Design and Implementation of Artificial Intelligence of Things for Tea (Camellia sinensis L.) Grown in a Plant Factory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Concept
2.2. Implementation of the AIoT Platform
2.2.1. Double-Layer Planting Shelf with LEDs
2.2.2. Mist and CO2 Generators
2.2.3. Environmental Measurement and Control
2.2.4. Image Measurement
2.2.5. Data Query and Display
2.3. Cultivation Environment
3. Experiments and Results
3.1. Data Processing and Recording
3.2. Results
3.2.1. Leaf Trait Extraction
3.2.2. LED Light Treatment
- First stage
- 2.
- Second stage
3.2.3. Environmental Control
4. Discussion
4.1. Performance of Environmental Control
4.2. Effect of Tea Plant Growth Response on LED Lighting Treatment
4.3. Effect of LED Lighting on Leaf Trait Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Boyer, J.S. Plant productivity and environment. Science 1982, 218, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Chapter 7: Food Security and Food Production Systems. In Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chan; Cambridge University Press: Cambridge, UK, 2014; pp. 485–533. [Google Scholar]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J. Global climate change increases risk of crop yield losses and food insecurity in the tropical andes. Glob. Chang. Biol. 2018, 24, e592–e602. [Google Scholar] [CrossRef] [PubMed]
- Gitz, V.; Meybeck, A.; Lipper, L.; de Young, C.; Braatz, S. Climate Change and Food Security: Risks and Responses; Food & Agriculture Organization of the United Nations (FAO): Rome, Italy, 2016; ISBN 9789251089989. [Google Scholar]
- Pawlak, K.; Smutka, L.; Kotyza, P. Agricultural Potential of the EU Countries: How Far Are They from the USA? Agriculture 2021, 11, 282. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory an Indoor Vertical Farming System for Efficient Quality Food Production, 2nd ed.; Academic Press: San Diego, CA, USA, 2019; ISBN 9780128166925. [Google Scholar]
- Ahmed, H.A.; Tong, Y.X.; Yang, Q.C. Lettuce plant growth and tipburn occurrence as affected by airflow using a multi-fan system in a plant factory with artificial light. J. Therm. Biol. 2020, 88, 102496. [Google Scholar] [CrossRef]
- Quan, Q.; Zhang, X.; Xue, X.Z. Design and implementation of a closed-loop plant factory. IFAC-PapersOnLine 2018, 51, 353–358. [Google Scholar] [CrossRef]
- Kalia, P.; Ansari, M.A. IoT based air quality and particulate matter concentration monitoring system. Mater. Today 2020, 32, 468–475. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things Is a Revolutionary Approach for Future Technology Enhancement: A Review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; AbdRahman, M.K.I.; Otuoze, A.O.; Ramli, M.S.A.; Ijike, O.D. IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Inf. Process. Agric. 2020, 8, 270–283. [Google Scholar] [CrossRef]
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Chang, C.L.; Chung, S.C.; Fu, W.L.; Huang, C.C. Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosyst. Eng. 2021, 212, 77–105. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of Agricultural IoT Technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Chang, C.L.; Fu, W.L. A feature extraction approach based on Hough transform to estimate growth responses of leaf lettuce. In Proceedings of the 2019 Boston, MA, USA, July 7–July 10 2019; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Dyrmann, M.; Karstoft, H.; Midtiby, H.S. Plant species classification using deep convolutional neural network. Biosyst. Eng. 2016, 151, 72–80. [Google Scholar] [CrossRef]
- Barré, P.; Stöver, B.C.; Müller, K.F.; Steinhage, V. LeafNet: A computer vision system for automatic plant species identification. Ecol. Inform. 2017, 40, 50–56. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V.; Costa, L. Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Comput. Electron. Agric. 2020, 174, 105457. [Google Scholar] [CrossRef]
- Chaudhary, P.; Chaudhari, A.K.; Cheeran, A.N.; Godara, S. Color Transform Based Approach For Disease Spot Detection On Plant Leaf. Int. J. Comput. Sci. Telecomm. 2012, 3, 65–70. [Google Scholar]
- Singh, V.; Sharma, N.; Singh, S. A review of imaging techniques for plant disease detection. Artif. Intell. Agric. 2020, 4, 229–242. [Google Scholar] [CrossRef]
- Tugrul, B.; Elfatimi, E.; Eryigit, R. Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture 2022, 12, 1192. [Google Scholar] [CrossRef]
- Dhaka, V.S.; Meena, S.V.; Rani, G.; Sinwar, D.; Kavita; Ijaz, M.F.; Woźniak, M. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases. Sensors 2021, 21, 4749. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Misra, A.K. Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 2017, 4, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, Q.; Gao, L. Visual tea leaf disease recognition using a convolutional neural network model. Symmetry 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Wagle, S.A.; Harikrishnan, R.; Ali, S.H.M.; Faseehuddin, M. Classification of Plant Leaves Using New Compact Convolutional Neural Network Models. Plants 2022, 11, 24. [Google Scholar] [CrossRef]
- Hu, G.; Yang, X.; Zhang, Y.; Wan, M. Identification of tea leaf diseases by using an improved deep convolutional neural network. Sustain. Comput. Inform. Syst. 2019, 24, 100353. [Google Scholar] [CrossRef]
- Yogeshwari, M.; Thailambal, G. Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks. Mater. Today Proc. 2021, in press. [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv arXiv:1804.02767, 2018. [CrossRef]
- Huang, C.C.; Chen, H.W.; Chang, C.L. Deep Learning and IoT Technology Applied to Monitor the Growth of Tea Trees Indoors under Artificial Lighting. ID:2489. In Proceedings of the AgEng 2021 Conference, Évora, Portugal, 5–8 July 2021. [Google Scholar]
- Khan, N.; Mukhtar, H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Bhardwaj, V.K.; Sharma, J.; Purohit, R.; Kumar, S. In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. J. Tradit. Complement. Med. 2022, 12, 35–43. [Google Scholar] [CrossRef]
- Jayasinghe, S.L.; Kumar, L. Modeling the climate suitability of tea [Camellia sinensis (L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. For. Meteorol. 2019, 272–273, 102–117. [Google Scholar] [CrossRef]
- De Costa, W.A.J.M.; Mohotti, A.J.; Wijeratne, M.A. Ecophysiology of tea. Braz. J. Plant Physiol. 2007, 19, 299–332. [Google Scholar] [CrossRef]
- Roy, S.; Barooah, A.K.; Ahmed, K.Z.; Baruah, R.D.; Prasad, A.K.; Mukhopadhyay, A. Impact of climate change on tea pest status in northeast India and effective plans for mitigation. Acta Ecologica Sinica 2020, 40, 432–442. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Folta, K.M.; Childers, K.S. Light as a growth regulator: Controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 2008, 43, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.H.; Huang, M.Y.; Huang, W.D.; Hsu, M.H.; Yang, Z.W.; Yang, C.M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa, L. Var. Capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.-O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 50, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, M.O.K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Runkle, E.S. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation. PLoS ONE 2018, 13, e0202386. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.L.; Chang, K.P. The growth response of leaf lettuce at different stages to multiple wavelength-band light-emitting diode lighting. Sci. Hortic. 2014, 179, 78–84. [Google Scholar] [CrossRef]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Tong, Y.; Li, L.; Sahari, S.Q.; Almogahed, A.M.; Cheng, R. Integrative effects of CO2 concentration, illumination intensity and air speed on the growth, gas exchange and light use efficiency of lettuce plants grown under artificial lighting. Horticulturae 2022, 8, 270. [Google Scholar] [CrossRef]
- Xu, D.; Ahmed, H.A.; Tong, Y.; Yang, Q.; van Willigenburg, L.G. Optimal control as a tool to investigate the profitability of a Chinese plant factory-lettuce production system. Biosyst. Eng. 2021, 208, 319–332. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, S.; Fu, R.; Ting, K.C.; Lin, T. Data-Driven Modeling for Crop Growth in Plant Factories. In Sensing, Data Managing, and Control Technologies for Agricultural Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 101–129. ISBN 9783031038334. [Google Scholar]
- Chang, C.L.; Chang, K.P. Design and implementation of a cloud-based LED Lighting control system for protected horticulture. Appl. Eng. Agric. 2016, 32, 697–706. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 9783662039410. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Computer Vision—ECCV 2014; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. ISBN 9783319106014. [Google Scholar]
- Wang, C.Y.; Liao, H.Y.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A New Backbone That Can Enhance Learning Capability of CNN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 1571–1580. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. In Computer Vision—ECCV 2014; Springer International Publishing: Cham, Switzerland, 2014; pp. 346–361. ISBN 9783319105772. [Google Scholar]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: London, England, 2012; ISBN 9780262018029. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proc. Conf. AAAI Artif. Intell. 2020, 34, 12993–13000. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [Green Version]
- Frąszczak, B.; Kula-Maximenko, M. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) for the Spectral Composition of Light. Agronomy 2021, 11, 1211. [Google Scholar] [CrossRef]
- Wei, K.; Wang, L.; Zhou, J.; He, W.; Zeng, J.; Jiang, Y.; Cheng, H. Catechin Contents in Tea (Camellia Sinensis) as Affected by Cultivar and Environment and Their Relation to Chlorophyll Contents. Food Chem. 2011, 125, 44–48. [Google Scholar] [CrossRef]
- de Carvalho Gonçalves, J.F.; de Sousa Barreto, D.C.; dos Santos Junior, U.M.; Fernandes, A.V.; Sampaio, P.d.T.B.; Buckeridge, M.S. Growth, Photosynthesis and Stress Indicators in Young Rosewood Plants (Aniba Rosaeodora Ducke) under Different Light Intensities. Braz. J. Plant Physiol. 2005, 17, 325–334. [Google Scholar] [CrossRef]
- Taylor, S.; Baker, D.; Owuor, P.; Orchard, J.; Othieno, C.; Gay, C. A Model for Predicting Black Tea Quality from the Carotenoid and Chlorophyll Composition of Fresh Green Tea Leaf. J. Sci. Food Agric. 1992, 58, 185–191. [Google Scholar] [CrossRef]
- Hasan, M.M.; Bashir, T.; Ghosh, R.; Lee, S.K.; Bae, H. An Overview of LEDs’ Effects on the Production of Bioactive Compounds and Crop Quality. Molecules 2017, 22, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suthaparan, A.; Torre, S.; Stensvand, A.; Herrero, M.L.; Pettersen, R.I.; Gadoury, D.M.; Gislerød, H.R. Specific Light-Emitting Diodes Can Suppress Sporulation of Podosphaera Pannosa on Greenhouse Roses. Plant Dis. 2010, 94, 1105–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.L.; Alferez, F.; Burns, J.K. Assessment of Blue Light Treatments on Citrus Postharvest Diseases. Postharvest Biol. Technol. 2013, 81, 81–88. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Honda, Y.; Arase, S. Red-light-induced resistance in broad bean (Viciafaba, L.) to leaf spot disease caused by Alternariatenuissima. J. Phytopathol. Phytopathol. Z. 2003, 151, 86–91. [Google Scholar] [CrossRef]
- Tokuno, A.; Ibaraki, Y.; Ito, S.I.; Araki, H.; Yoshimura, K.; Osaki, K. Disease Suppression in Greenhouse Tomato by Supplementary Lighting with 405 Nm LED. Environ. Contr. Biol. 2012, 50, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Fu, Y.N.; Li, T.L.; Wang, R. Effects of Different LED Light Wavelengths on the Resistance of Tomato against Botrytis Cinerea and the Corresponding Physiological Mechanisms. J. Integr. Agric. 2017, 16, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Kudo, R.; Ishida, Y.; Yamamoto, K. Effects of Green Light Irradiation on Induction of Disease Resistance in Plants. Acta Hortic. 2011, 907, 251–254. [Google Scholar] [CrossRef]
Lighting Treatments | LED Light Intensity (Unit: µmol∙m−2∙s−1; 15 cm Below the LED Tubes) | Total | |||
---|---|---|---|---|---|
360–500 nm | 500–600 nm | 600–760 nm | 360–760 nm | ||
First stage | A1 | 170 | 71 | 208 | 449 |
B1 | 36 | 22 | 82 | 140 | |
A2 | 73 | 75 | 192 | 340 | |
B2 | 93 | 72 | 208 | 373 | |
Second stage | A1 | 31 | 23 | 101 | 155 |
38 | 36 | 135 | 209 | ||
B1 | 31 | 25 | 94 | 150 | |
56 | 43 | 73 | 172 | ||
A2 | 29 | 22 | 94 | 145 | |
B2 | 19 | 13 | 118 | 150 |
Classes | AFOV | Accuracy | Precision | Recall | F1-Score | ||||
---|---|---|---|---|---|---|---|---|---|
No. 8 | No. 18 | No. 8 | No. 18 | No. 8 | No. 18 | No. 8 | No. 18 | ||
Number of Leaves | Narrow | 0.96 | 0.97 | 0.95 | 0.90 | 0.86 | 0.88 | 0.90 | 0.89 |
Wide | 0.92 | 0.91 | 0.91 | 0.88 | 0.81 | 0.82 | 0.86 | 0.85 | |
Average | 0.94 | 0.91 | 0.84 | 0.87 |
Classes | AFOV | Accuracy | Precision | Recall | F1-Score | ||||
---|---|---|---|---|---|---|---|---|---|
No. 8 | No. 18 | No. 8 | No. 18 | No. 8 | No. 18 | No. 8 | No. 18 | ||
Brown blight | Narrow | 0.91 | 0.93 | 0.93 | 0.99 | 0.94 | 0.94 | 0.93 | 0.96 |
Wide | 0.89 | 0.91 | 0.94 | 0.95 | 0.91 | 0.93 | 0.92 | 0.94 | |
White spot | Narrow | 0.85 | 0.88 | 0.97 | 0.99 | 0.88 | 0.89 | 0.92 | 0.94 |
Wide | 0.88 | 0.86 | 0.95 | 0.96 | 0.84 | 0.83 | 0.89 | 0.89 | |
Algal spot | Narrow | 0.95 | 0.77 | 0.90 | 0.94 | 0.90 | 0.91 | 0.90 | 0.92 |
Wide | 0.83 | 0.72 | 0.84 | 0.88 | 0.77 | 0.83 | 0.80 | 0.85 | |
Average | 0.87 | 0.94 | 0.88 | 0.91 |
Variety | Cultivation Zone | First Stage | Second Stage | ||
---|---|---|---|---|---|
Automatic | Manual | Automatic | Manual | ||
Taicha No. 18 | A1 | ||||
B1 | |||||
Taicha No. 8 | A2 | ||||
B2 |
Parameters Zone | Temperature (Degrees Celsius) | Humidity (%) | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Max. | Min. | FR | Mean | Max. | Min. | FR | |
A1 | 19.62 ± 0.51 z | 21.70 | 17.51 | 2.38 | 82.03 ± 8.54 | 97.95 | 66.28 | 9.78 |
B1 | 20.20 ± 0.40 | 23.12 | 15.50 | 2.65 | 79.48 ± 8.39 | 96.96 | 61.64 | 13.58 |
A2 | 19.04 ± 0.51 | 20.82 | 16.45 | 2.57 | 91.50 ± 2.75 | 100 | 81.61 | 9.78 |
B2 | 19.50 ± 0.49 | 21.41 | 17.51 | 2.23 | 92.68 ± 2.47 | 100 | 77.07 | 12.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-L.; Huang, C.-C.; Chen, H.-W. Design and Implementation of Artificial Intelligence of Things for Tea (Camellia sinensis L.) Grown in a Plant Factory. Agronomy 2022, 12, 2384. https://doi.org/10.3390/agronomy12102384
Chang C-L, Huang C-C, Chen H-W. Design and Implementation of Artificial Intelligence of Things for Tea (Camellia sinensis L.) Grown in a Plant Factory. Agronomy. 2022; 12(10):2384. https://doi.org/10.3390/agronomy12102384
Chicago/Turabian StyleChang, Chung-Liang, Cheng-Chieh Huang, and Hung-Wen Chen. 2022. "Design and Implementation of Artificial Intelligence of Things for Tea (Camellia sinensis L.) Grown in a Plant Factory" Agronomy 12, no. 10: 2384. https://doi.org/10.3390/agronomy12102384
APA StyleChang, C.-L., Huang, C.-C., & Chen, H.-W. (2022). Design and Implementation of Artificial Intelligence of Things for Tea (Camellia sinensis L.) Grown in a Plant Factory. Agronomy, 12(10), 2384. https://doi.org/10.3390/agronomy12102384