Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept
Abstract
:1. Introduction
2. Materials and Methods
3. Systematic Review
3.1. Environmental Impacts and Climate Change
3.2. New Technologies and Approaches
3.3. Food Supply and Security
3.4. Farming Systems and Crop Management
3.5. Multifunctionality and Agricultural/Rural Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, L.; Luo, B.; Zhong, W. How Are Smallholder Farmers Involved in Digital Agriculture in Developing Countries: A Case Study from China. Land 2021, 10, 245. [Google Scholar] [CrossRef]
- Anand, P.; Singh, Y.; Selwal, A.; Alazab, M.; Tanwar, S.; Kumar, N. IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access 2020, 8, 168825–168853. [Google Scholar] [CrossRef]
- Clercq, M.D.; Vats, A.; Biel, A. Agriculture 4.0: The Future of Farming Technology; World Government Summit and Oliver Wyman: New York, NY, USA, 2018; p. 30. [Google Scholar]
- Conteratto, C.; do Carmo Martinelli, G.; de Oliveira, L. Food Security, Smart Agriculture and Sustainability: The State of the Art in the Scientific Field. RISUS 2020, 11, 33–43. [Google Scholar] [CrossRef]
- Eli-Chukwu, N.C. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Ruiz-Real, J.L.; Uribe-Toril, J.; Torres Arriaza, J.A.; de Pablo Valenciano, J. A Look at the Past, Present and Future Research Trends of Artificial Intelligence in Agriculture. Agronomy 2020, 10, 1839. [Google Scholar] [CrossRef]
- Schroeder, K.; Kamel, A.; Sticklen, J.; Ward, R.; Ritchie, J.; Schulthess, U.; Rafea, A.; Salah, A. Guiding Object-Oriented Design Via the Knowledge Level Architecture: The Irrigated Wheat Testbed. Math. Comput. Model. 1994, 20, 1–16. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Climate-Smart Agriculture. Available online: http://www.fao.org/climate-smart-agriculture/en/ (accessed on 29 June 2021).
- Rosenzweig, C.; Mbow, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.T.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Climate Change Responses Benefit from a Global Food System Approach. Nat. Food 2020, 1, 94–97. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Benton, T.G.; Bodirsky, B.L.; Bogard, J.R.; Hall, A.; Lee, B.; Nyborg, K.; et al. Innovation Can Accelerate the Transition towards a Sustainable Food System. Nat. Food 2020, 1, 266–272. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the Effect of Food Systems Innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef]
- Manuel Ciruela-Lorenzo, A.; Rosa Del Aguila-Obra, A.; Padilla-Melendez, A.; Jose Plaza-Angulo, J. Digitalization of Agri-Cooperatives in the Smart Agriculture Context. Proposal of a Digital Diagnosis Tool. Sustainability 2020, 12, 1325. [Google Scholar] [CrossRef] [Green Version]
- Vorotnikov, I.L.; Ukolova, N.V.; Monakhov, S.V.; Shikhanova, J.A.; Neyfeld, V.V. Economic Aspects of the Development of the “Digital Agriculture” System. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 633–638. [Google Scholar]
- Martinho, V.J.P.D. Exploring the Topics of Soil Pollution and Agricultural Economics: Highlighting Good Practices. Agriculture 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Martinho, V.J.P.D. Agricultural Entrepreneurship in the European Union: Contributions for a Sustainable Development. Appl. Sci. 2020, 10, 2080. [Google Scholar] [CrossRef] [Green Version]
- Bu, F.; Wang, X. A Smart Agriculture IoT System Based on Deep Reinforcement Learning. Futur. Gener. Comp. Syst. 2019, 99, 500–507. [Google Scholar] [CrossRef]
- Sverdrup, H.; Svensson, M.G.E. Defining sustainability. In Developing Principles and Models for Sustainable Forestry in Sweden; Sverdrup, H., Stjernquist, I., Eds.; Managing Forest Ecosystems; Springer: Dordrecht, The Netherlands, 2002; Volume 5, pp. 21–32. ISBN 978-94-015-9888-0. [Google Scholar]
- Kuhlman, T.; Farrington, J. What Is Sustainability? Sustainability 2010, 2, 3436–3448. [Google Scholar] [CrossRef] [Green Version]
- Gras, C.; Cáceres, D.M. Technology, Nature’s Appropriation and Capital Accumulation in Modern Agriculture. Curr. Opin. Environ. Sustain. 2020, 45, 1–9. [Google Scholar] [CrossRef]
- Taylor, M. Climate-Smart Agriculture: What Is It Good For? J. Peasant Stud. 2018, 45, 89–107. [Google Scholar] [CrossRef]
- Torquebiau, E.; Rosenzweig, C.; Chatrchyan, A.M.; Andrieu, N.; Khosla, R. Identifying Climate-Smart Agriculture Research Needs. Cah. Agric. 2018, 27. [Google Scholar] [CrossRef] [Green Version]
- Van Wijk, M.T.; Merbold, L.; Hammond, J.; Butterbach-Bahl, K. Improving Assessments of the Three Pillars of Climate Smart Agriculture: Current Achievements and Ideas for the Future. Front. Sustain. Food Syst. 2020, 4, 148. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Web of Science. Web of Science (Core Collection). Available online: https://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=E5O6jHu4Udf12OXx4mG&preferencesSaved= (accessed on 15 May 2021).
- Scopus. Scopus Database. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 15 May 2021).
- Zotero. Zotero Software. Available online: https://www.zotero.org/ (accessed on 15 May 2021).
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Totin, E.; Segnon, A.C.; Schut, M.; Affognon, H.; Zougmore, R.B.; Rosenstock, T.; Thornton, P.K. Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review. Sustainability 2018, 10, 1990. [Google Scholar] [CrossRef] [Green Version]
- Martinho, V.J.P.D. Food Marketing as a Special Ingredient in Consumer Choices: The Main Insights from Existing Literature. Foods 2020, 9, 1651. [Google Scholar] [CrossRef] [PubMed]
- Nadaraja, D.; Lu, C.; Islam, M.M. The Sustainability Assessment of Plantation Agriculture—A Systematic Review of Sustainability Indicators. Sustain. Prod. Consum. 2021, 26, 892–910. [Google Scholar] [CrossRef]
- Martinho, V.J.P.D. Agri-Food Contexts in Mediterranean Regions: Contributions to Better Resources Management. Sustainability 2021, 13, 6683. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer Manual: Manual for VOSviewer version 1.6.16, 2020. Center for Science and Technology Studies, Leiden University. Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.16.pdf (accessed on 15 May 2021).
- VOSviewer. VOSviewer Software. Available online: https://www.vosviewer.com/ (accessed on 15 May 2021).
- Martinho, V.J.P.D. Interrelationships between Renewable Energy and Agricultural Economics: An Overview. Energy Strategy Rev. 2018, 22, 396–409. [Google Scholar] [CrossRef]
- StataCorp. Stata 15 Base Reference Manual; Stata Press: College Station, TX, USA, 2017. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Stata. Stata: Software for Statistics and Data Science. Available online: https://www.stata.com/ (accessed on 28 May 2021).
- Torres-Reyna, O. Getting Started in Factor Analysis (Using Stata). Available online: http://www.princeton.edu/~otorres/Stata/Factor (accessed on 28 May 2021).
- United Nations. THE 17 GOALS. Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 29 June 2021).
- Brohm, K.-A.; Klein, S. The Concept of Climate Smart Agriculture—A Classification in Sustainable Theories. Int. J. Qual. Res. 2020, 14, 291–302. [Google Scholar] [CrossRef]
- Noor-E-Sabiha; Rahman, S. Environment-Smart Agriculture and Mapping of Interactions among Environmental Factors at the Farm Level: A Directed Graph Approach. Sustainability 2018, 10, 1580. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Jat, H.S.; Datta, A.; Sharma, P.C.; Rajashekar, B.; Jat, M.L. Topsoil Bacterial Community Changes and Nutrient Dynamics Under Cereal Based Climate-Smart Agri-Food Systems. Front. Microbiol. 2020, 11, 1812. [Google Scholar] [CrossRef]
- Idoje, G.; Dagiuklas, T.; Iqbal, M. Survey for Smart Farming Technologies: Challenges and Issues. Comput. Electr. Eng. 2021, 92. [Google Scholar] [CrossRef]
- Chacho, P.; Rivera, P.; Maza, J.; Icaza, D.; Arias, P.; Diaz, J.; Amon, X.; Sumba, N.; Pallmay, D.; Coyago, C. Wireless system for the control and real time monitoring of agricultural areas of Arenillas canton in Ecuador. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 29–31 October 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [Google Scholar]
- Coppedè, N.; Janni, M.; Bettelli, M.; Maida, C.L.; Gentile, F.; Villani, M.; Ruotolo, R.; Iannotta, S.; Marmiroli, N.; Marmiroli, M.; et al. An in Vivo Biosensing, Biomimetic Electrochemical Transistor with Applications in Plant Science and Precision Farming. Sci. Rep. 2017, 7, 16195. [Google Scholar] [CrossRef] [Green Version]
- El Bilali, H.; Bottalico, F.; Ottomano Palmisano, G.; Capone, R. Information and communication technologies for smart and sustainable agriculture. In Proceedings of the IFMBE Proceedings; Brka, M., Omanovic-Miklicanin, E., Karic, L., Falan, V., Toroman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 78, pp. 321–334. [Google Scholar]
- Agrawal, S.; Jain, A. Sustainable Deployment of Solar Irrigation Pumps: Key Determinants and Strategies. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e325. [Google Scholar] [CrossRef]
- Ahmed, M.; Asif, M.; Sajad, M.; Khattak, J.Z.K.; Ijaz, W.; Wasaya, A.; Chun, J.A. Could Agricultural System Be Adapted to Climate Change? A Review. Aust. J. Crop Sci. 2013, 7, 1642–1653. [Google Scholar]
- Arakelyan, I.; Wreford, A.; Moran, D. Can agriculture be climate smart. In Building a Climate Resilient Economy and Society: Challenges and Opportunities; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2017; pp. 115–131. ISBN 9781785368455. [Google Scholar]
- Luo, X.-S.; Muleta, D.; Hu, Z.; Tang, H.; Zhao, Z.; Shen, S.; Lee, B.-L. Inclusive Development and Agricultural Adaptation to Climate Change. Curr. Opin. Environ. Sustain. 2017, 24, 78–83. [Google Scholar] [CrossRef]
- Bhatt, R.; Kukal, S.S.; Busari, M.A.; Arora, S.; Yadav, M. Sustainability Issues on Rice-Wheat Cropping System. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Branca, G.; Braimoh, A.; Zhao, Y.; Ratii, M.; Likoetla, P. Are There Opportunities for Climate-Smart Agriculture? Assessing Costs and Benefits of Sustainability Investments and Planning Policies in Southern Africa. J. Clean. Prod. 2021, 278, 123847. [Google Scholar] [CrossRef]
- Findlater, K.M.; Kandlikar, M.; Satterfield, T. Misunderstanding Conservation Agriculture: Challenges in Promoting, Monitoring and Evaluating Sustainable Farming. Environ. Sci. Policy 2019, 100, 47–54. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Poldner, K. Business Models for Maximising the Diffusion of Technological Innovations for Climate-Smart Agriculture. Int. Food Agribus. Manag. Rev. 2017, 20, 5–23. [Google Scholar] [CrossRef]
- Adesipo, A.; Fadeyi, O.; Kuca, K.; Krejcar, O.; Maresova, P.; Selamat, A.; Adenola, M. Smart and Climate-Smart Agricultural Trends as Core Aspects of Smart Village Functions. Sensors 2020, 20, 5977. [Google Scholar] [CrossRef]
- Faling, M.; Biesbroek, R. Cross-Boundary Policy Entrepreneurship for Climate-Smart Agriculture in Kenya. Policy Sci. 2019, 52, 525–547. [Google Scholar] [CrossRef] [Green Version]
- Chandra, A.; McNamara, K.E.; Dargusch, P. The Relevance of Political Ecology Perspectives for Smallholder Climate-Smart Agriculture: A Review. J. Polit. Ecol. 2017, 24, 821–842. [Google Scholar] [CrossRef] [Green Version]
- Aryal, J.P.; Farnworth, C.R.; Khurana, R.; Ray, S.; Sapkota, T.B.; Rahut, D.B. Does Women’s Participation in Agricultural Technology Adoption Decisions Affect the Adoption of Climate-Smart Agriculture? Insights from Indo-Gangetic Plains of India. Rev. Dev. Econ. 2020, 24, 973–990. [Google Scholar] [CrossRef]
- Blau, J. Europe Moves toward Sustainable Farming. Res. Technol. Manag. 2016, 59, 3–6. [Google Scholar]
- Acosta-Alba, I.; Chia, E.; Andrieu, N. The LCA4CSA Framework: Using Life Cycle Assessment to Strengthen Environmental Sustainability Analysis of Climate Smart Agriculture Options at Farm and Crop System Levels. Agric. Syst. 2019, 171, 155–170. [Google Scholar] [CrossRef]
- Oerther, D.B. From disaster to development: Finance provides a platform to empower technology for resilience to climate change. In Proceedings of the Procedia Engineering; Vidan, A., Shoag, D., Eds.; Elsevier Ltd.: New York, NY, USA, 2016; Volume 159, pp. 267–271. [Google Scholar]
- Tripathy, A.S.; Sharma, D.K. Image processing techniques aiding smart agriculture. In Modern Techniques for Agricultural Disease Management and Crop Yield Prediction; IGI Global: Hershey, PA, USA, 2019; pp. 23–48. ISBN 9781522596349. [Google Scholar]
- Venkatramanan, V.; Shah, S. Climate smart agriculture technologies for environmental management: The intersection of sustainability, resilience, wellbeing and development. In Sustainable Green Technologies for Environmental Management; Springer: Singapore, 2019; pp. 29–51. ISBN 9789811327728. [Google Scholar]
- Venkatramanan, V.; Shah, S.; Prasad, R. Global Climate Change and Environmental Policy: Agriculture Perspectives; Springer: Singapore, 2019; p. 435. ISBN 9789811395703. [Google Scholar]
- Pareek, A.; Dhankher, O.P.; Foyer, C.H. Mitigating the Impact of Climate Change on Plant Productivity and Ecosystem Sustainability. J. Exp. Bot. 2020, 71, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Adelhart Toorop, R.; Ceccarelli, V.; Bijarniya, D.; Jat, M.L.; Jat, R.K.; Lopez-Ridaura, S.; Groot, J.C.J. Using a Positive Deviance Approach to Inform Farming Systems Redesign: A Case Study from Bihar, India. Agric. Syst. 2020, 185. [Google Scholar] [CrossRef]
- Bosma, R.H.; Nguyen, T.H.; Siahainenia, A.J.; Tran, H.T.P.; Tran, H.N. Shrimp-Based Livelihoods in Mangrove Silvo-Aquaculture Farming Systems. Rev. Aquac. 2016, 8, 43–60. [Google Scholar] [CrossRef]
- Tran, N.; Cao, Q.L.; Shikuku, K.M.; Phan, T.P.; Banks, L.K. Profitability and Perceived Resilience Benefits of Integrated Shrimp-Tilapia-Seaweed Aquaculture in North Central Coast, Vietnam. Mar. Policy 2020, 120, 104153. [Google Scholar] [CrossRef]
- Furstenau, L.B.; Sott, M.K.; Kipper, L.M.; Machado, E.L.; Ricardo Lopez-Robles, J.; Dohan, M.S.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Link Between Sustainability and Industry 4.0: Trends, Challenges and New Perspectives. IEEE Access 2020, 8, 140079–140096. [Google Scholar] [CrossRef]
- Fusco, G.; Melgiovanni, M.; Porrini, D.; Ricciardo, T.M. How to Improve the Diffusion of Climate-Smart Agriculture: What the Literature Tells Us. Sustainability 2020, 12, 5168. [Google Scholar] [CrossRef]
- Streimikis, J.; Miao, Z.; Balezentis, T. Creation of Climate-Smart and Energy-Efficient Agriculture in the European Union: Pathways Based on the Frontier Analysis. Bus. Strategy Environ. 2021, 30, 576–589. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Pathak, H.; Pal, S. Energy Management for Climate-Smart Agriculture; Green Energy and Technology; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2020; pp. 73–84. [Google Scholar]
- Bhattacharyya, P.; Pathak, H.; Pal, S. Soil Management for Climate-Smart Agriculture; Green Energy and Technology; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2020; pp. 41–56. [Google Scholar]
- Arenas-Calle, L.N.; Whitfield, S.; Challinor, A.J. A Climate Smartness Index (CSI) Based on Greenhouse Gas Intensity and Water Productivity: Application to Irrigated Rice. Front. Sustain. Food Syst. 2019, 3, 105. [Google Scholar] [CrossRef]
- Bhatasara, S.; Nyamwanza, A. Sustainability: A Missing Dimension in Climate Change Adaptation Discourse in Africa? J. Integr. Environ. Sci. 2018, 15, 83–97. [Google Scholar] [CrossRef]
- Alhassan, A.-R.M.; Yang, C.; Ma, W.; Li, G. Influence of Conservation Tillage on Greenhouse Gas Fluxes and Crop Productivity in Spring-Wheat Agroecosystems on the Loess Plateau of China. PeerJ 2021, 9, e11064. [Google Scholar] [CrossRef] [PubMed]
- Nhamo, N.; Chikoye, D. Smart Agriculture: Scope, Relevance, and Important Milestones to Date. In Smart Technologies for Sustainable Smallholder Agriculture: Upscaling in Developing Countries; Elsevier Inc.: New York, NY, USA, 2017; pp. 1–20. ISBN 9780128105221. [Google Scholar]
- Paul, B.K.; Groot, J.C.J.; Birnholz, C.A.; Nzogela, B.; Notenbaert, A.; Woyessa, K.; Sommer, R.; Nijbroek, R.; Tittonell, P. Reducing Agro-Environmental Trade-Offs through Sustainable Livestock Intensification across Smallholder Systems in Northern Tanzania. Int. J. Agric. Sustain. 2020, 18, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Yamoah, F.A.; Kaba, J.S.; Amankwah-Amoah, J.; Acquaye, A. Stakeholder Collaboration in Climate-Smart Agricultural Production Innovations: Insights from the Cocoa Industry in Ghana. Environ. Manag. 2020, 66, 600–613. [Google Scholar] [CrossRef]
- Emira, S.S.A.; Youssef, K.Y.; Abouelatta, M. Adaptive power system for IoT-based smart agriculture applications. In Proceedings of the 2019 15th International Computer Engineering Conference (ICENCO), Cairo, Egypt, 29–30 December 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 126–131. [Google Scholar]
- Kadar, H.H.; Sameon, S.S.; Rafee, P.A. Sustainable water resource management using IOT solution for agriculture. In Proceedings of the 2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 29 November–1 December 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 121–125. [Google Scholar]
- Kamienski, C.; Soininen, J.-P.; Taumberger, M.; Dantas, R.; Toscano, A.; Cinotti, T.S.; Maia, R.F.; Neto, A.T. Smart Water Management Platform: IoT-Based Precision Irrigation for Agriculture. Sensors 2019, 19, 276. [Google Scholar] [CrossRef] [Green Version]
- Adenugba, F.; Misra, S.; Maskeliūnas, R.; Damaševičius, R.; Kazanavičius, E. Smart Irrigation System for Environmental Sustainability in Africa: An Internet of Everything (IoE) Approach. Math. Biosci. Eng. 2019, 16, 5490–5503. [Google Scholar] [CrossRef]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (Iot) and Unmanned Aerial Vehicle (Uav) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Symeonaki, E.G.; Arvanitis, K.G.; Piromalis, D.D. Current Trends and Challenges in the Deployment of IoT Technologies for Climate Smart Facility Agriculture. Int. J. Sustain. Agric. Manag. Inform. 2019, 5, 181–200. [Google Scholar] [CrossRef]
- Symeonaki, E.G.; Arvanitis, K.G.; Piromalis, D.D. Cloud computing for IoT applications in climate-smart agriculture: A review on the trends and challenges toward sustainability. In Innovative Approaches and Applications for Sustainable Rural Development, Haicta 2017; Theodoridis, A., Ragkos, A., Salampasis, M., Eds.; Springer International Publishing Ag: Cham, Switzerland, 2019; pp. 147–167. ISBN 978-3-030-02312-6. [Google Scholar]
- Tripathy, P.K.; Tripathy, A.K.; Agarwal, A.; Mohanty, S.P. MyGreen: An IoT-Enabled Smart Greenhouse for Sustainable Agriculture. IEEE Consum. Electron. Mag. 2021, 10, 57–62. [Google Scholar] [CrossRef]
- Vu, V.A.; Cong Trinh, D.; Truvant, T.C.; Dang Bui, T. Design of automatic irrigation system for greenhouse based on LoRa technology. In Proceedings of the 2018 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 18–20 October 2018; Bao, V.N.Q., Duy, T.T., Eds.; IEEE Computer Society: New York, NY, USA, 2018; pp. 72–77. [Google Scholar]
- Verdouw, C.; Tekinerdogan, B.; Beulens, A.; Wolfert, S. Digital Twins in Smart Farming. Agric. Syst. 2021, 189, 103046. [Google Scholar] [CrossRef]
- Muñoz, M.; Gil, J.D.; Roca, L.; Rodríguez, F.; Berenguel, M. An Iot Architecture for Water Resource Management in Agroindustrial Environments: A Case Study in Almería (Spain). Sensors 2020, 20, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, A.; Debnath, B.; Das, A.; De, D. FarmFox: A Quad-Sensor Based IoT Box for Precision Agriculture. IEEE Consum. Electron. Mag. 2021, 10, 63–68. [Google Scholar] [CrossRef]
- Valecce, G.; Strazzella, S.; Radesca, A.; Grieco, L.A. Solarfertigation: Internet of things architecture for smart agriculture. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019. [Google Scholar]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heideker, A.; Ottolini, D.; Zyrianoff, I.; Neto, A.T.; Salmon Cinotti, T.; Kamienski, C. IoT-based measurement for smart agriculture. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 68–72. [Google Scholar]
- Wu, F.; Ma, J. Evolution Dynamics of Agricultural Internet of Things Technology Promotion and Adoption in China. Discrete Dyn. Nat. Soc. 2020, 2020, 1854193. [Google Scholar] [CrossRef]
- Dutta, P.; Chakraborti, S.; Chaudhuri, K.M.; Mondal, S. Physiological responses and resilience of plants to climate change. In New Frontiers in Stress Management for Durable Agriculture; Springer: Singapore, 2020; pp. 3–20. ISBN 9789811513220. [Google Scholar]
- El Ansari, L.; Chenoune, R.; Yigezu, Y.A.; Gary, C.; Belhouchette, H. Trade-Offs between Sustainability Indicators in Response to the Production Choices of Different Farm Household Types in Drylands. Agronomy 2020, 10, 998. [Google Scholar] [CrossRef]
- Githiru, M.; Mutwiwa, U.; Kasaine, S.; Schulte, B. A Spanner in the Works: Human-Elephant Conflict Complicates the Food-Water-Energy Nexus in Drylands of Africa. Front. Environ. Sci. 2017, 5, 69. [Google Scholar] [CrossRef]
- Ennouri, K.; Kallel, A.; Albano, R. Remote Sensing: An Advanced Technique for Crop Condition Assessment. Math. Probl. Eng. 2019, 2019, 9404565. [Google Scholar] [CrossRef] [Green Version]
- Chhogyel, N.; Kumar, L.; Bajgai, Y. Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan. Sustainability 2020, 12, 4319. [Google Scholar] [CrossRef]
- Rout, S.K.; Gulathi, J.M.L.; Parasar, B. Smart Agriculture System: Review. Int. J. Mod. Agric. 2020, 9, 674–680. [Google Scholar]
- Kumari, S.; Patil, Y. Achieving climate smart agriculture with a sustainable use of water: A conceptual framework for sustaining the use of water for agriculture in the era of climate change. In Climate Change and Environmental Concerns: Breakthroughs in Research and Practice; IGI Global: Hershey, PA, USA, 2018; pp. 111–133. ISBN 9781522554882. [Google Scholar]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Jat, M.L. Agricultural Sustainability under Emerging Climatic Variability: The Role of Climate-Smart Agriculture and Relevant Policies in India. Int. J. Innov. Sustain. Dev. 2020, 14, 219–245. [Google Scholar] [CrossRef]
- Ait Issad, H.; Aoudjit, R.; Rodrigues, J.J.P.C. A Comprehensive Review of Data Mining Techniques in Smart Agriculture. Eng. Agric. Environ. Food 2019, 12, 511–525. [Google Scholar] [CrossRef]
- Morimoto, E. What is cyber-physical system driven agriculture?—Redesign of big data for outstanding farmer management. In Proceedings of the ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Anderson, J.R. Concepts of food sustainability. In Encyclopedia of Food Security and Sustainability; Elsevier: New York, NY, USA, 2018; pp. 1–8. ISBN 9780128126882. [Google Scholar]
- Fiore, M.; Monasterolo, I.; Jones, A.; Contò, F. Understanding Limits to Data Informative Power for Sustainable Food Policies in Transition and Post-Transition Countries. Int. J. Glob. Small Bus. 2015, 7, 300–317. [Google Scholar] [CrossRef]
- Msangi, J.P. Food Security among Small-Scale Agricultural Producers in Southern Africa; Springer International Publishing: Cham, Germany, 2014; Volume 9783319094953, p. 173. ISBN 9783319094953. [Google Scholar]
- Makate, C. Effective Scaling of Climate Smart Agriculture Innovations in African Smallholder Agriculture: A Review of Approaches, Policy and Institutional Strategy Needs. Environ. Sci. Policy 2019, 96, 37–51. [Google Scholar] [CrossRef]
- Were, K.; Gelaw, A.M.; Singh, B.R. Smart strategies for enhanced agricultural resilience and food security under a changing climate in sub-saharan Africa. In Climate Change and Multi-Dimensional Sustainability in African Agriculture: Climate Change and Sustainability in Agriculture; Springer International Publishing: Cham, Germany, 2016; pp. 431–453. ISBN 9783319412382. [Google Scholar]
- Manik, B.K. Revisit to Policy Formulation for Climate-Smart Agriculture in India. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 144–151. [Google Scholar]
- Saroar, M.M.; Filho, W.L. Adaptation Through Climate Smart Agriculture: Status and Determinants in Coastal Bangladesh; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2016; pp. 157–178. [Google Scholar]
- Delian, E.; Chira, A.; Badea, M.L.; Chira, L. Sustainable Agriculture Systems to Mitigate Climate Change Effects: A Brief Overview. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2019, 19, 127–134. [Google Scholar]
- Ajayi, A.E.; Horn, R. Transformation of Ex-Arable Land to Permanent Grassland Promotes Pore Rigidity and Mechanical Soil Resilience. Ecol. Eng. 2016, 94, 592–598. [Google Scholar] [CrossRef]
- Cochran, F.V.; Brunsell, N.A.; Suyker, A.E. A Thermodynamic Approach for Assessing Agroecosystem Sustainability. Ecol. Indic. 2016, 67, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, Y.; Angassa, A.; Aune, J.B. A System Analysis to Assess the Effect of Low-Cost Agricultural Technologies on Productivity, Income and GHG Emissions in Mixed Farming Systems in Southern Ethiopia. Agric. Syst. 2021, 187, 102988. [Google Scholar] [CrossRef]
- Dabkienė, V.; Baležentis, T.; Štreimikienė, D. Calculation of the Carbon Footprint for Family Farms Using the Farm Accountancy Data Network: A Case from Lithuania. J. Clean. Prod. 2020, 262, 121509. [Google Scholar] [CrossRef]
- Fischer, H.W.; Reddy, N.L.N.; Rao, M.L.S. Can More Drought Resistant Crops Promote More Climate Secure Agriculture? Prospects and Challenges of Millet Cultivation in Ananthapur, Andhra Pradesh. World Dev. Perspect. 2016, 2, 5–10. [Google Scholar] [CrossRef]
- Fungo, B.; Buyinza, J.; Sekatuba, J.; Nansereko, S.; Ongodia, G.; Kwaga, P.; Mudondo, S.; Eryau, K.; Akelem, R.; Musinguzi, P.; et al. Forage Biomass and Soil Aggregate Carbon under Fodder Banks with Contrasting Management Regimes. Agrofor. Syst. 2020, 94, 1023–1035. [Google Scholar] [CrossRef]
- Hao, P.-F.; Qiu, C.-W.; Ding, G.; Vincze, E.; Zhang, G.; Zhang, Y.; Wu, F. Agriculture Organic Wastes Fermentation CO2 Enrichment in Greenhouse and the Fermentation Residues Improve Growth, Yield and Fruit Quality in Tomato. J. Clean. Prod. 2020, 275, 123885. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Wang, T.-H.; Basanta, H. Using Fuzzy Mask R-CNN Model to Automatically Identify Tomato Ripeness. IEEE Access 2020, 8, 207672–207682. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Yadav, A.K.; Choudhary, V.; Gathala, M.K.; Jat, M.L.; McDonald, A. Climate Smart Agriculture Practices Improve Soil Organic Carbon Pools, Biological Properties and Crop Productivity in Cereal-Based Systems of North-West India. CATENA 2019, 181, 104059. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Mpanda, M.; Rioux, J.; Aynekulu, E.; Shaba, S.; Thiong’o, M.; Mutuo, P.; Abwanda, S.; Shepherd, K.; Neufeldt, H.; et al. Is Conservation Agriculture “climate-Smart” for Maize Farmers in the Highlands of Tanzania? Nutr. Cycl. Agroecosyst. 2016, 105, 217–228. [Google Scholar] [CrossRef]
- Rahman, M.M.; Aravindakshan, S.; Hoque, M.A.; Rahman, M.A.; Gulandaz, M.A.; Rahman, J.; Islam, M.T. Conservation Tillage (CT) for Climate-Smart Sustainable Intensification: Assessing the Impact of CT on Soil Organic Carbon Accumulation, Greenhouse Gas Emission and Water Footprint of Wheat Cultivation in Bangladesh. Environ. Sustain. Ind. 2021, 10, 100106. [Google Scholar] [CrossRef]
- Lang, C.; Mission, E.G.; Ahmad Fuaad, A.A.-H.; Shaalan, M. Nanoparticle Tools to Improve and Advance Precision Practices in the Agrifoods Sector towards Sustainability—A Review. J. Clean. Prod. 2021, 293, 126063. [Google Scholar] [CrossRef]
- Pramanik, P.; Ray, P.; Maity, A.; Das, S.; Ramakrishnan, S.; Dixit, P. Nanotechnology for improved carbon management in soil. In Carbon Management in Tropical and Sub-Tropical Terrestrial Systems; Springer: Singapore, 2019; pp. 403–415. ISBN 9789811396281. [Google Scholar]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Impact of Drought Tolerant Maize Adoption on Maize Productivity, Sales and Consumption in Rural Zimbabwe. Agrekon 2017, 56, 67–81. [Google Scholar] [CrossRef]
- Mazhar, R.; Ghafoor, A.; Xuehao, B.; Wei, Z. Fostering Sustainable Agriculture: Do Institutional Factors Impact the Adoption of Multiple Climate-Smart Agricultural Practices among New Entry Organic Farmers in Pakistan? J. Clean. Prod. 2021, 283, 124620. [Google Scholar] [CrossRef]
- Musa, F.B.; Kamoto, J.F.M.; Jumbe, C.B.L.; Zulu, L.C. Adoption and the Role of Fertilizer Trees and Shrubs as a Climate Smart Agriculture Practice: The Case of Salima District in Malawi. Environments 2018, 5, 122. [Google Scholar] [CrossRef] [Green Version]
- Mylona, P.; Sakellariou, M.; Giannakopoulos, C.; Psiloglou, B.; Kitsara, G. Terrace landscapes as green infrastructures for a climate-smart agriculture to mitigate climate change impacts. Presented at 9th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA 2020), Thessaloniki, Greece, 24–27 September 2020; pp. 236–243. Available online: http://ceur-ws.org/Vol-2761/HAICTA_2020_paper35.pdf (accessed on 15 May 2021).
- Nair, P.K.R.; Kumar, B.M.; Naresh Kumar, S. Climate change, carbon sequestration, and coconut-based ecosystems. In The Coconut Palm (Cocos nucifera L.) Research and Development Perspectives; Springer: Singapore, 2019; pp. 779–799. ISBN 9789811327544. [Google Scholar]
- Nair, P.K.R.; Viswanath, S.; Lubina, P.A. Cinderella Agroforestry Systems. Agrofor. Syst. 2017, 91, 901–917. [Google Scholar] [CrossRef]
- Naughton, S.; Kavanagh, S.; Lynch, M.; Rowan, N.J. Synchronizing Use of Sophisticated Wet-Laboratory and in-Field Handheld Technologies for Real-Time Monitoring of Key Microalgae, Bacteria and Physicochemical Parameters Influencing Efficacy of Water Quality in a Freshwater Aquaculture Recirculation System: A Case Study from the Republic of Ireland. Aquaculture 2020, 526, 735377. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Nyamugafata, P.; Chirinda, N. Optimizing Dambo (Seasonal Wetland) Cultivation for Climate Change Adaptation and Sustainable Crop Production in the Smallholder Farming Areas of Zimbabwe. Int. J. Agric. Sustain. 2015, 13, 23–39. [Google Scholar] [CrossRef]
- Ronga, D.; Parisi, M.; Barbieri, L.; Lancellotti, I.; Andreola, F.; Bignami, C. Valorization of Spent Coffee Grounds, Biochar and Other Residues to Produce Lightweight Clay Ceramic Aggregates Suitable for Nursery Grapevine Production. Horticulturae 2020, 6, 58. [Google Scholar] [CrossRef]
- Singh, R.; Singh, G.S. Traditional Agriculture: A Climate-Smart Approach for Sustainable Food Production. Energy Ecol. Environ. 2017, 2, 296–316. [Google Scholar] [CrossRef]
- Singh, V.K.; Rathore, S.S.; Singh, R.K.; Upadhyay, P.K.; Shekhawat, K. Integrated Farming System Approach for Enhanced Farm Productivity, Climate Resilience and Doubling Farmers’ Income. Indian J. Agric. Sci. 2020, 90, 1378–1388. [Google Scholar]
- Snyder, C.S. Enhanced Nitrogen Fertiliser Technologies Support the “4R” Concept to Optimise Crop Production and Minimise Environmental Losses. Soil Res. 2017, 55, 463–472. [Google Scholar] [CrossRef]
- Sosa-Hernández, M.A.; Leifheit, E.F.; Ingraffia, R.; Rillig, M.C. Subsoil Arbuscular Mycorrhizal Fungi for Sustainability and Climate-Smart Agriculture: A Solution Right under Our Feet? Front. Microbiol. 2019, 10, 744. [Google Scholar] [CrossRef] [Green Version]
- Steinke, J.; Mgimiloko, M.G.; Graef, F.; Hammond, J.; van Wijk, M.T.; van Etten, J. Prioritizing Options for Multi-Objective Agricultural Development through the Positive Deviance Approach. PLoS ONE 2019, 14, e0212926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbarao, G.V.; Arango, J.; Masahiro, K.; Hooper, A.M.; Yoshihashi, T.; Ando, Y.; Nakahara, K.; Deshpande, S.; Ortiz-Monasterio, I.; Ishitani, M.; et al. Genetic Mitigation Strategies to Tackle Agricultural GHG Emissions: The Case for Biological Nitrification Inhibition Technology. Plant Sci. 2017, 262, 165–168. [Google Scholar] [CrossRef]
- Tolga, A.C.; Basar, M. Hydroponic System Evaluation in Urban Farming via Fuzzy EDAS and TODIM Methods. J. Intell. Fuzzy Syst. 2020, 39, 6325–6337. [Google Scholar] [CrossRef]
- Tolga, A.C.; Gamsiz, B.; Basar, M. Evaluation of Hydroponic System in Vertical Farming via Fuzzy EDAS Method; International Conference on Intelligent and Fuzzy Systems, INFUS 2019; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1029, pp. 745–752. [Google Scholar]
- Venkatramanan, V.; Shah, S.; Rai, A.K.; Prasad, R. Nexus Between Crop Residue Burning, Bioeconomy and Sustainable Development Goals Over North-Western India. Front. Energy Res. 2021, 8, 105. [Google Scholar] [CrossRef]
- Verburg, R.; Rahn, E.; Verweij, P.; van Kuijk, M.; Ghazoul, J. An Innovation Perspective to Climate Change Adaptation in Coffee Systems. Environ. Sci. Policy 2019, 97, 16–24. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Aizen, M.A.; Cordeau, S.; Garibaldi, L.A.; Garratt, M.P.D.; Kovács-Hostyánszki, A.; Lecuyer, L.; Ngo, H.T.; Potts, S.G.; Settele, J.; et al. Transformation of Agricultural Landscapes in the Anthropocene: Nature’s Contributions to People, Agriculture and Food Security; Advances in Ecological Research; Academic Press Inc.: Amsterdam, The Netherlands, 2020; Volume 63, pp. 193–253. ISSN 00652504. [Google Scholar]
- Thierfelder, C.; Chivenge, P.; Mupangwa, W.; Rosenstock, T.S.; Lamanna, C.; Eyre, J.X. How Climate-Smart Is Conservation Agriculture (CA)?—Its Potential to Deliver on Adaptation, Mitigation and Productivity on Smallholder Farms in Southern Africa. Food Secur. 2017, 9, 537–560. [Google Scholar] [CrossRef] [Green Version]
- Clapp, J.; Newell, P.; Brent, Z.W. The Global Political Economy of Climate Change, Agriculture and Food Systems. J. Peasant Stud. 2018, 45, 80–88. [Google Scholar] [CrossRef]
- Bai, H.; Tao, F. Sustainable Intensification Options to Improve Yield Potential and Eco-Efficiency for Rice-Wheat Rotation System in China. Field Crops Res. 2017, 211, 89–105. [Google Scholar] [CrossRef]
- Baratella, V.; Trinchera, A. Organosilicone Surfactants as Innovative Irrigation Adjuvants: Can They Improve Water Use Efficiency and Nutrient Uptake in Crop Production? Agric. Water Manag. 2018, 204, 149–161. [Google Scholar] [CrossRef]
- Bhatt, R.; Hossain, A.; Singh, P. Scientific interventions to improve land and water productivity for climate-smart agriculture in South Asia. In Agronomic Crops: Volume 2: Management Practices; Springer: Singapore, 2019; pp. 499–558. ISBN 9789813297838. [Google Scholar]
- Bhatt, R.; Kaur, R.; Ghosh, A. Strategies to practice climate-smart agriculture to improve the livelihoods under the rice-wheat cropping system in South Asia. In Sustainable Management of Soil and Environment; Springer: Singapore, 2019; pp. 29–71. ISBN 9789811388323. [Google Scholar]
- Kakraliya, S.K.; Singh, I.; Dadarwal, R.S.; Singh, L.K.; Jat, R.D.; Jat, H.S.; Jat, M.L. Impact of Climate-Smart Agricultural Practices on Growth and Crop Yields of Rice (Oryza Sativa)-Wheat (Triticum Aestivum) System in North-Western Indo-Gangetic Plains. Indian J. Agric. Sci. 2018, 88, 1543–1551. [Google Scholar]
- Hossain, A.; Bhatt, R. Intervention of Climate Smart Technologies for Improving Water Productivity in an Enormous Water Use Rice-Wheat System of South-Asia. Int. Lett. Nat. Sci. 2019, 75, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Kiwia, A.; Kimani, D.; Harawa, R.; Jama, B.; Sileshi, G.W. Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa. Sustainability 2019, 11, 2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, L.E.; Orero, L.; Namoi, N.; Neufeldt, H. How to Effectively Enhance Sustainable Livelihoods in Smallholder Systems: A Comparative Study from Western Kenya. Sustainability 2019, 11, 1564. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, C.J.; Vedeld, P.O.; Petursson, J.G.; Chemarum, A.K. Agency, Inequality, and Additionality: Contested Assemblages of Agricultural Carbon Finance in Western Kenya. J. Peasant Stud. 2020. [Google Scholar] [CrossRef]
- Chinseu, E.L.; Dougill, A.J.; Stringer, L.C. Strengthening Conservation Agriculture Innovation Systems in Sub-Saharan Africa: Lessons from a Stakeholder Analysis. Int. J. Agric. Sustain. 2021. [Google Scholar] [CrossRef]
- Gérardeaux, E.; Loison, R.; Palaï, O.; Sultan, B. Adaptation Strategies to Climate Change Using Cotton (Gossypium Hirsutum L.) Ideotypes in Rainfed Tropical Cropping Systems in Sub-Saharan Africa. A Modeling Approach. Field Crops Res. 2018, 226, 38–47. [Google Scholar] [CrossRef]
- Machekano, H.; Mvumi, B.M.; Nyamukondiwa, C. Diamondback Moth, Plutella Xylostella (L.) in Southern Africa: Research Trends, Challenges and Insights on Sustainable Management Options. Sustainability 2017, 9, 91. [Google Scholar] [CrossRef] [Green Version]
- Ofori, M.; El-Gayar, O. The state and future of smart agriculture: Insights from mining social media. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data); Baru, C., Huan, J., Khan, L., Hu, X.T., Ak, R., Tian, Y., Barga, R., Zaniolo, C., et al., Eds.; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 5152–5161. [Google Scholar]
- Whitfield, S.; Benton, T.G.; Dallimer, M.; Firbank, L.G.; Poppy, G.M.; Sallu, S.M.; Stringer, L.C. Sustainability Spaces for Complex Agri-Food Systems. Food Secur. 2015, 7, 1291–1297. [Google Scholar] [CrossRef]
- Whitfield, S.; Challinor, A.J.; Rees, R.M. Frontiers in Climate Smart Food Systems: Outlining the Research Space. Front. Sustain. Food Syst. 2018, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W. Sustainable Agricultural Development in a Rural Area in the Netherlands? Assessing Impacts of Climate and Socio-Economic Change at Farm and Landscape Level. Agric. Syst. 2015, 141, 160–173. [Google Scholar] [CrossRef]
- Cesco, S.; Pii, Y.; Borruso, L.; Orzes, G.; Lugli, P.; Mazzetto, F.; Genova, G.; Signorini, M.; Brunetto, G.; Terzano, R.; et al. A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Appl. Sci. 2021, 11, 907. [Google Scholar] [CrossRef]
- Imran, M.A.; Ali, A.; Ashfaq, M.; Hassan, S.; Culas, R.; Ma, C. Impact of Climate Smart Agriculture (CSA) through Sustainable Irrigation Management on Resource Use Efficiency: A Sustainable Production Alternative for Cotton. Land Use Policy 2019, 88, 104113. [Google Scholar] [CrossRef]
- Moreno, A.; Bhattacharyya, A.; Jansen, L.; Arkeman, Y.; Hartanto, R.; Kleinke, M. Environmental engineering and sustainability for smart agriculture: The application of UAV-based remote sensing to detect biodiversity in oil palm plantations. In Proceedings of the IOP Conference Series: Earth and Environmental Science; Institute of Physics Publishing: Bristol, UK, 2019; Volume 335. [Google Scholar]
- Nasser, F.; Maguire-Rajpaul, V.A.; Dumenu, W.K.; Wong, G.Y. Climate-Smart Cocoa in Ghana: How Ecological Modernisation Discourse Risks Side-Lining Cocoa Smallholders. Front. Sustain. Food Syst. 2020, 4, 73. [Google Scholar] [CrossRef]
- Noponen, M.R.A.; Góngora, C.; Benavides, P.; Gaitán, A.; Hayward, J.; Marsh, C.; Stout, R.; Wille, C. Environmental Sustainability-Farming in the Anthropocene. In The Craft and Science of Coffee; Elsevier Inc.: New York, NY, USA, 2017; pp. 81–107. ISBN 9780128035580. [Google Scholar]
- Mohanty, S.; Mohanta, B.; Nanda, P.; Sen, S.; Patnaik, S. Smart Village Initiatives: An Overview; Modeling and Optimization in Science and Technologies; Springer: Berlin/Heidelberg, Germany, 2020; Volume 17, pp. 3–24. ISSN 21967326. [Google Scholar]
- Mukherjee, P.; Barik, R.K.; Pradhan, C. A Comprehensive Proposal for Blockchain-Oriented Smart City; Studies in Systems, Decision and Control; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2021; Volume 308, pp. 55–87. [Google Scholar]
- Goparaju, L.; Ahmad, F. Analyzing the Risk Related to Climate Change Attributes and Their Impact, a Step towards Climate-Smart Village (CSV): A Geospatial Approach to Bring Geoponics Sustainability in India. Spat. Inf. Res. 2019, 27, 613–625. [Google Scholar] [CrossRef]
- Amadu, F.O.; McNamara, P.E.; Miller, D.C. Understanding the Adoption of Climate-Smart Agriculture: A Farm-Level Typology with Empirical Evidence from Southern Malawi. World Dev. 2020, 126, 104692. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. The Diffusion of Climate-Smart Agricultural Innovations: Systems Level Factors That Inhibit Sustainable Entrepreneurial Action. J. Clean. Prod. 2019, 232, 993–1004. [Google Scholar] [CrossRef]
- Greenland, S.; Levin, E.; Dalrymple, J.F.; O’Mahony, B. Sustainable Innovation Adoption Barriers: Water Sustainability, Food Production and Drip Irrigation in Australia. Soc. Responsib. J. 2019, 15, 727–741. [Google Scholar] [CrossRef]
- Long, T.B.; Blok, V.; Coninx, I. Barriers to the Adoption and Diffusion of Technological Innovations for Climate-Smart Agriculture in Europe: Evidence from the Netherlands, France, Switzerland and Italy. J. Clean. Prod. 2016, 112, 9–21. [Google Scholar] [CrossRef]
- Kibria, G.; Haroon, A.K.Y.; Nugegoda, D. An Innovative Model for Engagement of Rural Citizens/Community of Bangladesh with Climate Change. J. Clim. Chang. 2017, 3, 73–80. [Google Scholar] [CrossRef]
- Osorio-Garcia, A.M.; Paz, L.; Howland, F.; Ortega, L.A.; Acosta-Alba, I.; Arenas, L.; Chirinda, N.; Martinez-Baron, D.; Bonilla Findji, O.; Loboguerrero, A.M.; et al. Can an Innovation Platform Support a Local Process of Climate-Smart Agriculture Implementation? A Case Study in Cauca, Colombia. Agroecol. Sustain. Food Syst. 2020, 44, 378–411. [Google Scholar] [CrossRef]
- Vernooy, R.; Bouroncle, C.; Roque, V.S.; García, J.R. Sustainable Territories Adapted to the Climate: Insights from a New University Course Designed and Delivered in Guatemala. Sustainability 2020, 12, 4978. [Google Scholar] [CrossRef]
- Castillo, K.; Cabrera-Rios, M.; Persans, M.W.; DeYoe, H.R. Engaging minority students in sustainable bioenergy and water quality through an education and research network. In Proceedings of the 2016 ASEE Annual Conference & Exposition, New Orleans, LA, USA, 26 June–29 June 2016; American Society for Engineering Education: Washington, DC, USA, 2016; Volume 2016. [Google Scholar]
- Taneja, G.; Pal, B.D.; Joshi, P.K.; Aggarwal, P.K.; Tyagi, N.K. Farmers’ preferences for climate-smart agriculture-an assessment in the indo-gangetic plain. In Climate Smart Agriculture in South Asia: Technologies, Policies and Institutions; Springer: Singapore, 2019; pp. 91–111. ISBN 9789811081712. [Google Scholar]
- Ologeh, I.O.; Akarakiri, J.B.; Adesina, F.A. Promoting Climate Smart Agriculture Through Space Technology in Nigeria; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2016; pp. 99–112. [Google Scholar]
- Drexler, K. Climate-Smart Adaptations and Government Extension Partnerships for Sustainable Milpa Farming Systems in Mayan Communities of Southern Belize. Sustainability 2021, 13, 3040. [Google Scholar] [CrossRef]
- Dung, L.T. Factors Influencing Farmers’ Adoption of Climate-Smart Agriculture in Rice Production in Vietnam’s Mekong Delta. Asian J. Agric. Dev. 2020, 17, 109–124. [Google Scholar] [CrossRef]
- Obasi, P.C.; Chikezie, C. SMART Agriculture and Rural Farmers Adaptation Measures to Climate Change in Southeast Nigeria: Implications for Sustainable Food Security; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 813–833. [Google Scholar]
- Rampa, A.; Gadanakis, Y.; Rose, G. Land Reform in the Era of Global Warming—Can Land Reforms Help Agriculture Be Climate-Smart? Land 2020, 9, 471. [Google Scholar] [CrossRef]
- Czekaj, M.; Adamsone-Fiskovica, A.; Tyran, E.; Kilis, E. Small Farms’ Resilience Strategies to Face Economic, Social, and Environmental Disturbances in Selected Regions in Poland and Latvia. Glob. Food Secur. 2020, 26, 100416. [Google Scholar] [CrossRef]
Keyword | Occurrences | Average Publication Year |
---|---|---|
sustainability | 49 | 2019 |
climate change | 44 | 2019 |
climate-smart agriculture | 39 | 2019 |
agriculture | 33 | 2019 |
sustainable development | 30 | 2019 |
smart agriculture | 24 | 2020 |
agricultural robots | 17 | 2020 |
food security | 17 | 2018 |
internet of things | 16 | 2020 |
alternative agriculture | 12 | 2018 |
adaptation | 11 | 2018 |
irrigation | 11 | 2019 |
sustainable agriculture | 11 | 2020 |
crops | 10 | 2019 |
environmental sustainability | 9 | 2019 |
adoption | 8 | 2019 |
farming system | 8 | 2020 |
greenhouse gases | 8 | 2019 |
mitigation | 8 | 2018 |
agroforestry | 7 | 2018 |
conservation agriculture | 7 | 2019 |
food supply | 7 | 2018 |
adaptive management | 6 | 2017 |
carbon sequestration | 6 | 2019 |
cultivation | 6 | 2018 |
resilience | 6 | 2019 |
rice | 6 | 2018 |
smallholder | 6 | 2019 |
smart farming | 6 | 2020 |
sustainable intensification | 6 | 2019 |
wireless sensor networks | 6 | 2019 |
agricultural development | 5 | 2017 |
environmental technology | 5 | 2018 |
greenhouse gas | 5 | 2019 |
wheat | 5 | 2018 |
agricultural ecosystem | 4 | 2018 |
agricultural production | 4 | 2018 |
agrometeorology | 4 | 2019 |
agronomy | 4 | 2019 |
biodiversity | 4 | 2019 |
coffee | 4 | 2019 |
crop production | 4 | 2017 |
crop yield | 4 | 2018 |
drought | 4 | 2018 |
ecosystem services | 4 | 2018 |
efficiency | 4 | 2020 |
fertilizers | 4 | 2019 |
impacts | 4 | 2019 |
india | 4 | 2019 |
innovation | 4 | 2019 |
Keyword | Cluster |
---|---|
sustainability | 1 |
climate change | 1 |
climate-smart agriculture | 1 |
agriculture | 1 |
sustainable development | 1 |
smart agriculture | 1 |
agricultural robots | 1 |
internet of things | 1 |
sustainable agriculture | 1 |
farming system | 1 |
smart farming | 1 |
food security | 2 |
alternative agriculture | 2 |
adaptation | 2 |
irrigation | 2 |
environmental sustainability | 2 |
mitigation | 2 |
agroforestry | 2 |
carbon sequestration | 2 |
resilience | 2 |
smallholder | 2 |
agrometeorology | 2 |
agronomy | 2 |
biodiversity | 2 |
coffee | 2 |
fertilizers | 2 |
impacts | 2 |
india | 2 |
crops | 3 |
adoption | 3 |
greenhouse gases | 3 |
conservation agriculture | 3 |
sustainable intensification | 3 |
wireless sensor networks | 3 |
greenhouse gas | 3 |
efficiency | 3 |
innovation | 3 |
food supply | 4 |
cultivation | 4 |
rice | 4 |
environmental technology | 4 |
wheat | 4 |
agricultural production | 4 |
ecosystem services | 4 |
adaptive management | 5 |
agricultural development | 5 |
agricultural ecosystem | 5 |
crop production | 5 |
crop yield | 5 |
drought | 5 |
References | Main Highlights |
---|---|
[2] | The new technologies and approaches are not exempt of risks and vulnerabilities |
[40] | CSA approach is a promising solution for the sustainability |
[41] | Some studies use the terminology of Environment-Smart Agriculture (ESA) |
[19] | CSA is a concept presented by FAO in 2010, is known as the “triple win” approach |
[42] | CSA practices improve the soil resilience and quality |
[43] | The Internet of Things (IoT) and the Internet of Everything (IoE) may bring relevant added value for the farms |
[44] | The wireless sensor network is an interesting tool to collect data |
[45] | The biosensors are other techniques to collect information |
[46] | Mobile applications, big data analytics and information systems, cloud computing, drones, blockchain, artificial intelligence |
[47] | An efficient use of the agriculture resources, such as water, soil and energy, is crucial for competitiveness and food and security |
[48] | Agriculture is one of the most vulnerable sectors to the global warming |
[49] | The agricultural sector contributes with about a third of the anthropogenic GHG emissions worldwide |
[50] | The eco-efficiency is the buzzword for the sustainability |
[51] | The rice-wheat cropping systems concern particularly the researchers specifically in South Asia |
[52] | Africa is another world region where it is important to promote cleaner farming systems |
[53] | Sometimes the sustainable practices are misunderstood in these countries |
[54] | In other cases and contexts there is not a convergent view about the CSA practices |
[20] | CSA concept has a narrow perspective about the current farming contexts and a wider debate is needed |
[55] | Rural development may benefit from the concept of smart villages |
[56] | Sometimes is easier to convince the entrepreneurs than the policymakers |
[57] | For an effective CSA implementation the farmers should be involved in the policy design process |
[58] | Vocational training and the extension services may contribute for the adoption of the CSA practices |
[59] | The European Union invested over the last years a significant part of its budget to promote CSA practices |
References | Particularities and Solutions |
---|---|
[119] | Fodder banks |
[120] | Fermentation of agricultural waste |
[121] | Models to identify tomato ripeness |
[122] | No-tillage, waste management, and agricultural diversification |
[123] | Conservation agriculture |
[124] | Based on conservation tillage systems |
[125] | Nanotechnology |
[126] | Including for carbon management in soil |
[127] | Drought-tolerant seeds |
[128] | Integrated pest control, combined crop-animal agriculture and organic composting |
[129] | Fertilizer trees and shrubs |
[130] | Terrace landscapes |
[131] | Annual crops planted with coconuts |
[132] | Agroforestry structures |
[133] | Microalgae |
[134] | Dambo cultivation |
[135] | Valorisation of agro-food byproducts |
[136] | Traditional agriculture |
[137] | Integrated farming systems |
[138] | ‘4R’ approach (right source, right rate, right time, right place) |
[139] | Agronomic rotations and cover cropping |
[140] | “Positive Deviance” (identifying practices from farms with higher performance) |
[141] | Genetic strategies |
[142] | Vertical farming |
[143] | In the cities |
[144] | Crop residues management through principles of bioeconomy |
[145] | Certification strategies |
Policy and Future Studies Suggestions | |
---|---|
Policy recommendations |
|
Limitations |
|
Future research suggestions |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinho, V.J.P.D.; Guiné, R.d.P.F. Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept. Agronomy 2021, 11, 1568. https://doi.org/10.3390/agronomy11081568
Martinho VJPD, Guiné RdPF. Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept. Agronomy. 2021; 11(8):1568. https://doi.org/10.3390/agronomy11081568
Chicago/Turabian StyleMartinho, Vítor João Pereira Domingues, and Raquel de Pinho Ferreira Guiné. 2021. "Integrated-Smart Agriculture: Contexts and Assumptions for a Broader Concept" Agronomy 11, no. 8: 1568. https://doi.org/10.3390/agronomy11081568