Threatened Woody Plants of Georgia and Micropropagation as a Tool for In Vitro Conservation
Abstract
:1. Introduction
2. Country Policies and Networks for Conservation of Biodiversity
3. Micropropagation and In Vitro Approaches to Conservation
3.1. The Genus Castanea
3.2. The Genus Quercus
3.3. The Genus Betula
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conservation International. Biodiversity Hotspots. Available online: https://www.conservation.org/priorities/biodiversity-hotspots (accessed on 6 May 2021).
- National Biodiversity Strategy and Action Plan (NBSAP) of Georgia 2014–2020. Tbilisi, Georgia. 2014. Available online: https://www.cbd.int/doc/world/ge/ge-nbsap-v2-en.pdf (accessed on 20 March 2021).
- Georgia’s Fifth National Report to the Convention on Biological Diversity GNRCBD. 2014. Available online: https://www.cbd.int/doc/world/ge/ge-nr-05-en.pdf (accessed on 20 March 2021).
- Natural Resources of Georgia and Environmental Protection. National Statistics Office of Georgia, Tbilisi, Georgia. 2019. Available online: https://www.geostat.ge/en/single-categories/122/annual (accessed on 20 March 2021).
- Georgia’s Forth National Report to the Convention on Biological Diversity (GNRCBD) 2010. Available online: https://www.cbd.int/doc/world/ge/ge-nr-04-en.pdf (accessed on 11 April 2021).
- Third National Environmental Action Programme of Georgia (2017–2021). Tbilisi, Georgia. 2018. Available online: https://mepa.gov.ge/En/Files/ViewFile/1605 (accessed on 20 March 2021).
- National Forest Concept of Georgia 2013. Available online: http://environment.cenn.org/app/uploads/2016/09/CENN-BROCHURE-reduced-ENG.pdf (accessed on 24 March 2021).
- Patarkalashvili, T. Forest biodiversity of Georgia and endangered plant species. Ann. Agrar. Sci. 2017, 15, 349–351. [Google Scholar] [CrossRef]
- Red List of Georgia. Edict of the President of Georgia #303 on Approval of the Red List of Georgia. Tbilisi. 2006. Available online: https://www.matsne.gov.ge/ka/document/view/97288?publication=0 (accessed on 20 March 2021).
- IUCN Red List Categories and Criteria 2012 Version 3.1, 2nd ed. Available online: https://www.iucn.org/content/iucn-red-list-categories-and-criteria-version-31-second-edition (accessed on 20 March 2021).
- Krever, V.; Zazanashvili, N.; Jungius, H.; Williams, L.; Petelin, D. Biodiversity of the Caucasus Ecoregion: An Analysis of Biodiversity and Current Threats and Initial Investment Portfolio; World Wide Fund for Nature, Research Gate: Berlin, Germany, 2001. [Google Scholar]
- Globally Threatened Trees of the Caucasus. A Report on the Caucasus Regional Tree Red Listing Workshop (Tbilisi, Georgia, 26–28 September 2005). Available online: https://ace.aua.am/files/2019/05/2005-Globally-Threatened-Trees-of-the-Caucasus.pdf (accessed on 19 March 2021).
- Zazanashvili, N.; Sanadiradze, G.; Garforth, M.; Bitsadze, M.; Manvelyan, K.; Askerov, E.; Mausavi, M.; Krever, V.; Shmunk, V.; Kalem, S.; et al. Ecoregional Conservation Plan For The Caucasus; WWF, KfW: Tbilisi, Georgia, 2020. [Google Scholar]
- Dolukhanov, A. Rastitel’nost’ Gruzii (Vegetation of Georgia); Metsniereba: Tbilisi, Georgia, 1989; Volume 1. [Google Scholar]
- Nakhutsrishvili, G. Forest vegetation of Georgia. In The Vegetation of Georgia (South Caucasus); Nakhutsrishvili, G., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 35–87. [Google Scholar]
- Law of Georgia “On the Red List and Red Book of Georgia”. Tbilisi, Georgia. 2003. Available online: https://matsne.gov.ge/en/document/view/12514?publication=15 (accessed on 20 March 2021).
- Convention on Biological Diversity. United Nations. 1992. Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 24 March 2021).
- United Nations Framework Convention on Climate Change. 1992. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 20 March 2021).
- Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 1973. Available online: https://www.cites.org/ (accessed on 21 March 2021).
- Conservation of European Wildlife and Natural Habitats. Berne. 1979. Available online: https://www.coe.eng (accessed on 20 March 2021).
- European Landscape Convention. 2000. Available online: https://www.coe.int (accessed on 20 March 2021).
- National Biodiversity Strategy and Action Plan (NBSAP-1) of Georgia. Tbilisi, 2005–2015. Tbilisi, Georgia. 2005. Available online: https://www.cbd.int/doc/world/ge/ge-nbsap-v2-en.pdf (accessed on 20 March 2021).
- Global Strategy for Plant Conservation 2011–2020. The Convention on Biological Diversity. Available online: https://www.cbd.int/gspc/targets.shtml (accessed on 20 March 2021).
- Sharrock, S.; Hird, A.; Kramer, A.; Oldfield, S. Saving Plants, Saving the Planet: Botanic Gardens and the Implementation of GSPC Target 8. Botanic Gardens Conservation International, Richmond, UK. 2010. Available online: https://www.bgci.org/files/Worldwide/GSPC/target_8_report.pdf (accessed on 20 March 2021).
- Aichi Biodiversity Targets. Strategic Plan for Biodiversity 2011–2020. Available online: https://www.cbd.int/sp/targets (accessed on 20 March 2021).
- The Global Risks Report 2020. 15th Edition, Published by the World Economic Forum. Available online: https://www.weforum.org/reports/the-global-risks-report-2020 (accessed on 8 May 2021).
- The Global Risks Report 2021, 16th Edition, published by the World Economic Forum. Available online: https://www.weforum.org/agenda/2021/01/global-risks-report-2021 (accessed on 8 May 2021).
- Forest Code of Georgia. The Low of Georgia. 2020. Available online: https://matsne.gov.ge/en/document/view/4874066?publication=0 (accessed on 24 March 2021).
- IUCN. Protected Area Categories System. Available online: https://www.iucn.org/theme/protected-areas/about/protected-area-categories (accessed on 24 March 2021).
- Jaramillo, S.; Baena, M. Ex Situ Conservation of Plant Genetic Resources: Training Module; International Plant Genetic Resources Institute: Cali, Colombia, 2002; pp. 1–229. [Google Scholar]
- Maxted, N.; Hawkes, J.G.; Guarino, L.; Sawkins, M. Towards the selection of taxa for plant genetic conservation. Genet. Resour. Crop Evol. 1997, 44, 337–348. [Google Scholar] [CrossRef]
- Asdal, A.; Guarino, L. The Svalbard Global Seed Vault: 10 Years—1 Million Samples. Biopreserv. Biobank. 2018, 16, 391–392. [Google Scholar] [CrossRef] [Green Version]
- Dalrymple, S.E.; Abeli, T. Ex Situ seed banks and the IUCN Red List. Nature Plants 2019, 5, 122–123. [Google Scholar] [CrossRef]
- Liu, U.; Cossu, T.A.; Davies, R.M.; Forest, F.; Dickie, J.B.; Breman, E. Conserving orthodox seeds of globally threatened plants Ex Situ in the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK: The Status of Seed Collections. Biodivers. Conserv. 2020, 29, 2901–2949. [Google Scholar] [CrossRef]
- Ruta, C.; Lambardi, M.; Ozudogru, E.A. Biobanking of vegetable genetic resources by In Vitro conservation and cryopreservation. Biodivers. Conserv. 2020, 29, 3495–3532. [Google Scholar] [CrossRef]
- Pandey, R.; Sharma, N.; Agrawal, A.; Gupta, S.; Jain, A.; Tyagi, R.K. In Vitro conservation and cryopreservation of vegetatively propagated crop germplasm. In Management of Plant Genetic Resources; Jacob, S.R., Singh, N., Srinivasan, K., Gupta, V., Radhamani, J., Kak, A., Pandey, C., Pandey, S., Aravind, J., Bisht, I.S., et al., Eds.; National Bureau of Plant Genetic Resources: New Dehli, India, 2015; pp. 197–204. [Google Scholar]
- Vollmer, R.; Villagaray, R.; Egúsquiza, V.; Espirilla, J.; García, M.; Torres, A.; Rojas, E.; Panta, A.; Barkley, N.A.; Ellis, D. The potato cryobank at the international potato center (CIP): A model for long term conservation of clonal plant genetic resources collections of the future. Cryo Lett. 2016, 37, 318–329. [Google Scholar]
- O’Brien, C.; Hiti-Bandaralage, J.; Folgado, R.; Hayward, A.; Lahmeyer, S.; Folsom, J.; Mitter, N. Cryopreservation of Woody Crops: The Avocado Case. Plants 2021, 10, 934. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. Article 9. Ex–Situ Conservation. Available online: https://www.cbd.int/convention/articles/?a=cbd-09 (accessed on 20 March 2021).
- Millennium Seed Bank Partnership. Available online: https://www.sanbi.org/ (accessed on 20 March 2021).
- Kikodze, D.; Faruk, A. Collecting Rare, Endangered and Protected Woody Plants in Georgia. Samara–The International Newsletter of the Millennium Seed Bank Partnership. 2016. Issue: 29. Available online: https://www.kew.org/msbp/samara (accessed on 24 March 2021).
- Pence, V. Cryopreservation of recalcitrant seeds. In Biotechnology in Agriculture and Forestry, Cryopreservation of Plant Germplsm I; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 23 June 1995; pp. 29–50. [Google Scholar]
- Jain, S.M.; Ishii, K. Micropropagation of Woody Trees and Fruits; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Jain, S.M.; Häggman, H. Protocols for Micropropagation of Woody Trees and Fruits; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Ahuja, M.R. Micropropagation of Woody Plants. Volume 41, Forestry Sciences; Forestry Sciences, Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Rathore, J.S.; Rathore, V.; Shekhawat, N.S.; Singh, R.P.; Liler, G.; Phulwaria, M.; Dagla, H.R. Micropropagation of Woody Plants. In Plant Biotechnology and Molecular Markers; Srivastava, P.S., Narula, A., Srivastava, S., Eds.; Anamaya Publishers: New Delhi, India, 2004; pp. 195–205. [Google Scholar]
- Pence, V.C. The possibilities and challenges of in vitro methods for plant conservation. Kew Bull. 2010, 65, 539–547. [Google Scholar] [CrossRef]
- Pence, V.C. Evaluating costs for the In Vitro propagation and preservation of endangered plants. In Vitro Cell. Dev. Biol. Plant 2011, 47, 176–187. [Google Scholar] [CrossRef]
- Engelmann, F. Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell. Dev. Biol. Plant 2011, 47, 5–16. [Google Scholar] [CrossRef]
- Lambardi, M.; De Carlo, A. Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In Micropropagation of Woody Trees and Fruits; Jain, S.M., Ishii, K., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2003; pp. 815–840. [Google Scholar]
- Lambardi, M.; Shaarawi, S. Importance of In Vitro culture for developing cryopreservation strategies of woody plants. Acta Hortic. 2017, 1187, 177–188. [Google Scholar] [CrossRef]
- Sarasan, V.; Cripps, R.; Ramsay, M.; Atherton, C.; McMichen, M.; Prendergast, G.; Rowntree, J. Conservation In Vitro of threatened plants—Progress in the past decade. In Vitro Cell. Dev. Biol. Plant 2006, 42, 206–214. [Google Scholar] [CrossRef]
- Fay, M.F. Conservation of rare and endangered plants using In Vitro methods. In Vitro Cell. Dev. Biol. Plant 1992, 28, 1–4. [Google Scholar] [CrossRef]
- Reed, B.M.; Engelmann, F.; Dulloo, M.E.; Engels, J.M. Technical Guidelines for the Management of Field and in Vitro Germplasm Collections; IPGRI/SGRP Handbook for Genebanks N 7; CIAT: Rome, Italy, 9 February 2004. [Google Scholar]
- Bonga, J.M.; von Aderkas, P. Genetic modification. In In Vitro Culture of Tree; Bonga, J.M., von Aderkas, P., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1992; pp. 156–165. [Google Scholar]
- Chugh, S.; Guha, S.; Rao, I.U. Micropropagation of orchids: A review on the potential of different explants. Sci. Hortic. 2009, 122, 507–520. [Google Scholar] [CrossRef]
- Yam, T.W.; Arditti, J. Orchid Micropropagation: An Overview of Approaches and Methodologies. In Orchid Propagation: From Laboratories to Greenhouses—Methods and Protocols; Springer Protocols Handbooks; Lee, Y.I., Yeung, E.T., Eds.; Humana Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Thorpe, T.A. In Vitro Organogenesis and Somatic Embryogenesis: Physiological and Biochemical Aspects. In Morphogenesis in Plants; NATO ASI Series (Series A: Life, Sciences); Roubelakis-Angelakis, K.A., Van Thanh, K.T., Eds.; Springer: Boston, MA, USA, 1993; Volume 253, pp. 89–136. [Google Scholar]
- Preece, J.E. Use of axillary shoot proliferation in biotechnology. In Biotechnology of Ornamental Plants; Geneve, R.L., Preece, J.E., Merkle, S.A., Eds.; CAB International: Wallingord, UK, 1997; pp. 35–43. [Google Scholar]
- Preece, J.E.; Trigiano, R.N. Tissue culture of woody plants. In Diseases of Woody Ornamentals and Trees in Nurseries; Jones, R.K., Benson, D.M., Eds.; APS Press: St. Paul, MN, USA, 2001; pp. 451–456. [Google Scholar]
- Giri, C.; Shyamkumar, B.; Anjaneyulu, C. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: An overview. Trees 2004, 18, 115–135. [Google Scholar] [CrossRef]
- Guan, Y.; Li, S.-G.; Fan, X.-F.; Su, Z.-H. Application of somatic embryogenesis in woody plants. Front. Plant Sci. 2016, 7, 938. [Google Scholar] [CrossRef] [Green Version]
- Isah, T. Induction of somatic embryogenesis in woody plants. Acta Physiol. Plant 2016, 38, 1–22. [Google Scholar] [CrossRef]
- Minocha, R.; Jain, S.M. Tissue culture of woody plants and its relevance to molecular biology. In Molecular Biology of Woody Plants; Jain, S.M., Minocha, S.C., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2000; Volume 1, pp. 315–339. [Google Scholar]
- Smith, R.; Barley, R. Living Collections Strategy 2019. Royal Botanic Gardens, Kew. 2019. Available online: https://www.kew.org/sites/default/files/2019–07/Living%20Collections%20Strategy%202019.pdf (accessed on 21 March 2021).
- Jaskowiak, M.A. Reviews of science for science librarians: The conservation of endangered plants using micropropagation. Sci. Technol. Libr. 2014, 33, 58–70. [Google Scholar] [CrossRef]
- Gulisashvili, V. Dendroflora Kavkaza (Dendroflora of the Caucasus); Izdatel’stvo AN GSSR, (Editorial House of the Academy of Science of Georgia): Tbilisi, Georgia, 1961; p. 22. [Google Scholar]
- Pridnya, M.; Cherpakov, V.; Paillet, F. Ecology and pathology of European chestnut (Castanea sativa) in the deciduous forests of the Caucasus Mountains in southern Russia. Bull. Torrey Bot. Club 1996, 123, 213–222. [Google Scholar] [CrossRef]
- Gagnidze, R. Fagaceae. In Flora of Georgia, 2nd ed.; Ketskhoveli, N., Kharadze, A., Gagnidze, R., Eds.; Metsniereba: Tbilisi, Georgia, 1975; Volume 3, pp. 40–66. [Google Scholar]
- Tavadze, B.; Supatashvili, A.; Kapanadze, G. Pathological status of chestnut stands in Keda district (Georgia-Adjara). Ann. For. 2011, 4, 68–76. [Google Scholar]
- Tavadze, B.; Supatashvili, A.; Kapanadze, G.; Mamukashvili, T. Pathological status of chestnut stands in Tkibuli region (Georgia). Ann. For. 2012, 5, 21–32. [Google Scholar]
- IUCN. Red List of Threatened Species. Version 2019-2. Available online: https://www.iucnredlist.org (accessed on 24 March 2021).
- Barstow, M.; Khela, S. Castanea Sativa. The IUCN Red List of Threatened Species 2018. Available online: http://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS (accessed on 24 March 2021).
- Vieitez, E. The lack of rootability of chestnut cuttings. In Proceedings of the International Chestnut Conference, Morgantown, WV, USA, 10–14 July 1992; Double, M., MacDonald, W., Eds.; West Virginia University Press: Morgantown, WV, USA, 1992; pp. 82–88. [Google Scholar]
- Troch, V.; Sapeta, H.; Werbrouck, S.; Geelen, D.; Van Labeke, M.C. In Vitro culture of chestnut (Castanea Sativa Mill.) using temporary immersion bioreactors. Acta Hortic. 2010, 885, 383–389. [Google Scholar] [CrossRef]
- Corredoira, E.; Martínez, M.T.; Cernadas, M.J.; San José, M.C. Application of biotechnology in the conservation of the genus Castanea. Forests 2017, 8, 394. [Google Scholar] [CrossRef] [Green Version]
- Corredoira, E.; Costa, R.L. Application of Tissue Culture in Plant Reproduction. Forests 2021, 12, 342. [Google Scholar] [CrossRef]
- Vieitez, A.M.; Sánchez, M.C.; García-Nimo, M.L.; Ballester, A. Protocol for Micropropagation of Castanea sativa. In Protocols for Micropropagation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 299–312. [Google Scholar]
- Xing, Z.; Satchwell, M.F.; Powell, W.A.; Maynard, C.A. Micropropagation of American chestnut: Increasing rooting rate and preventing shoot-tip necrosis. In Vitro Cell. Dev. Biol. Plant 1997, 33, 43–48. [Google Scholar] [CrossRef]
- Lovat, C.A.; Donnelly, D.J. Optimizing axillary shoot culture as a short-term conservation method for American chestnut (Castanea dentata). Can. J. For. Res. 2019, 49, 1560–1569. [Google Scholar] [CrossRef]
- Song, G.; Chen, Q.; Callow, P.; Mandujano, M.; Han, X.; Cuenca, B.; Bonito, G.; Medina-Mora, C.; Fulbright, D.W.; Guyer, D.E. Efficient Micropropagation of Chestnut Hybrids (Castanea spp.) using modified woody plant medium and zeatin riboside. Hortic. Plant J. 2021, 7, 174–180. [Google Scholar] [CrossRef]
- Miranda-Fontaina, M.E.; Fernandez-Lopez, J. Genotypic and environmental variation of Castanea crenata x c. sativa and Castanea sativa clones in aptitude to micropropagation. Silvae Genetica 2001, 50, 3–4. [Google Scholar]
- Cuenca, B.; Sánchez, C.; Aldrey, A.; Bogo, B.; Blanco, B.; Correa, B.; Vidal, N. Micropropagation of axillary shoots of hybrid chestnut (Castanea sativa × C. crenata) in liquid medium in a continuous immersion system. Plant Cell Tiss. Organ Cult. 2017, 131, 307–320. [Google Scholar] [CrossRef]
- Tetsumura, T.; Yamashita, K. Micropropagation of Japanese chestnut (Castanea Crenata Sieb.et Zucc.) seedlings. Hort. Sci. 2004, 39, 1684–1687. [Google Scholar]
- McPheeters, K.; Skirvin, R.; Bly-Monnen, C. Culture of chestnut (Castanea spp.) In Vitro. Hort. Sci. 1980, 15, 417–418. [Google Scholar]
- Giovannelli, A.; Giannini, R.; Bennici, A.; Mori, B. In Vitro organogenesis of chestnut (Castanea sativa Mill.) cotyleodon explants: Responses to growth regulators and developmental aspects. In Vitro Cell. Dev. Biol. Plant 2004, 40, 509–514. [Google Scholar] [CrossRef]
- Corredoira, E.; Ballester, A.; Vieitez, A. Proliferation, maturation and germination of Castanea sativa Mill. somatic embryos originated from leaf explants. Ann. Bot. 2003, 92, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Corredoira, E.; Valladares, S.; Vieitez, A.; Ballester, A. Improved germination of somatic embryos and plant recovery of European chestnut. In Vitro Cell. Dev. Biol. Plant 2008, 44, 307–315. [Google Scholar] [CrossRef]
- Sezgin, M.; Dumanoğlu, H. In Vitro Propagation Potentioal Via Somatic Embryogenesis of the two Maturing early Cultivars of European Chestnut (Castanea sativa Mill.). Am. J. Plant Sci. 2016, 7, 1001–1012. [Google Scholar] [CrossRef] [Green Version]
- Vieitez, A.; Vieitez, M. Culture of Chestnut Shoots from Buds in vitro. J. Hortic. Sci. 1980, 55, 83–84. [Google Scholar] [CrossRef]
- Vieitez, A.; Vieitez, E. Plantlet formation from embryonic tissue of chestnut grown In vitro. Physiol. Plant. 1980, 50, 127–130. [Google Scholar] [CrossRef]
- Rodríguez, R. In Vitro propagation of Castanea sativa Mill. through meristem tip culture. Hort. Sci. 1982, 17, 888–889. [Google Scholar]
- Osterc, G.; Zavrl Fras, M.; Vodenik, T.; Luthar, Z. The propagation of chestnut (Castanea sativa Mill.) nodal explants. Acta Agric. Slov. 2005, 85, 411–418. [Google Scholar]
- Wilhem, E.; Rodkachane, P. Micropropagation of juvenile and adult Castanea sativa by using thidiazuron. In Proceedings of the International Chestnut Conference, Morgantown, WV, USA, 10–14 July 1992; Double, M., MacDonald, W., Eds.; West Virginia University Press: Morgantown, WV, USA, 1992. [Google Scholar]
- Roussos, P.; Archimandriti, A.; Beldekou, I. Improving In Vitro multiplication of juvenile European chestnut (Castanea Sativa Mill.) explants by the use of growth retardants. Sci. Hortic. 2016, 198, 254–256. [Google Scholar] [CrossRef]
- Ballester, A.; Sánchez, M.; San José, M.; Vieitez, F.; Vieitez, A. Development of rejuvenation methods for the In vitro establishment, multiplication and rooting of mature trees. In Plant Aging: Basic and Applied Approaches; Rodríguez, R., Sánchez-Tamés, R., Durzan, D., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 43–49. [Google Scholar]
- Sánchez, M.; San José, M.; Ferro, E.; Ballester, A.; Vieitez, A. Improving micropropagation conditions for adult-phase shoots of chestnut. J. Hortic. Sci. 1997, 72, 433–443. [Google Scholar] [CrossRef]
- Tchatchoua, D.T.; Barbas, E.; Aravanopoulos, F.A. Micropropagation of elite genotypes of Castanea sativa (Mill.). J. Adv. Biotechnol. 2014, 3, 200–209. [Google Scholar]
- Algül, B.E.; Dalkılıç, G.G. Micropropagation of Chestnut (Castanea sativa Mill.) in semi-solid culture. Acta Hortic. 2014, 1043, 205–210. [Google Scholar] [CrossRef]
- Gomes, F.; Clemente, M.; Figueiredo, P.; Costa, R.L. Medium-term In vitro conservation of Castanea spp. hybrid clones. Vegetos 2021, 34, 127–137. [Google Scholar] [CrossRef]
- Vidal, N.; Blanco, B.; Cuenca, B.A. Temporary immersion system for micropropagation of axillary shoots of hybrid chestnut. Plant Cell Tissue Organ Cult. 2015, 123, 229–243. [Google Scholar] [CrossRef]
- Oliveira, M.L.; de Xavier, A.; Penchel, R.M.; Santos, A.F. Multiplicação In vitro de Eucalyptus grandis x E. urophylla cultivado em meio semissólido e em biorreator de imersão temporária. In vitro multiplication of Eucalyptus grandis × E. urophylla grown in semisolid medium and in temporary immersion bioreactor. Sci. For. 2011, 39, 309–315. [Google Scholar]
- Welander, M.; Persson, J.; Asp, H.; Zhu, L.H. Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci. Hortic. 2014, 179, 227–232. [Google Scholar] [CrossRef]
- Ngezahayo, F.; Liu, B. Axillary bud proliferation approach for plant biodiversity conservation and restoration. Int. J. Biodivers. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Giovannelli, A.; Giannini, R. Reinvigoration of mature chestnut (Castanea sativa) by repeated graftings and micropropagation. Tree Physiol. 2000, 20, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Vollmeier, R.; Osterc, G.; Luthar, Z. Preservation of sweet chestnut genetic resources (Castanea sativa Mill.) against attack by chestnut gall wasp (Dryocosmus Kuriphilus Yasumatsu, 1951). Acta Agric. Slov. 2018, 111, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, P.; Tedesco, S.; da Silva, I.V.; Santos, C.; Machado, H.; Costa, R.L. A new clonal propagation protocol develops quality root systems in chestnut. Forests 2020, 11, 826. [Google Scholar] [CrossRef]
- Beccaro, G.L.; Donno, D.; Lione, G.G.; De Biaggi, M.; Gamba, G.; Rapalino, S.; Riondato, I.; Gonthier, P.; Mellano, M.G. Castanea spp. agrobiodiversity conservation: Genotype influence on chemical and sensorial traits of cultivars grown on the same clonal rootstock. Foods 2020, 9, 1062. [Google Scholar] [CrossRef]
- Gaidamashvili, M.; Khurtsidze, E.; Khechoshvili, V. Conservation of six threatened tree species of Georgia by In Vitro propagation. Acta Hortic. 2017, 1187, 189–198. [Google Scholar] [CrossRef]
- Gaidamashvili, M.; Khurtsidze, E.; Barblishvili, T. Micropropagation of threatened Betula species for In Vitro conservation. In Proceedings of the International Conference on Plant, Marine and Environmental Sciences (PMES-2015), Kuala Lumpur, Malaysia, 1–2 January 2015. [Google Scholar]
- Gaidamashvili, M.; Khurtsidze, E. Development of the conditions for In Vitro propagation of threatened birch species (Betula spp.). Bull. For. 2015, 9, 28–31. [Google Scholar]
- Alieva, Z.M. Reproduction of rare plants of Dagestan In Vitro. In Proceedings of the XIV Congress of the Russian Botanical Society and the Conference “Botany in the Modern World”, Moscow, Russia, 18–24 June 2018; Volume 3, pp. 233–234. [Google Scholar]
- Khurtsidze, E.; Popiashvili, E.; Kuchava, T.; Gaidamashvili, M. Micropropagation of European chestnut (Castanea sativa mill.) using axillary buds and zygotic embryo cultures. Bull. For. 2016, 11, 25–32. [Google Scholar]
- Saez, P.L.; Bravo, L.A.; Sáez, K.L.; Sánchez-Olate, M.; Latsague, M.I.; Ríos, D.G. Photosynthetic and leaf anatomical characteristics of Castanea sativa: A comparison between In Vitro and nursery plants. Biol. Plant. 2012, 56, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Sáez, P.L.; Bravo, L.A.; Latsague, M.I.; Sánchez, M.E.; Ríos, D.G. Increased light intensity during In Vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Sci. Hortic. 2012, 138, 7–16. [Google Scholar] [CrossRef]
- Tafazoli, M.; Nasr, S.M.H.; Jalilvand, H.; Bayat, D. Plant regeneration through indirect organogenesis of chestnut (Castanea Sativa Mill.). Afr. J. Biotechnol. 2013, 12, 7063–7069. [Google Scholar]
- Mirancea, I. Micropropagarea In Vitro la stejarul brumãriu (Quercus pedunculiflora K. Koch.), în condiþii normale experimentale de stres hydric (in Romanian). Analele ICAS 2007, 50, 17–26. [Google Scholar]
- Ioniță, L.; Mirancea, I.; Apostol, E.N.; Budeanu, M. Preservation of the grayish oak (Quercus pedunculiflora K. Koch.) forest genetic resources by biotechnological methods (in Romanian). Rev. Silvic. Cineg. 2017, 22, 16–20. [Google Scholar]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 1980, 30, 421–427. [Google Scholar]
- Gaidamashvili, M.; Khurtsidze, E.; Benelli, K.; Lambardi, M. Development of an efficient ‘one-step freezing’ cryopreservation protocol for a Georgian provenance of chestnut (Castanea sativa Mill.) Zygotic Embryos. Not. Bot. Hortic. Agrobot. 2019, 47, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Gaidamashvili, M.; Khurtsidze, E.; Kutchava, T.; Lambardi, M.; Benelli, C. Efficient protocol for improving the development of cryopreserved embryonic axes of chestnut (Castanea sativa Mill.) by encapsulation–vitrification. Plants 2021, 10, 231. [Google Scholar] [CrossRef]
- Denk, T.; Grim, G. Oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers. Taxon 2010, 59, 351–366. [Google Scholar] [CrossRef]
- Menitskii, Y. The Oaks of the Caucasus; Nauka: Saint Petersburg, Russia, 1971. [Google Scholar]
- Gagnidze, R. Vascular Plants of Georgia; A Nomenclatural Checklist: Tbilisi, Georgia, 2005. [Google Scholar]
- Gorener, V.; Matchutadze, I.; Jerome, D. Quercus Hartwissiana. The IUCN Red List of Threatened Species 2018. Available online: http://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T43100786A43178581.en (accessed on 24 March 2021).
- Kvachakidze, R. Vegetation of Georgia (in Georgian); Botanical Garden and Institute of Botany: Tbilisi, Georgia, 2009. [Google Scholar]
- Kleinschmit, J. Oak breeding in Germany: Experiences and problems. In Proceedings of the IUFRO Joint Meeting of Working Parties on Breeding Theory, Progeny Testing and Seed Orchards, Williamsburg, VA, USA, 13–17 October 1986; pp. 250–258. [Google Scholar]
- Chalupa, V. Vegetative propagation of oak (Quercus Robur and Q. Petraea) by cutting and tissue culture. Ann. For. Sci. 1993, 50, 295–307. [Google Scholar] [CrossRef]
- Puddephat, I.; Alderson, P. Wright ‘in, N. In Vitro root induction in axillary microshoots of Quercus robur L. Ann. Appl. Biol. 1999, 134, 233–239. [Google Scholar] [CrossRef]
- Purohit, V.; Tampta, S.; Chundra, S.; Vyas, P.; Palmi, L.; Nandi, S. In Vitro multiplication of Quercus leucotrichophora and Q. glauca: Important Himalayan oaks. Plant Cell Tissue Organ Cult. 2002, 69, 121–133. [Google Scholar] [CrossRef]
- Tampta, S.; Palni, L.; Purohit, V.; Nandi, S. In Vitro propagation of brown oak (Quercus Semecarpifolia Sm.) from seedling explants. In Vitro Cell. Dev. Biol. Plant 2008, 44, 136–141. [Google Scholar] [CrossRef]
- Kartsonas, E.; Papafotiou, M. Mother plant age and seasonal influence on In Vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tissue Organ Cult. 2007, 90, 111–116. [Google Scholar] [CrossRef]
- San José, M.; Martínez, M.; Cernadas, M.; Montenegro, R.; Mosteiro, F.; Corredoira, E. Biotechnological efforts for the propagation of Quercus lusitanica Lam., an endangered species. Trees 2017, 31, 1571–1581. [Google Scholar] [CrossRef]
- Chalupa, V. In Vitro propagation of mature trees of pedunculate oak (Quercus Robur L.). J. For. Sci. 2000, 46, 537–542. [Google Scholar]
- Wilhelm, E. Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell. Dev. Biol. Plant 2000, 36, 349–357. [Google Scholar] [CrossRef]
- Vieitez, A.M.; Corredoira, E.; Martínez, M.T.; San-Jose, M.C.; Sanchez, C.; Valladares, S.; Vidal, N.; Ballester, A. Application of biotechnological tools to Quercus improvement. Eur. J. For. Res. 2012, 131, 519–539. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.; San-jose, M.; Ballester, A.; Vieitez, A. Requirements for In Vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol. 1996, 16, 673–680. [Google Scholar] [CrossRef]
- Brennan, A.; Pence, V.; Taylor, M.; Trader, B.; Westwood, M. Tissue culture using mature material for the conservation of oaks. Hort. Technol. 2017, 27, 644–649. [Google Scholar] [CrossRef]
- Martínez, M.T.; Corredoira, E.; Vieitez, A.M.; Cernadas, M.J.; Montenegro, R.; Ballester, A.; Vieitez, F.J.; San José, M.C. Micropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell Tissue Organ Cult. 2017, 131, 499–512. [Google Scholar] [CrossRef]
- Savill, P.; Kanowski, P. Tree improvement programs for European oaks: Goals and strategies. Annales des Sciences Forestières, INRA/EDP. Sciences 1993, 50, 368s–383s. [Google Scholar]
- Qiansheng, L.; Mengmeng, G.; Deng, M. In Vitro propagation of oriental white oak Quercus aliena Blume. Forests 2019, 10, 463. [Google Scholar]
- Vieitez, A.; Corredoira, E.; Ballester, A.; Muñoz, F.; Durán, J.; Ibarra, M. In Vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell Tissue Organ Cult. 2009, 98, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Meier-Dinkel, A.; Becker, B.; Duckstein, D. Micropropagation and Ex Vitro rooting of several clones of late-flushing Quercus robur L. Ann. Forest Sci. 1993, 50, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Vieitez, A.M.; San-Jose, M.C.; Vieitez, E. In Vitro plantlet regeneration from juvenile and mature Quercus robur L. J. Hortic. Sci. 1985, 60, 99–106. [Google Scholar] [CrossRef]
- Gresshoff, P.M.; Doy, C.H. Haploid Arabidopsis thaliana callus and plants from another culture. Aust. J. Biol. Sci. 1972, 25, 259. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F.A. Revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Favre, J.M.; Juncker, B. Variations in expression of episodic growth by In Vitro cultured shoots of oak (Quercus robur L.). Ann. Sci. For. 1989, 46, 206s–210s. [Google Scholar] [CrossRef] [Green Version]
- Germanà, M.A.; Lambardi, M. In Vitro Embryogenesis in Higher Plants; Springer, Science+ Business Media: New York, NY, USA, 2016. [Google Scholar]
- Corredoira, E.; Merkle, S.A.; Martínez, M.T.; Toribio, M.; Canhoto, J.M.; Correia, S.I.; Ballester, A.; Vieitez, A.M. Non-zygotic embryogenesis in hardwood species. Crit. Rev. Plant Sci. 2019, 38, 29–97. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar] [CrossRef]
- Valladares, S.; Sanchez, C.; Martınez, M.; Ballester, A.; Vieitez, A.M. Plant regeneration through somatic embryogenesis from tissues of mature oak trees: True-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep. 2006, 25, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Vengadesan, G.; Pijut, P.M. Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult. 2009, 97, 141–149. [Google Scholar] [CrossRef]
- González-Arnao, M.T.; Dolce, N.; González-Benito, M.E.; Castillo Martínez, C.R.; Cruz-Cruz, C.A. Approaches for In Vitro Conservation of Woody Plants Germplasm. In Biodiversity and Conservation of Woody Plants. Sustainable Development and Biodiversity; Ahuja, M., Jain, S., Eds.; Springer: Cham, Vietnam, 2017; Volume 17. [Google Scholar] [CrossRef]
- Dolukhanov, A. Betulaceae. In Flora of Georgia (in Georgian), 2nd ed.; Ketskhoveli, N., Kharadze, A., Gagnidze, R., Eds.; Metsniereba: Tbilisi, Georgia, 1975; pp. 14–16. [Google Scholar]
- Shaw, K.; Roy, S.; Wilson, B. Betula Megrelica. The IUCN Red List of Threatened Species 2014. Available online: https://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T194596A2351670.en (accessed on 21 March 2021).
- Guidelines for application of IUCN Red List criteria at regional and national levels: Version 4.0 (2012). Available online: https://www.iucn.org/content/guidelines-application-iucn-red-list-criteria-regional-and-national-levels-version-40 (accessed on 31 March 2021).
- Hadjiev, V.; Shetekauri, S.; Litvinskaya, S. Betula Raddeana. The IUCN Red List of Threatened Species 2014. Available online: https://dx.doi.org/10.2305/IUCN.UK.2014-1.RLTS.T30748A2795982.en (accessed on 31 March 2021).
- Wilson, B.; Shaw, K.; Roy, S. Betula Medwediewii (amended version of 2018 assessment). The IUCN Red List of Threatened Species 2020. Available online: https://dx.doi.org/10.2305/IUCN.UK.2020-2.RLTS.T194575A171688828.en (accessed on 21 March 2021).
- Catalogue of Life, Annual Checklist. 2019. Available online: http://www.catalogueoflife.org/annual-checklist/2019 (accessed on 20 March 2021).
- Bartlett, P.; Khutsishvili, M. Identifying wild populations of rare birch in Georgia, A Conservation Project to Locate Betula megrelica and Assess its Conservation Status. The Rufford Foundation Reports. 2013. Available online: https://www.rufford.org/projects/paul-richard-bartlett/identifying-wild-populations-of-rare-birch-in-georgia/ (accessed on 18 November 2015).
- Ashburner, K.; McAllister, H. Botanical Magazine Monograph: The Genus Betula: A Taxonomic Revision of Birches; Royal Botanic Gardens: London, UK, 2013. [Google Scholar]
- Welander, M. Micropropagation of birch. In Micropropagation of Woody Plants; Ahuja, M.R., Ed.; Forestry Sciences, Springer: Dordrecht, The Netherlands, 1993; pp. 82–302. [Google Scholar]
- Lee, B.C.; Kim, J.H.; Park, J.I.; Lee, S.K. Rapid micropropagation of Betula spp. through In Vitro tissue culture. Res. Rep. Inst. Forest Genet. 1986, 22, 132–138. [Google Scholar]
- Srivastava, P.S.; Steinhauer, A.; Glock, H. Plantlet regeneration in leaf and root cultures of birch (Betula pendula Roth.). Plant Sci. 1985, 42, 209–214. [Google Scholar] [CrossRef]
- Särkilahti, E. Micropropagation of mature colchicine-polyploid and irradiation-mutant of Betula pendula Roth. Tree Physiol. 1988, 4, 173–179. [Google Scholar] [CrossRef]
- McCown, B.; Amos, R. Initial trials with commercial micropropagation of birch selections. The International Plant Propagators’ Society. IPPS 1979, 29, 387–393. [Google Scholar]
- Chalupa, V. In Vitro propagation of birch (Betula verrucosa Ehrh). Biol. Plant. 1981, 23, 472–474. [Google Scholar] [CrossRef]
- Iliev, I.; Scaltsoyiannes, A.; Tsaktsira, M.; Gajdošová, A. Micropropagation of Betula pendula Roth. cultivars by adventitious shoot induction from leaf callus. Acta Hortic. 2010, 885, 161–173. [Google Scholar] [CrossRef]
- Saito, A.; Ide, Y. In Vitro plantlet regeneration from adventitious buds induced by petiole culture in Japanese white birch. J. Jpn. For. Soc. 1985, 67, 373–375. [Google Scholar]
- Businge, E.; Trifonova, A.; Schneider, C.; Rödel, P.; Egertsdotter, U. Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of eucalyptus, birch and fir. Forests 2017, 8, 196. [Google Scholar] [CrossRef]
Genera/Species | Family | Red List Georgia | IUCN | Explant Used | References |
---|---|---|---|---|---|
Betula medwdewii Regel | Betulaceae | VU 1 B1b(i,ii,iii) | DD 2 | Shoot tips, buds | [109,110,111] |
Betula megrelica Regel | Betulaceae | VU B1a | EN 3 | Shoot tips, buds | [109,110,111] |
Betula raddeana Trautv. | Betulaceae | VU B2a(i)b | LC 4 | Shoot tips, buds; Leaves, buds | [109,110,111,112] |
Castanea sativa Mill. | Fagaceae | VU A2 | LC | In vitro nodal explants | [95] |
Buds | [99,109] | ||||
Embryonic axis | [109,113,114,115] | ||||
Single-node segments | [98] | ||||
Root, nodal, and internodal segments | [116] | ||||
Cotyledons of immature seeds | [89] | ||||
Quercus pedunculiflora C. Koch. | Fagaceae | VU B1b(I,ii,iii) | LC | Nodal segments, green and mature acorns Nodal segments, immature and mature acorns | [117,118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaidamashvili, M.; Benelli, C. Threatened Woody Plants of Georgia and Micropropagation as a Tool for In Vitro Conservation. Agronomy 2021, 11, 1082. https://doi.org/10.3390/agronomy11061082
Gaidamashvili M, Benelli C. Threatened Woody Plants of Georgia and Micropropagation as a Tool for In Vitro Conservation. Agronomy. 2021; 11(6):1082. https://doi.org/10.3390/agronomy11061082
Chicago/Turabian StyleGaidamashvili, Mariam, and Carla Benelli. 2021. "Threatened Woody Plants of Georgia and Micropropagation as a Tool for In Vitro Conservation" Agronomy 11, no. 6: 1082. https://doi.org/10.3390/agronomy11061082
APA StyleGaidamashvili, M., & Benelli, C. (2021). Threatened Woody Plants of Georgia and Micropropagation as a Tool for In Vitro Conservation. Agronomy, 11(6), 1082. https://doi.org/10.3390/agronomy11061082