leifert, C.; Rempelos, L.; et al. The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion. Agronomy 2021, 11, 883. https://doi.org/10.3390/agronomy11050883
Kazimierczak R, Średnicka-Tober D, Barański M, Hallmann E, Góralska-Walczak R, Kopczyńska K, Rembiałkowska E, Górski J, Leifert C, Rempelos L, et al. The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion. Agronomy. 2021; 11(5):883. https://doi.org/10.3390/agronomy11050883
Chicago/Turabian StyleKazimierczak, Renata, Dominika Średnicka-Tober, Marcin Barański, Ewelina Hallmann, Rita Góralska-Walczak, Klaudia Kopczyńska, Ewa Rembiałkowska, Jan Górski, Carlo Leifert, Leonidas Rempelos, and et al. 2021. "The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion" Agronomy 11, no. 5: 883. https://doi.org/10.3390/agronomy11050883
APA StyleKazimierczak, R., Średnicka-Tober, D., Barański, M., Hallmann, E., Góralska-Walczak, R., Kopczyńska, K., Rembiałkowska, E., Górski, J., Leifert, C., Rempelos, L., & Kaniszewski, S. (2021). The Effect of Different Fertilization Regimes on Yield, Selected Nutrients, and Bioactive Compounds Profiles of Onion. Agronomy, 11(5), 883. https://doi.org/10.3390/agronomy11050883