Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Locations and Weather Conditions
2.2. Treatments, Experimental Design, and Crop Management
2.3. Yield and Quality Determinations and Analyses
2.4. N-Use Efficiency Indexes
2.5. Statistical Analysis
3. Results
3.1. Yield and Quality of Cured Products
3.2. NUE, N-Uptake Efficiency, and N-Utilization Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2010; Volume 30, pp. 43–55. [Google Scholar]
- Bindraban, P.S.; Dimkpa, C.; Nagarajan, L.; Roy, A.; Rabbinge, R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol. Fertil. Soils 2015, 51, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, D.R.; Sequinatto, L.; Reinert, D.J.; Reichert, J.M.; Rheinheimer, D.S.; Dalbianco, L. High nitrogen fertilization of tobacco crop in headwater watershed contaminates subsurface and well waters with nitrate. J. Chem. 2015, 375092. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess. 2016, 188, 172. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 1–24. [Google Scholar]
- Food and Agriculture Organization. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 17 July 2021).
- Nitrate Directive (ND; 91/676/EEC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0676&from=EN (accessed on 17 July 2021).
- Weih, M.; Asplund, L.; Bergkvist, G. Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant Soil 2011, 339, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Muchow, R.C. Nitrogen utilization efficiency in maize and grain sorghum. Field Crop. Res. 1998, 56, 209–216. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Echeverría, H.E.; Saínz Rozas, H.R.; Andrade, F.H. Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agrono. J. 2008, 100, 1094–1100. [Google Scholar] [CrossRef]
- de Carvalho, E.V.; Afférri, F.S.; Peluzio, J.M.; Dotto, M.A.; Cancellier, L.L. Nitrogen use efficiency in corn (Zea mays L) genotypes under different conditions of nitrogen and seeding date. Maydica 2012, 57, 43–48. [Google Scholar]
- Asseng, S.; Turner, N.C.; Keating, B.A. Analysis of water-and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant Soil 2001, 233, 127–143. [Google Scholar] [CrossRef]
- Ravier, C.; Meynard, J.M.; Cohan, J.P.; Gate, P.; Jeuffroy, M.H. Early nitrogen deficiencies favor high yield, grain protein content and N use efficiency in wheat. Eur. J. Agron. 2017, 89, 16–24. [Google Scholar] [CrossRef]
- de Oliveira Silva, A.; Ciampitti, I.A.; Slafer, G.A.; Lollato, R.P. Nitrogen utilization efficiency in wheat: A global perspective. Eur. J. Agron. 2020, 114, 126008. [Google Scholar] [CrossRef]
- Lüder, R.M.H.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Herrera, J.M.; Noulas, C. Small-Scale variation in nitrogen use efficiency parameters in winter wheat as affected by N fertilization and tillage intensity. Sustainability 2020, 12, 3621. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.P.; Wagentristl, H. Efficiency of mineral nitrogen fertilization in winter wheat under Pannonian climate conditions. Agriculture 2020, 10, 541. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Sacco, A.; Senatore, M.; Mori, M. Organic versus mineral fertilization: Assessing of yield and quality of durum wheat in marginal lands. Ital. J. Agron. 2021, 16. [Google Scholar] [CrossRef]
- Badr, M.A.; Shedeed, S.I.; Hussein, S.D.A. Tomato fruit yield and nitrogen use efficiency as affected by drip irrigation method and rate of nitrogen in a hot dry climate. J. Appl. Sci. Res. 2012, 8, 4486–4495. [Google Scholar]
- Du, Y.D.; Cao, H.X.; Liu, S.Q.; Gu, X.B.; Cao, Y.X. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Ridoutt, B.G.; Lal, R.; Wang, D.; Wu, W.; Peng, P.; Hang, S.; Wang, L.; Zhao, G. Nitrogen footprint and nitrogen use efficiency of greenhouse tomato production in North China. J. Clean. Prod. 2019, 208, 285–296. [Google Scholar] [CrossRef]
- Ronga, D.; Parisi, M.; Pentangelo, A.; Mori, M.; Di Mola, I. Effects of nitrogen management on biomass production and dry matter distribution of processing tomato cropped in southern Italy. Agronomy 2019, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 2021, 16, 1825. [Google Scholar]
- Zebarth, B.J.; Tai, G.; Tarn, R.D.; De Jong, H.; Milburn, P.H. Nitrogen use efficiency characteristics of commercial potato cultivars. Can. J. Plant Sci. 2004, 84, 589–598. [Google Scholar] [CrossRef]
- Hailu, G.; Nigussie, D.; Ali, M.; Derbew, B. Nitrogen and phosphorus use efficiency in improved potato (Solanum tuberosum L.) cultivars in southern Ethiopia. Am. J. Potato Res. 2017, 94, 617–663. [Google Scholar] [CrossRef]
- Milroy, S.P.; Wang, P.; Sadras, V.O. Defining upper limits of nitrogen uptake and nitrogen use efficiency of potato in response to crop N supply. Field Crop. Res. 2019, 239, 38–46. [Google Scholar] [CrossRef]
- Montemurro, F.; De Giorgio, D. Quality and nitrogen use efficiency of sunflower grown at different nitrogen levels under Mediterranean conditions. J. Plant Nutr. 2005, 28, 335–350. [Google Scholar] [CrossRef]
- Qahar, A.; Khan, Z.H.; Anwar, S.; Badshah, H.; Ullah, H. Nitrogen use efficiency, yield and other characteristics of sunflower Helianthus annuus L. hybrids as affected by different levels of nitrogen. Biyolojik Çeşitlilik Koruma 2010, 3, 121–125. [Google Scholar]
- Immanuel, R.R. Nutrient uptake and nutrient use efficiency of sunflower in response to Zn and B micronutrient fertilization. Plant Arch. 2019, 19, 543–547. [Google Scholar]
- Weih, M.; Hamnér, K.; Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, B.C.; Latimer, J.O.; Schwenke, G.D.; Nachimuthu, G.; Baird, J.C. The current status of nitrogen fertiliser use efficiency and future research directions for the Australian cotton industry. J. Cotton Res. 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Neupane, D.; Solomon, J.K.Q.; Davison, J.; Lawry, T. Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. GCB Bioenergy 2018, 10, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Bouchet, A.S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen use efficiency in rapeseed. A review. Agron. Sustain. Dev. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, R.; Parihar, C.M.; Yadav, R.K.; Jat, S.L.; Ram, H.; Meena, R.K.; Singh, M.; Verma, A.P.; Kumar, U.; et al. Strategies for improving nitrogen use efficiency: A review. Agric. Rev. 2017, 38, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Antille, D.L.; Moody, P.W. Nitrogen use efficiency indicators for the Australian cotton, grains, sugar, dairy and horticulture industries. Environ. Sustain. Indic. 2021, 10, 100099. [Google Scholar] [CrossRef]
- Mahmud, K.; Panday, D.; Mergoum, A.; Missaoui, A. Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability 2021, 13, 2400. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Sifola, M.I. Assessment of water quality used for irrigation of tobacco (Nicotiana tabacum L.) in the Campania region, Italy. In Proceedings of the Actes (Tome 4: Environnement et Nature) Congres Internationale Environnement et Identité en Mediterranée, Corte (Corse), France, 3–5 July 2002; pp. 645–650. [Google Scholar]
- Sifola, M.I.; Carrino, L.; Cozzolino, E.; Ianuario, S.; Lucibelli, A.; Coppola, A. A Survey of fertility program responses of Kentucky dark fire-cured Tobacco (Nicotiana tabacum L.) yield and quality for cigars manufacture in the Benevento province (Southern Italy). Beiträge zur Tabakforschung Int. Contrib. Tob. Res. 2018, 28, 14–29. [Google Scholar] [CrossRef] [Green Version]
- De Roo, H.C. Nitrate Fluctuation in Ground Water as Influenced by Use of Fertilizer; Connecticut Agrucultural Experimewnt Station, University of Connecticut: New Haven, CT, USA, 1980; p. 779. [Google Scholar]
- Kaiser, D.R.; Reinert, D.J.; Reichert, J.M.; Streck, C.A.; Pellegrini, A. Nitrate and ammonium in soil solution in tobacco management systems. Revista Brasileira de Ciência do Solo 2010, 34, 379–388. [Google Scholar] [CrossRef]
- Sifola, M.I.; Postiglione, L. The effect of nitrogen fertilization on nitrogen use efficiency of irrigated and non-irrigated tobacco (Nicotiana tabacum L.). Plant Soil 2003, 252, 313–323. [Google Scholar] [CrossRef]
- Bailey, W.A. Effect of nitrogen rate on growth, yield, quality, and leaf chemistry of dark tobacco. Tob. Sci. 2014, 51, 13–22. [Google Scholar]
- Drake, M.P.; Vann, M.C.; Fisher, L.R. Nitrogen application rate influence on yield, quality, and chemical constituents of flue-cured tobacco, Part I: Application timing. Tob. Sci. 2015, 52, 11–17. [Google Scholar] [CrossRef]
- Sisson, V.A.; Rufty, T.W.; Williamson, R.E. Nitrogen-use efficiency among flue-cured tobacco genotypes. Crop Sci. 1991, 31, 1615–1620. [Google Scholar] [CrossRef]
- Teng, W.; Li, W.; Li, C. Comparison of N uptake and internal use efficiency in two tobacco varieties. Crop J. 2015, 3, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Jin, Q.; Wu, X.; Yao, Y.; Zhang, Z. Impact of top-pruning time on the fertilizer N use efficiency of flue-cured tobacco as assessed by 15N tracing technique. Arch. Agron. Soil Sci. 2017, 63, 1324–1335. [Google Scholar] [CrossRef]
- Andrade, A.B.; Guelfi, D.R.; Faquin, V.; Coelho, F.S.; de CSouza, C.S.; Faquin, G.P.; Souza, K.R.; Chagas, W.F. Genotypic variation in nitrogen use-efficiency traits of 28 Tobacco genotypes. Agronomy 2020, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Sifola, M.I.; Postiglione, L. The effect of nitrogen fertilization and irrigation on dry matter partitioning, yield and quality of tobacco (Nicotiana tabacum L.) Burley type. Agricoltura Mediterr. 2002, 132, 33–43. [Google Scholar]
- Lidzey, R.G.; Savage, G.P. An automated procedure for the determination of total alkaloids in cigarette smoke using on-line cyanogen chloride generation from low hazard starting materials. Beiträge Tab. Int. 1986, 13, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Sifola, M.I.; Cuocolo, B.; Postiglione, L. Effect of increasing nitrogen fertilization rate on yield and quality of Burley tobacco (Nicotiana tabacum L.) grown under stressed and well-watered conditions. Ital. J. Agron. 1998, 2, 117–125. [Google Scholar]
- Tso, T.C. Production, Physiology and Biochemistry of Tobacco Plant; Ideals Inc.: Beltsville, MD, USA, 1990; p. 753. [Google Scholar]
- Wang, J.; Yang, H.; Shi, H.; Zhou, J.; Bai, R.; Zhang, M.; Jin, T. Nitrate and nitrite promote formation of tobacco-specific nitrosamines via nitrogen oxides intermediates during postcured storage under warm temperature. J. Chem. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Shi, H.; Yang, H.; Zhou, J.; Wang, J.; Bai, R.; Xu, D. Difference between burley tobacco and flue-cured tobacco in nitrate accumulation and chemical regulation of nitrate and TSNA contents. J. Chem. 2017, 2017, 1–13. [Google Scholar]
- Shi, H.; Wang, R.; Bush, L.P.; Yang, H.; Fannin, F.F. The relationships between TSNAs and their precursors in burley tobacco from different regions and varieties. J. Food Agric. Environ. 2012, 10, 1048–1052. [Google Scholar]
- Garner, W.W.; Bacon, C.W.; Bowling, J.D.; Brown, D.E. The Nitrogen Nutrition of Tobacco; Technical Bul1etin No. 414; U.S. Department of Agriculture: Washington, DC, USA, 1934. [Google Scholar]
- Sims, J.L.; Sheen, S.J.; Grunwald, C.; Atkinson, W.O. Effects of nitrogen fertilization and stalk position on certain chemical and physical characteristics of three tobacco genotypes. Can. J. Plant Sci. 1975, 55, 485–490. [Google Scholar] [CrossRef]
- CTRI Central Tabacco Research Institute. Available online: https://ctri.icar.gov.in/for_quality.php (accessed on 6 July 2021).
- Davis, D.L.; Nielsen, M.T. (Eds.) Tobacco: Production, Chemistry and Technology. In The Quarterly Review of Biology; World Agriculture Series; Blackwell Science: Oxford, MA, USA; Malden, MA, USA, 1999; p. 480. [Google Scholar]
- Sims, J.L.; Palmer, G.K.; Wells, K.L. Factors affecting colors of cured Burley leaf. Soil Sci. News Views 1993, 105. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1105&context=pss_views (accessed on 17 August 2021).
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Texture | CE | SA | BN | ||||
---|---|---|---|---|---|---|---|
I Year | II Year | I Year | II Year | I Year | II Year | ||
_Sand | % | 52.8 | 42.8 | 45.8 | 45.8 | 55.5 | 54.8 |
_Silt | % | 22.7 | 30.8 | 22.2 | 23.4 | 21.5 | 22.8 |
_Clay | % | 24.5 | 26.4 | 32.0 | 30.8 | 23.0 | 22.4 |
Texture | SCL | SCL | SCL | SCL | SCL | SCL | |
Total N | g kg−1 | 0.86 | 0.82 | 0.89 | 0.87 | 1.26 | 1.16 |
P2O5 | mg kg−1 | 19.9 | 18.5 | 37.8 | 35.9 | 57.6 | 55.8 |
K2O | mg kg−1 | 220.7 | 250.3 | 350.8 | 320.8 | 235.7 | 233.4 |
Organic matter | g kg−1 | 10.0 | 9.4 | 13.0 | 11.4 | 17.0 | 15.0 |
NO3-N | mg kg−1 | 11.5 | 11.7 | 2.0 | 2.0 | 1.0 | 0.7 |
NH4-N | mg kg−1 | 3.5 | 2.7 | 20.5 | 14.7 | 16.5 | 13.0 |
pH | 7.20 | 7.22 | 7.30 | 7.27 | 6.80 | 6.93 | |
Electrical conductivity | dS m−1 | 0.139 | 0.142 | 0.136 | 0.137 | 0.170 | 0.115 |
Significance | Yield | Alkaloids | Nitrates | N Tot | FHC | L* | a*/b* | Score | NUE | NUp | NUt |
---|---|---|---|---|---|---|---|---|---|---|---|
Years (Y) | 0.01 | 0.01 | 0.01 | 0.01 | - | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Location (L) | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Fertilization (F) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Y x L | 0.01 | - | 0.01 | 0.05 | 0.05 | 0.01 | 0.01 | 0.05 | 0.01 | 0.05 | 0.05 |
Y x F | 0.01 | - | - | - | - | - | - | - | 0.01 | - | - |
L x F | - | - | 0.05 | 0.05 | 0.01 | 0.01- | 0.01 | 0.01 | - | - | 0.05 |
Y x L x F | - | - | - | - | - | - | - | - | - | - | - |
Treatments | Nitrates | N Total | Fire Holding Capacity | |
---|---|---|---|---|
mg kg−1 d.w. | % d.w. | s | ||
CE | N0 | 5957 gl | 3.17 ce | 5.1 h |
N50 | 7138 fh | 3.45 bd | 6.3 fg | |
N90 | 12,388 de | 3.60 ac | 7.4 e | |
N130 | 17,782 ac | 3.76 ab | 11.0 b | |
N170 | 18,909 ab | 3.71 ab | 12.8 a | |
N210 | 19,268 a | 3.94 a | 9.6 c | |
SA | N0 | 1257 l | 2.37 g | 3.5 i |
N50 | 1931 il | 2.84 ef | 4.0 i | |
N90 | 4223 hl | 2.88 ef | 5.4 gh | |
N130 | 6134 gl | 3.13 de | 7.1 ef | |
N170 | 7987 eh | 3.71 ab | 8.1 de | |
N210 | 12,770 ce | 3.70 ab | 5.6 gh | |
BN | N0 | 4095 hl | 2.58 fg | 5.9 gh |
N50 | 6908 fi | 3.16 de | 7.5 de | |
N90 | 10,214 dg | 3.33 bd | 8.5 d | |
N130 | 11,983 df | 3.44 bd | 11.4 b | |
N170 | 12,556 de | 3.48 bd | 13.6 a | |
N210 | 13,995 bd | 3.68 ab | 9.6 c | |
I year | CE | 14,449 a | 3.23 c | 8.6 c |
SA | 5282 b | 2.71 d | 5.9 d | |
BN | 4719 b | 3.04 c | 9.3 ab | |
II year | CE | 12,698 a | 3.97 a | 8.8 bc |
SA | 6152 b | 3.50 b | 5.3 d | |
BN | 15,198 a | 3.51 b | 9.6 a |
Treatments | L* | a*/b* | Score | |
---|---|---|---|---|
CE | N0 | 50.7 bc | 0.21 i | 3.9 i |
N50 | 49.5 cd | 0.30 fg | 4.7 fh | |
N90 | 47.8 ef | 0.31 f | 5.1 e | |
N130 | 45.4 gf | 0.39 de | 6.2 b | |
N170 | 44.2 hi | 0.41 cd | 7.1 a | |
N210 | 42.3 lm | 0.47 b | 5.1 e | |
SA | N0 | 53.9 a | 0.17 l | 3.0 l |
N50 | 51.3 b | 0.23 hi | 3.9 i | |
N90 | 50.1 bd | 0.28 g | 4.5 gh | |
N130 | 48.6 de | 0.31 f | 5.0 ef | |
N170 | 46.2 g | 0.36 e | 5.6 d | |
N210 | 43.7 il | 0.48 b | 4.4 h | |
BN | N0 | 51.1 b | 0.25 h | 3.8 i |
N50 | 46.4 fg | 0.30 fg | 4.6 gh | |
N90 | 46.2 g | 0.32 f | 4.9 eg | |
N130 | 45.1 g | 0.41 cd | 5.7 cd | |
N170 | 43.2 il | 0.42 c | 6.4 b | |
N210 | 41.3 m | 0.51 a | 4.6 fh | |
I year | CE | 47.4 b | 0.36 b | 5.6 a |
SA | 49.1 a | 0.33 c | 4.5 d | |
BN | 45.6 c | 0.37 a | 5.2 b | |
II year | CE | 45.9 c | 0.34 c | 5.1 b |
SA | 48.8 a | 0.29 d | 4.3 d | |
BN | 45.5 c | 0.36 ab | 4.8 c |
Treatments | NUE | N-Uptake Efficiency | N-Utilization Efficiency | |
---|---|---|---|---|
mg kg−1 | kg kg−1 | mg kg−1 | ||
I year | CE | 0.045 a | 1.01 a | 0.044 b |
SA | 0.041 b | 0.73 bc | 0.052 a | |
BN | 0.042 ab | 0.78 b | 0.052 a | |
II year | CE | 0.031 d | 0.83 b | 0.035 c |
SA | 0.031 d | 0.62 c | 0.046 ab | |
BN | 0.035 c | 0.76 bc | 0.043 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sifola, M.I.; Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Piccirillo, G.; del Piano, L.; Mori, M. Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management. Agronomy 2021, 11, 1837. https://doi.org/10.3390/agronomy11091837
Sifola MI, Di Mola I, Cozzolino E, Ottaiano L, Piccirillo G, del Piano L, Mori M. Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management. Agronomy. 2021; 11(9):1837. https://doi.org/10.3390/agronomy11091837
Chicago/Turabian StyleSifola, Maria Isabella, Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Gennaro Piccirillo, Luisa del Piano, and Mauro Mori. 2021. "Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management" Agronomy 11, no. 9: 1837. https://doi.org/10.3390/agronomy11091837
APA StyleSifola, M. I., Di Mola, I., Cozzolino, E., Ottaiano, L., Piccirillo, G., del Piano, L., & Mori, M. (2021). Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management. Agronomy, 11(9), 1837. https://doi.org/10.3390/agronomy11091837