Effect of Nitrate Concentration on the Growth, Bolting and Related Gene Expression in Flowering Chinese Cabbage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Treatments
2.3. Growth Measurements
2.4. Phytochemical Measurements
2.5. Cell Structure Observation
2.6. Analysis of Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Flowering Time and Flowering Rate
3.2. Growth and Biomass
3.3. The Contents of Nitrate, Soluble Proteins, Free Amino Acids and Total Nitrogen
3.4. The C/N Ratio
3.5. Expression Analysis of BcSOC1 and BcLFY in Flowering Chinese Cabbage
3.6. Analysis of Cell Structure and Related Gene Expression in Flowering Chinese Cabbage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Ryu, H.-S.; Chung, K.S.; Posé, D.; Kim, S.; Schmid, M.; Ahn, J.H. Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science 2013, 342, 628–632. [Google Scholar] [CrossRef]
- Teotia, S.; Tang, G. To Bloom or Not to Bloom: Role of MicroRNAs in Plant Flowering. Mol. Plant 2015, 8, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Fornara, F.; De Montaigu, A.; Coupland, G. SnapShot: Control of Flowering in Arabidopsis. Cell 2010, 141, 550–550.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-W. Regulation of flowering time by the miR156-mediated age pathway. J. Exp. Bot. 2014, 65, 4723–4730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, J.; Torti, S.; Turck, F. From Decision to Commitment: The Molecular Memory of Flowering. Mol. Plant 2009, 2, 628–642. [Google Scholar] [CrossRef] [PubMed]
- Amasino, R.M.; Michaels, S.D. The Timing of Flowering. Plant Physiol. 2010, 154, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Michaels, S.D. Flowering time regulation produces much fruit. Curr. Opin. Plant Biol. 2009, 12, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Crawford, N.M.; Forde, B.G. Molecular and Developmental Biology of Inorganic Nitrogen Nutrition. Arab. Book 2002, 1, e0011. [Google Scholar] [CrossRef] [Green Version]
- Araus, V.; Vidal, E.A.; Puelma, T.; Alamos, S.; Mieulet, D.; Guiderdoni, E.; A Gutiérrez, R. Members of BTB gene family regulate negatively nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana and Oryza sativa. Plant Physiol. 2016, 171, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Guiboileau, A.; Yoshimoto, K.; Soulay, F.; Bataillé, M.; Avice, J.; Masclaux-Daubresse, C. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 2012, 194, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.A.; Moyano, T.C.; Canales, J.; Gutierrez, R.A. Nitrogen control of developmental phase transitions in Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 5611–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, I.C.; Loef, I.; Bartetzko, L.; Searle, I.; Coupland, G.; Stitt, M.; Osuna, D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 2011, 233, 539–552. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Peng, M.; Rothstein, S.J. Genetic Regulation by NLA and MicroRNA827 for Maintaining Nitrate-Dependent Phosphate Homeostasis in Arabidopsis. PLoS Genet. 2011, 7, e1002021. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, Y.; Ren, J.; Qian, Y.; Yang, X.; Duan, W.; Hou, X. Nitrate or NaCl regulates floral induction in Arabidopsis thaliana. Biol. 2013, 68, 215–222. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Tsay, Y.-F. Influence of differing nitrate and nitrogen availability on flowering control in Arabidopsis. J. Exp. Bot. 2017, 68, 2603–2609. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Lei, Y.; Guan, H.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Transcriptomic analysis of the regulation of stalk development in flowering Chinese cabbage (Brassica campestris) by RNA sequencing. Sci. Rep. 2017, 7, 15517. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.F.; Lei, J.J.; Cao, B.H. Cloning and expression analysis of BrcuFCA gene in Cauliflower. Genom. Appl. Biol. 2010, 1, 31–36. [Google Scholar]
- Lei, Y.L. Study on Moss Extraction Characteristics and Hormone Changes of Chinese Cabbage under Low Temperature Treatment. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Chang, A.C.; Yang, T.Y.; Riskowski, G.L. Ascorbic acid, nitrate, and nitrite concentration relationship to the 24hour light/dark cycle for spinach grown in diferent conditions. Food Chem. 2013, 138, 382–388. [Google Scholar] [CrossRef]
- Blakesley, R.W.; Boezi, J.A. A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250. Anal. Biochem. 1977, 82, 580–582. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Song, S.W.; Liao, G.X.; Liu, H.C.; Sun, G.W.; Chen, R.Y. Effect of ammonium and nitrate ratio on nutritional quality of Chinese kale. Adv. Mater. Res. 2012, 461, 13–16. [Google Scholar] [CrossRef]
- Lu, R.K.; Shi, Z.Y.; Shi, J.P. Status Evaluation and Dynamic Change of farmland nutrient balance in 6 provinces in South China. Chin. J. Agric. Sci. 2000, 2, 63–67. [Google Scholar]
- Chen, M.Y.; Zhu, X.Y.; Wu, C.Y.; Yu, C.Y.; Hu, G.J.; Chen, L.; Chen, R.Y.; Bouzayen, M.; Zouine, M.; Hao, Y.W. Knockout of auxinresponse factor SlARF4 improves tomato resistance to water deficit. Int. J. Mol. Sci. 2021, 22, 3347. [Google Scholar] [CrossRef]
- Krouk, G.; Lacombe, B.; Bielach, A.; Perrine-Walker, F.; Malinska, K.; Mounier, E.; Hoyerova, K.; Tillard, P.; Leon, S.; Ljung, K.; et al. Nitrate-Regulated Auxin Transport by NRT1.1 Defines a Mechanism for Nutrient Sensing in Plants. Dev. Cell 2010, 18, 927–937. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, X.; Hao, Y.; Su, W.; Liu, H.; Sun, G.; Chen, R.; Song, S. Ammonium Transporter (BcAMT1.2) Mediates the Interaction of Ammonium and Nitrate in Brassica campestris. Front. Plant Sci. 2020, 10, 1776–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.; Zhang, Z.-W.; Zheng, C.; Zhao, Z.-Y.; Wang, Y.; Feng, L.-Y.; Niu, G.; Wang, C.-Q.; Wang, J.-H.; Feng, H.; et al. Arabidopsis cryptochrome 1 functions in nitrogen regulation of flowering. Proc. Natl. Acad. Sci. USA 2016, 113, 7661–7666. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, L.E.; Monzon, J.P.; Cerrudo, A.; Rizzalli, R.H.; Andrade, F.H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crop. Res. 2016, 198, 215–225. [Google Scholar] [CrossRef]
- Bénard, C.; Bernillon, S.; Biais, B.; Osorio, S.; Maucourt, M.; Ballias, P.; Deborde, C.; Colombié, S.; Cabasson, C.; Jacob, D.; et al. Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source–sink relationships. J. Exp. Bot. 2015, 66, 3391–3404. [Google Scholar] [CrossRef] [Green Version]
- Poni, S.; Gatti, M. Affecting yield components and grape composition through manipulations of the source-sink balance. Acta Hortic. 2017, 21–34. [Google Scholar] [CrossRef]
- Yang, Y. Changes of Physiological Characteristics of Chinese Cabbage with Different Lichen Tolerance before and after Springtime and Lichen Plucking. Master’s Thesis, Tianjin University, Tianjin, China, 2007. [Google Scholar]
- Krapp, A.; Berthomé, R.; Orsel, M.; Mercey-Boutet, S.; Yu, A.; Castaings, L.; Elftieh, S.; Major, H.; Renou, J.-P.; Daniel-Vedele, F. Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation. Plant Physiol. 2011, 157, 1255–1282. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.A.; Vega, A.; Bouguyon, E.; Krouk, G.; Gojon, A.; Coruzzi, G.; Gutiérrez, R.A. Nitrate Transport, Sensing, and Responses in Plants. Mol. Plant 2016, 9, 837–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.W. Study on Mechanism and Regulation Technology of Moss Extraction of Green Onion. Master’s Thesis, Shandong Agriculture University, Taian, China, 2010. [Google Scholar]
- Borner, R.; Kampmann, G.; Chandler, J.; Gleissner, R.; Wisman, E.; Apel, K.; Melzer, S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 2000, 24, 591–599. [Google Scholar] [CrossRef]
- Lee, J.; Lee, I. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 2010, 61, 2247–2254. [Google Scholar] [CrossRef] [Green Version]
- Schaller, G.E.; Street, I.H.; Kieber, J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 2014, 21, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Sablowski, R.; Dornelas, M.C. Interplay between cell growth and cell cycle in plants. J. Exp. Bot. 2014, 65, 2703–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosgrove, D.J. Plant cell wall extensibility: Connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 2016, 67, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Pitre, F.E.; Lafarguette, F.; Boyle, B.; Pavy, N.; Caron, S.; Dallaire, N.; Poulin, P.-L.; Ouellet, M.; Morency, M.-J.; Wiebe, N.; et al. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiol. 2010, 30, 1273–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scofield, S.; Dewitte, W.; Nieuwland, J. The Arabidopsis homeobox geneSHOOT MERISTEMLESS has cellular and meristem-organisational roles with differential requirements for cytokinin and CYCD3 activity. Plant J. 2013, 75, 53–66. [Google Scholar] [CrossRef] [PubMed]
Nitrate Levels | 5% | 10% | 20% | 40% | 80% | 100% | 150% | 200% |
---|---|---|---|---|---|---|---|---|
KNO3 | 0.125 | 0.25 | 0.5 | 1 | 2 | 2.5 | 3.75 | 5 |
Ca(NO3)2·4H2O | 0.125 | 0.25 | 0.5 | 1 | 2 | 2.5 | 3.75 | 5 |
KH2PO4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
MgSO4·7H2O | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
KCl | 2.375 | 2.25 | 2 | 1.5 | 0.5 | - | - | - |
CaCl2 | 2.375 | 2.25 | 2 | 1.5 | 0.5 | - | - | - |
Treatments | Plant Height (cm) | Stem Diameter (mm) | Leaf Number | Fresh Weight (g) | Dry Weight (g) | ||
---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | ||||
5% N | 16.02 ± 0.62 d | 7.25 ± 0.08 g | 5.67 ± 0.19 d | 8.30 ± 0.04 h | 2.70 ± 0.02 h | 0.89 ± 0.00 g | 0.58 ± 0.00 g |
100% N | 21.61 ± 1.35 b | 18.33 ± 0.10 c | 9.00 ± 0.19 b | 69.43 ± 0.53 d | 8.63 ± 0.02 b | 3.88 ± 0.02 c | 0.92 ± 0.00 b |
200% N | 22.33 ± 0.25 b | 19.15 ± 0.07 b | 10.00 ± 0.19 a | 77.91 ± 0.25 b | 7.41 ± 0.14 d | 4.56 ± 0.03 b | 0.88 ± 0.01 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Chen, L.; Su, W.; Hao, Y.; Liu, H.; Sun, G.; Chen, R.; Song, S. Effect of Nitrate Concentration on the Growth, Bolting and Related Gene Expression in Flowering Chinese Cabbage. Agronomy 2021, 11, 936. https://doi.org/10.3390/agronomy11050936
Wang Y, Chen L, Su W, Hao Y, Liu H, Sun G, Chen R, Song S. Effect of Nitrate Concentration on the Growth, Bolting and Related Gene Expression in Flowering Chinese Cabbage. Agronomy. 2021; 11(5):936. https://doi.org/10.3390/agronomy11050936
Chicago/Turabian StyleWang, Yudan, Lili Chen, Wei Su, Yanwei Hao, Houcheng Liu, Guangwen Sun, Riyuan Chen, and Shiwei Song. 2021. "Effect of Nitrate Concentration on the Growth, Bolting and Related Gene Expression in Flowering Chinese Cabbage" Agronomy 11, no. 5: 936. https://doi.org/10.3390/agronomy11050936
APA StyleWang, Y., Chen, L., Su, W., Hao, Y., Liu, H., Sun, G., Chen, R., & Song, S. (2021). Effect of Nitrate Concentration on the Growth, Bolting and Related Gene Expression in Flowering Chinese Cabbage. Agronomy, 11(5), 936. https://doi.org/10.3390/agronomy11050936