Next Article in Journal
Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique
Next Article in Special Issue
Smallholders’ Water Management Decisions in the Face of Water Scarcity from a Socio-Cognitive Perspective, Case Study of Viticulture in Mendoza
Previous Article in Journal
Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review
Previous Article in Special Issue
Exploring the Impact of Farmer Field Schools on the Adoption of Sustainable Agricultural Practices and Farm Production: A Case of Pakistani Citrus Growers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Ecosystem-Based Practices for Smallholders’ Adaptation to Climate Extremes: Evidence of Benefits and Knowledge Gaps in Latin America

1
Water Systems and Global Change, WIMEK School for Climate and Society, Wageningen University, 6708 PB Wageningen, The Netherlands
2
Gund Institute for the Environment, Vermont University, Burlington, VT 05405, USA
3
Animal Production Systems Group (APS), Wageningen University, 6708 WD Wageningen, The Netherlands
4
Institute of Environmental Sciences (CML), Environmental Biology, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
5
Monteverde Institute, Apdo. 69-5655, Monteverde, Puntarenas 83049, Costa Rica
6
Centre de Cooperation Internationale en Recherche Agronomique pour le Developpement-Unite Mixte de Recherche sur les Agrosystemes Biodiversifies (CIRAD-UMRABSys), Universite de Montpellier, 34398 Montpellier, France
7
ABSys, Université de Montpellier, International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM-IAMM), CIRAD, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National d’Enseignement Supérieur pour l’Agriculture, l’Alimentation et l’Environnement (Institut Agro), 34090 Montpellier, France
8
Mesoamerican Center of Sustainable Development of the Dry Tropics (CEMEDE), Universidad Nacional, Nicoya 50201, Costa Rica
9
Environmental and Natural Resource Economics, Wageningen University, 6708 PB Wageningen, The Netherlands
10
Climate Change Adaptation, Moore Centre for Science, Conservation International, Arlington, VA 22202, USA
11
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)-Unité Mixte de Recherche-Plant Health Institute of Montpellier (UMR-PHIM), 34398 Montpellier, France
12
PHIM, Université de Montpellier, CIRAD, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National d’Enseignement Supérieur pour l’Agriculture, l’Alimentation et l’Environnement (Institut Agro), Institut de Recherche pour le Développement (IRD), 34394 Montpellier, France
*
Author to whom correspondence should be addressed.
Agronomy 2022, 12(10), 2535; https://doi.org/10.3390/agronomy12102535
Submission received: 12 September 2022 / Revised: 5 October 2022 / Accepted: 11 October 2022 / Published: 17 October 2022

Abstract

:
Agricultural practices of smallholder farming systems of Latin America can play an important role in reducing their exposure to the risks associated with climate extremes. To date, however, there is no systematic analysis of scientific evidence for the extent to which these practices can provide the multiple benefits needed for smallholders to adapt to climate extremes. In this paper, we searched scientific databases to review scientific evidence of the benefit provided by twenty-six practices in crops commonly farmed by smallholders in the region and highly relevant for their food and nutrition security; namely, coffee, maize and beans. We reviewed scientific documents (n = 304) published in the period 1953–2021 to register evidence of the practices’ effects on fifty-five benefits. Our analysis of these documents found measurement records (n = 924) largely based on field experiments (85%). Our results show strong evidence of the multiple benefits that some ecosystem-based practices (e.g., tree-based practices for coffee and no tillage for maize) can provide to support the adaptation to climate extremes of smallholder farming systems and enhance a farm’s natural assets (e.g., biodiversity, water, soil). We also found that the majority of research on practices in the region focused more on the socioeconomic dimension (54%) rather than on the capacity of practices to improve the natural assets of a smallholder farmers or reduce the impact of climate extremes. Given these knowledge gaps, we discuss the importance of a renovated investment in research to address existing knowledge gaps. Our concluding suggestions for future research include the need for systematizing existing knowledge from different sources (e.g., peer-reviewed, gray literature, farmers, extension agencies, etc.), and to assess the extent to which these practices can provide multiple benefits for smallholder farming systems by improving their wellbeing, reducing their vulnerability to different hydroclimatic extremes while also contributing to ecosystem services provision at the landscape level.

1. Introduction

Smallholder farmers in developing countries are among the most vulnerable to climate extreme events as these affect their agricultural production and livelihoods [1,2,3]. These impacts are especially critical for the almost 60 million smallholders in Latin America whose farms (of less than 2 ha; [4]) are a key source of income, food production and security [5,6,7,8]. Over the 2010–2020 decade, the region has experienced more than twice as many floods, drought and landslides than the 1970–1999 and 2000–2005 periods [9]. Observed increases in the number and frequency of precipitation extremes [10,11], high temperatures and unpredictable rainfall [12,13,14] have significantly reduced their crop yields, and caused increasing soil erosion, pests and diseases. In spite of the increasing occurrence and intensity of climate extremes and associated impacts on smallholder agriculture, there is still only limited and scattered information on which agricultural practices can help farmers reduce their vulnerability to climate change [7,15].
To date, adaptation initiatives to support smallholders farming in the region cannot count on a systematic assessment of the benefits provided by agricultural practices in the face of extreme climate events [16]. For some practices, evidence only exists for their benefits in other crops and/or regions. For example, Wezel and colleagues [17] examined the effectiveness of agricultural practices in Mediterranean farming systems (e.g., wheat, olive trees, vegetables and legumes) in increasing food production and minimizing exposure to climate risks. Similarly, other authors [18] reviewed the impacts of conservation agricultural practices (e.g., use of zero tillage, mulch and crop rotation) on the yields of important staple crops (maize, rice, wheat, sorghum, millet, cassava and cow-pea) in Sub-Saharan Africa and South Asia, but did not consider how these practices might reduce climate risks. Kremen and colleagues [19] reviewed the existing evidence for the capacity of biologically diversified and conventional farming systems worldwide to provide ecosystem services also in relation to extreme weather events. In Central America, there is evidence that smallholder farmers are already perceiving the negative impacts of climate change and extreme weather events on their crop production and are changing their farming practices in response [7,20]. However, to our knowledge, there is no systematic review for the Latin American region on (i) the evidence of the benefits of agricultural practices in reducing the impacts of extreme weather events on smallholder farming systems and (ii) the critical knowledge gaps that merit greater attention in agricultural adaptation research programs.
In this paper, we contribute to fill this gap by reviewing research on agricultural practices from the region in search of evidence of their contribution to reduce smallholder farmers’ vulnerability. For this, we examine scientific evidence of the climate change adaptation benefits of agricultural practices (particularly ecosystem-based adaptation practices) for coffee, maize and beans production in Latin America. Coffee, maize and beans are key crops in the region for a smallholders’ income, food production and security [21,22,23]. Sixty percent of global coffee production comes from Latin America accounting for 20–25 million smallholder coffee farmers mainly located in Brazil, Colombia, Peru, Mexico, and Central American countries [24,25]. Maize provides almost half of the daily dietary energy needs for people in the Americas, and, together with beans, are the main staple crops providing food security for smallholders in both Central and South America [26,27]. Thus, climate impacts on smallholder maize and bean production systems affects not only the livelihood opportunities (e.g., to sell harvests), but also achieving the basic nutritional needs [20,28] in producing countries, such as Brazil, Mexico, Colombia, and Central America [29,30,31]. These trends are expected to continue in the future due to ongoing increases in temperature and changing precipitation patterns [5,15,32]. The overall objectives of this study were to: (i) review the scientific evidence for how different agricultural practices reduce the impacts of climate extremes, (ii) to identify the socioeconomic and environmental benefits of these practices for farmers, and to (iii) identify main evidence gaps in the adaptation benefits of particular agricultural practices. We first explore the characteristics and relevance of ecosystem-based adaptation (EbA) practices for smallholders, i.e., practices based on the provision of ecosystem services that also take into consideration the needs and capacities of smallholders [33]. We also present the systematic review protocol implemented and the associated outcomes. We then summarize the scientific evidence through tables and diagrams that help visualize knowledge regarding the effects of agricultural practices on the climate change adaptation of coffee, beans and maize, and identify existing knowledge gaps. Finally, we examine the current state of evidence, identify promising EbA practices and suggest ideas for future research in the region and beyond.

1.1. Ecosystem-Based Agricultural Practices for Smallholder Farmer Adaptation

Many governments, NGOs and private companies are supporting the adoption and implementation of farming practices that reduce the impacts of climate extremes on crop production [34]. A range of agricultural practices are already available to farmers (e.g., [35]) and/or promoted by those initiatives. The extent to which these practices are actually apt for smallholder production contexts can depend on their contribution to the economic benefits, access to inputs (e.g., credit, technical assistance, etc.) and the extent of labor required [36]. Conventional practices for climate change adaptation can be technology-intensive such as drought- or heat-tolerant transgenic varieties, agrochemical fertilizers and pesticides [37,38], or investments in irrigation schemes [39]. Although these practices may reduce specific impacts of extreme events (e.g., tolerate water stress, eliminate pathogens), they can also expose farmers to additional risks. For example, irrigation schemes might promote over-exploitation of groundwater and thus increase exposure to dry extremes in the long run. Similarly, the use of agrochemicals can increase a smallholders’ dependence on external inputs from highly volatile markets (as shown by the recent increase in prices caused by COVID-19 market distribution failures; [40]).
Some adaptation practices can provide a wider range of co-benefits which are essential to maintain a smallholders’ ability to adapt while reducing their exposure to additional risks. According to [41], climate-smart agricultural (CSA) practices should be sustainable and tailored to the farmers context, provide adaptation benefits and food security while also reducing greenhouse gases emissions [41]. A recent global review of the benefits provided by climate-smart agricultural practices to smallholders found that ecosystem-based practices (e.g., conservation tillage, cereal-legume diversification, manure management) have the potential to provide economic and environmental benefits depending on the site conditions, farms’ characteristics (e.g., tenure, size, topography, etc.) and inputs required [36]. This is also stressed by authors highlighting the multiple benefits provided by ecosystem-based adaptation (EbA) practices [16,33,42] as they can contribute to three important elements of a smallholders’ production contexts; namely, (i) reduce the impacts of extreme weather events, (ii) rely on and promote the conservation of farms’ natural assets, (iii) are tailored to smallholder farmers production context being easy to adopt while reducing dependency on external inputs [33]. In other words, EbA practices can reduce the impacts of extreme weather events while relying on the use of biodiversity and ecosystem resources and processes that can be available in smallholder production contexts [33,42]. A concrete example of such multi-benefit practices is the use of trees in agroforestry systems which can enhance water use, storage and efficiency, soil overall fertility, pest and disease control, microclimate and habitat for favorable species while improving farms’ profit and income opportunities and stability [43,44].
In addition, many EbA practices (e.g., mulching, trees, native cultivars, etc.) that are already part of the local knowledge [45,46] have already been widely promoted by international and national initiatives [47,48] and are already being used by many coffee, maize and beans smallholders in the region [35]. In this article, we examined a suite of adaptation practices available to smallholder farmers in Latin America, including both EbA practices and conventional practices (e.g., transgenic hybrids, technified irrigation, etc.).

2. Materials and Methods

Our methodology included four steps; namely, search for documents, create a list of practices and benefits to be registered, review documents to register evidence, and synthesize results. In Appendix A we provide the PRISMA flow diagram of the systematic process followed to identify scientific documents while in the following sections we provide more details on each step and present their associated outputs.

2.1. Document Search

For the selection of research documents, we used Boolean operators to combine terms related to climate impacts (e.g., storm, drought, hurricane, etc.), agricultural practices (e.g., mulching, weed management, pest control, etc.), and effects of practices (e.g., on productivity, costs, phenology, disease, etc.). We included keywords (Appendix B) regarding the crop species, i.e., Latin and common names of coffee, bean and maize and the names of countries in the region. We searched Web of Knowledge (WOK), the Scientific Electronic Library Online (SciELO), the Alliance of Agricultural Information Services (SIDALC) and Scopus to include peer-reviewed and gray literature (i.e., thesis, conference papers, technical reports and books) published in English, Spanish and Portuguese spanning from no pre-defined beginning date until 2021. After eliminating documents from unrelated domains (e.g., medicine, astronomy, etc.), we reviewed the abstracts of documents to select only those which used field experiments and expert opinions (i.e., we excluded modelling studies or literature reviews).
We retrieved and reviewed the abstracts of 5233 documents from which we selected 304 documents which we reviewed in depth (Appendix C). As shown by Figure 1, the majority of the research documents were from Brazil and Mexico, followed (especially for beans and coffee) by Costa Rica and Panama.
The documents we reviewed were published in English (141), Spanish (126), Portuguese (35) and French (2) and covered the period of 1953–2021. The most common publications were journal articles (244) followed by theses (23), conference proceedings (19) and books (18). A large majority of the documents reported findings from field experiments (85%) followed by surveys (7%) and in a much lesser proportion laboratory experiments (2%) or observations (3%). Evidence came from a variety of environmental conditions in terms of altitude (up to 2200 m), soil types, slopes and Holdridge life zones.

2.2. List of Practices and Benefits

The list of practices (n = 26), the majority of which (n = 20) were based on the use of biodiversity and ecosystem processes, was based on the knowledge of experts on those crops from the region familiar with smallholder farming practices and related literature (Table 1). For three of the remaining practices the research documents did not specify the technology used so that they can be considered ‘ecosystem-based’ depending on the technology used, for example, biological control can rely on locally available predators, grafting can be applied to native species, improved cultivars can refer to selecting better-performing landraces. The rest of the three practices can be defined as a non-ecosystem-based practice as they are often based on high technical agrochemical and biological processes (i.e., inorganic fertilizers) and use hybrids or infrastructure technology (i.e., irrigation). The majority of documents focused on coffee (n = 120), followed by maize (n = 99) and beans (n = 85). Practices focusing on shaded coffee systems (e.g., multi-use shade trees, N-Fixing trees and timber-shade trees) accounted for more of the research documents (26% of documents).
The list of benefits identified included fifty-five benefits based on the literature on smallholder farming practices. As shown in Table 2, we conceptually grouped benefits in the three dimensions (i.e., first column) relevant to smallholder production systems mentioned in Section 1.1; namely, adaptation benefits to extreme events, enhancement of farms’ natural assets (to increase farms capacity to withstand environmental stress) and socioeconomic feasibility of their adoption in a smallholders’ production context (e.g., enhancing income opportunities, reducing costs, etc.). Under these dimensions we highlighted twelve sub-dimensions (column 2) which further specify the benefits provided to smallholder production systems. Finally, under each sub-dimension in Table 2, we identified the specific variables measured in the reviewed research, registered as either positive or negative evidence as illustrated in Section 2.3.

2.3. Review of Evidence

For each document, we revised the research evidence for the effects of the agricultural practice on one or more of the above listed benefits (Table 2). Evidence refers to the specific measurement records reported in each document on the effect of a practice for the benefits we listed. Since most documents measured the effects on more than one benefit, the total number of benefits registered as evidence (n = 924) was higher than the number of documents revised (n = 304). We registered whether the effects were positive or negative. We considered an effect to be “positive” when there was evidence that the practice provided specific benefits among those listed. We considered an effect to be “negative” when the results suggested that the practice actually reduced or worsened the achievement of a specific benefit (e.g., reduce yields, increase exposure to climate extremes, increase dependency on external inputs, etc.). As shown in our result section, for some practices, we found evidence indicating a positive effect on a specific benefit in one document and a negative effect in another.
Of all the measurement records registered, more than eighty percent confirm positive effects of the practices (Table 2). The dimension concerning socioeconomic feasibility for smallholder farming systems was the most studied dimension (i.e., 54% of all records). Within this dimension, a large part of the research evidence (52%) focused on the benefits of practices in increasing yields, reducing economic production costs (28%) and the dependency on external inputs 18%. While evidence of the ease of adoption for smallholders was the least researched (less than 1%).
The second largest number of records focused on the adaptation benefits (AB, n = 231) of practices in reducing the impacts on crops by extreme weather conditions (n = 86), genetic tolerance (n = 56) and to a lesser extent on controlling pests (n = 40) and diseases (n = 20). In the benefit dimension regarding the farm’s natural assets (FNA), more records were found on the sub-dimensions of soil (n = 112) and water (n = 58) conservation than on biodiversity (n = 22).

2.4. Results Synthesis

To synthesize and communicate the results of our review, we used two visualizations for each of the cropping systems. The first was a table summarizing the evidence that a given practice confers a particular benefit. We used a darker green to indicate when we found at least two measurement records confirming that practice A provides a positive effect for benefit B. Lighter green indicates that we could only find one record of that positive effect while white cell indicates that no evidence was found. We also show in the same table records of negative effects following the same principle but using two stars where at least two records of a negative effect were found and one for only one such record found.
We also created a new table summarizing the list of practices for which we registered two or more reports evidencing positive effects (i.e., the darker green cells) in any of the benefit variables. In this way, only the most promising practices (i.e., those counting with several records of positive effects) were included in the table. To further improve visual clarity, we also combined benefit variables to show them at the level of the sub-dimensions of smallholder farming adaptations (e.g., buffer extremes, genetic tolerance, disease control, water conservation, etc.; see Table 2 above). Each cell of the Sankey table reports the sum of the number of measurement records of positive effects (including only those with two or more records) that each practice has on each benefit sub-dimension. In order to identify which variables comprised each of the links between practices and the specific sub-dimensions, the reader can see which cells in the accompanying evidence table are highlighted in darker green. The lines in the Sankey diagram link agricultural practices on the left to the sub-dimensions of benefits (on the right). The lines in the diagram only show evidence of the positive effects; the thickness of the lines reflects the proportion of the total records (n reported with each practice) that confirm that positive effect. This diagram allows readers to easily visualize the extent to which evidence can confirm the multiple benefits provided by a practice and identify which practices might be promising for a smallholders’ production contexts.

3. Results

In the following section, we present the evidence and knowledge gaps regarding the benefits each practice can provide to support smallholder adaptation in coffee, maize and bean production systems in Latin America. For each crop, we group practices based on the strength of the evidence (i.e., number of measurement records) showing the extent to which they can provide multiple benefits across the three dimensions of a smallholders’ adaptation; namely, adaptation benefits (AB), farms’ natural assets (FNA) and socioeconomic feasibility of their adoption (SEA).

3.1. Effects of Coffee Farming Practices

The first group of practices highlighted in green in Figure 2a included EbA practices using trees for shade (i.e., multi-use shade trees, N-fixing trees, timber-shade trees), whose contribution to all three dimensions of the adaptation benefits improve farms’ natural assets and socioeconomic feasibility of their adoption, supported by strong evidence, i.e., two or more measurement records (Figure 2a). While all of these EbA practices can contribute to buffer the impacts of climate extremes (i.e., extreme temperature, rainfall, radiation, winds), shaded polycultures and the use of N-fixing tree species can also create biodiverse habitats for pest control, improve water retention, soil structure and organic matter, as well as reduce erosion. All the three EbA practices, in addition, can provide several benefits in the SEA dimension as they can help diversify household incomes and increase production quality (IncProQua). We found contradictory evidence for the case of Multi-use shade trees where we registered more than two records of negative effects on soil organic matter and erosion reduction. Similarly, for Timber-shade trees we found records in different research documents of both their positive and negative effects on crop yields.
The second group of practices (highlighted in blue) included only biological control for which we found strong evidence for (i.e., two or more measurement records), suggesting that it can reduce the dependency on external inputs, and be an effective means in controlling pests. For this practice there is a large knowledge gap regarding its contribution to buffer climate extremes, controlling diseases, and providing benefits in any of the benefits in the socioeconomic dimension of smallholder farmers (SEA dimension).
The third group of practices (highlighted in orange) included those for which we only found strong evidence of their benefits for one of the three dimensions of a smallholders’ adaptation to climate change. Here, the literature showed that inorganic fertilization and pruning in shaded coffee systems can increase yields, changing crops can help diversify a household’s income and that intercropping can help reduce weeds. Among these practices, we found weak evidence that pruning can extend the life of perennial crops (ExtCoLiv), increase soil organic matter and favor beneficial biodiversity.
The fourth group included the rest of practices, such as organic fertilization, alley cropping, legume cover crops, cultivars, irrigation, weeding, managing sowing density and changing sowing dates. For these, we found only weak evidence (i.e., one record) of the benefits they can provide. More specifically, cultivars can provide genetic tolerance to water scarcity conditions and help control disease (AB dimension), increase water-use efficiency (FNA), increase yields and reduce practice management costs (SEA dimension). Irrigation can reduce the risk of pests, regulate crop phenology (AB), increase crop yields and biomass production (SEA).
The visual synthesis in the Sankey diagram (Figure 2b; n = 168) confirms tree-based EbA practices associated with shaded coffee systems (i.e., multi-use shade trees, N-fixing trees, timber-shade trees) provide multiple benefits in different dimensions relevant for a smallholders’ adaptation to climate change. More specifically, polyculture and use of N-fixing species contribute positively to buffering many impacts of extreme events and, though with lower number of records (i.e., thinner line), reducing costs and dependence on external inputs. There is also evidence that these practices can increase productivity in some cases; however, there were also reports that these practices could reduce yields.

3.2. Effects of Maize Farming Practices

For maize we identified three groups of practices. In the first group, among the practices (highlighted in green) that can provide benefits across the three dimensions relevant for smallholder adaptation, we only found strong evidence for no tillage. The registered records found for this practice suggest that it can reduce the impacts of low temperatures, promote pest control (AB dimension), improve soil structure and fertility, and increase water retention and use efficiency (FNA). In addition, it can also increase yields and reduce costs (SEA) (Figure 3a).
In the second group, among the practices (highlighted in blue) for which we found strong evidence of the contributions in at least two dimensions, we distinguished two sub-groups. One sub-group includes the use of native seeds, improved and hybrid cultivars, and intercropping for which we found strong evidence for the positive effects on the adaptation benefits (AB) and socioeconomic dimension (SEA). In this sub-group, strong evidence (i.e., two or more records) suggests that local native cultivars (landrace varieties) present the broadest spectrum of benefits providing genetic tolerance to a variety of climate extremes and helping regulate crop phenology, while also increasing yields, crop and farm biomass and diversifying household income. In the case of intercropping, we found strong evidence that it can reduce the impacts of extreme radiation and increase yields and biomass production.
The other sub-group included rotation, irrigation, mulching and the use of legume cover crops for which strong evidence suggest their contribution to the adaptation benefits and improving a farm’s natural assets. In this sub-group, evidence shows that the four practices can increase yields, while rotations can help protect soils, irrigation can increase efficiency of water use, and mulching can reduce soil erosion. The use of leguminous cover crops can improve soil fertility and also increase crop and farm biomass.
In the third group, we found strong evidence for the benefits on only one dimension. While we found that the three practices comprising this group (i.e., live barriers, inorganic fertilization and sowing density) can contribute to the socioeconomic dimension of smallholders, we found very limited research records of their contribution to the other benefits dimensions. More specifically, both sowing density and live barriers can contribute to increasing household income. Strong evidence also suggests that the former together with inorganic fertilization can also increase crop yields. Interestingly, for an ecosystem-based practice such as live barriers there was also weak evidence for its contribution to the other two dimensions. One record was found reporting its benefit in reducing pests by providing habitats for biodiversity, its ability to reduce soil erosion and increase water retention on the farm plot.
The final group included practices (i.e., agro-silvopastoral, conservation tillage, mycorrhiza, alley cropping, biological control, organic fertilization, weeding) for which we could not find strong evidence of their contribution to any of the 55 benefits. Among these, we found that research in the region analyzed a broader spectrum of benefits for mycorrhiza, weeding and agro-silvo-pastoral practices. This small number of records suggest that the former can contribute to improve soil fertility and soil biodiversity (FNA), increase crop biomass (SEA), while weeding can help control pests and increase yields (SEA), and agro-silvo-pastoral practices can contribute to buffer the impacts of different climate extremes and help control diseases (AB). Finally, mycorrhiza can contribute positively to improve soil fertility, support beneficial biodiversity and increase crop biomass.
The Sankey diagram (Figure 3b) highlights the multiple benefits that no tillage and native cultivars can provide to smallholders. More specifically, there is strong evidence that no tillage can contribute to soil and water conservation, reduce the impacts of extreme climate events and reduce costs. The use of landraces can provide genetic tolerance, regulate crop phenology and increase yields. However, there was no evidence that these practices can benefit soil or water conservation or other socioeconomic aspects of smallholder adaptation.

3.3. Effects of Bean Farming Practices

For all of the practices analyzed for bean farming systems we found strong evidence of their contribution across the three benefits dimensions relevant for a smallholders’ adaptation. The first group highlighted in blue included seven practices (i.e., native and improved cultivars, alley cropping, mulching, mycorrhiza, sowing dates and irrigation) for which we found strong evidence of their benefits in only two of the three dimensions. For the first two (i.e., native and improved cultivars) strong evidence suggests they can provide both genetic tolerance to dry conditions and help regulate crop phenology by shortening the crop cycle. In addition, we also found strong evidence suggesting their contribution to increase yields; however, for improved cultivars, we also found that they can have negative effects on yields (Figure 4a).
For other practices of this first group (i.e., alley cropping, mulching, mycorrhiza, sowing dates and irrigation), we found strong evidence of their positive contribution to increase yields (except mycorrhiza for which we only found weak and contrasting evidence). Alley cropping, mulching and mycorrhiza can help increase soil fertility and crop biomass but the former, in addition, can also provide benefits in the socioeconomic dimension by reducing weed abundance and the dependency on external fertilizer inputs. Finally, we found strong evidence (i.e., two or more measurement records) that adjusting sowing dates and irrigation can help in shortening the crop cycle and increase water-use efficiency.
The second group included six practices (highlighted in orange) (i.e., intercropping, conservation tillage, weeding, sowing density, legume cover crops and inorganic fertilization). For these we found strong evidence of their contribution to the benefit variables belonging to the socioeconomic dimension (SEA). All these practices can increase crop yields. In addition, intercropping can improve crop quality and conservation tillage can help in diversifying and increasing household income. For the two remaining practices we found no strong evidence for their contribution to any of the benefits listed, only weak evidence that crop rotation can reduce disease, improve soil fertility and crop biomass, and cultivar grafting can increase tolerance to dry conditions.
Figure 4b shows that improved cultivars and native cultivars can increase productivity while also providing genetic tolerance to climate extremes, regulate phenology and control diseases. It is also evident from the figure that we found no strong evidence for the benefits to the socioeconomic dimension of a smallholders’ adaptation that these two practices provide. Conversely, we found that intercropping and mulching can contribute to increasing productivity and reduce production costs and dependency on external inputs.
Overall, the findings across the three crops above showed that several dimensions of the adaptation of a smallholder faming system have been largely understudied. More specifically, we only found strong evidence from a few papers reporting the benefit variables under the adaptation benefits dimension. Except for a few practices presented above, for the majority of practices across the cropping systems little is known on their possible contribution to buffering extremes, decreasing pests and disease. For example, for only two of the nineteen practices in the case of maize farming (i.e., no tillage and intercropping), three of the sixteen for coffee farming (i.e., multi-use shade trees, N-fixing trees, timber-shade trees) and none for bean farming, we could only find strong evidence for the positive contribution to the sub-dimension, buffer extremes. Additionally, under the other sub-dimensions of adaptation benefits, the table and the diagram visualize contain similar gaps with only a few practices actually being tested by research in the region. In this dimension, we found strong evidence for the positive effects of genetic tolerance from cultivars to climate extremes for maize and bean farming systems and only one report for the coffee farming system (IncTolDro).
In relation to the benefits to a farm’s natural assets, we found a larger number of practices with published evidence of their contribution to soil, water or biodiversity conservation. However, for more than eighty percent of practices (n = 13) in coffee systems, seventy percent in maize (n = 14) and beans (n = 11) systems, we found no strong evidence in the reviewed research of their contribution to a farm’s natural assets. In the socioeconomic dimension (the most researched across all cropping systems), we found a larger knowledge gap for coffee and maize compared to bean production systems. More specifically, for nine of sixteen practices in coffee and seven of the nineteen in maize systems, we only found weak to no evidence of their socioeconomic benefits to smallholders, differently from beans systems where only two of fifteen practices are under studied in this dimension. In general, our review suggests that the least studied benefits are those concerned with the extent to which the practices do not require important significant changes in their crop production structure or continuous support from technical assistance.

4. Discussion

Our review of scientific evidence for the effectiveness of different agricultural practices in enhancing the adaptation of coffee, maize and bean cropping systems suggests that research in the region has investigated the multiple benefits of the adaptation practices in coffee system more thoroughly than in the maize and bean farming systems. Overall, due to the high diversity of Latin American biomes [68] and smallholder production contexts [69], the number of studies we reviewed might still be too small to provide conclusive recommendations on which practices might be promoted all over the region. However, our findings suggest that for each of these crops there is strong evidence for some promising practices which, though tested in the variety of site-specific conditions, have been shown to reduce the impacts of extreme climate events while providing multiple other benefits.
More specifically, our findings suggest that there is strong evidence that the use of tree-based practices for coffee systems (e.g., using trees for N-fixing or for timber) can contribute by buffering the impacts of extreme climate events while also conserving the natural assets of the farm and benefit smallholders’ socioeconomic status. This suggests that these practices represent good example of ecosystem-based practices that can help these producers adapt to climatic extremes while protecting and/or enhancing the natural assets of their farm and provide opportunities to use resources already available in those production contexts.
For the case of maize and beans we found some promising EbA practices but also large knowledge gaps. For maize, we found that EbA practices already known to producers (e.g., no tillage and use of native cultivars) can provide adaptation benefits, e.g., genetic tolerance, buffer temperature extremes while using local resources and protecting soil and water resources. However, we found none or weak evidence regarding the capability of many of these practices to reduce the impacts of different extreme hydroclimatic events (e.g., for mulching, sowing density, conservation tillage, mycorrhiza, live barriers, organic fertilization, weeding buffering hydroclimatic extremes, pests and disease control), their contribution to biodiversity or their implications in the socioeconomic status of smallholders (e.g., scarce evidence for costs, dependence on external inputs, etc.).
In the case of beans, our review found even more knowledge gaps as, for all practices, research in the region we reviewed assessed a more limited number of benefits. For example, we found a very limited number of records on the possible benefits of many ecosystem-based practices (i.e., crop rotation, legume cover crops, weeding, conservation tillage, sowing density and dates, alley cropping and cultivars) to buffer the impacts of hydroclimatic extremes. In this case, only for EbA practices as native cultivars, mulching and sowing dates had strong supporting evidence that they could reduce specific impacts of extreme weather events (e.g., tolerate dry conditions for native cultivars) and also benefit the socioeconomic status of a smallholders’ adaptation by increasing crop yield.
As shown by the larger number of records found in our review, the socioeconomic dimensions has been at the center of research, possibly reflecting the need, underlined by many authors reviewing the use of practices by smallholders farms (e.g., [36,60,69,70,71]), to understand the extent to which their adoption is feasible in the context of smallholder production and whether they can help reduce the exposure to non-climatic risks (e.g., inputs and outputs markets). While attention to the socioeconomic benefits is very important due to the limited resources and risk-taking margins characterizing smallholder farming systems, the large knowledge gap regarding the adaptation benefits in the face of hydroclimatic extremes might be of special concern given their observed increasing frequency. However, we should consider that there might be two reasons for the lack of documented relationships between a practice and the benefits provided which does not necessarily mean that these relationships do not exist or are not known. First, the “file drawer” problem [72], as a common challenge for evidence systematization efforts, might suggest that negative or insignificant results are unpublished (i.e., kept in drawers), thus resulting in a possible analytical bias. Second, it might suggest that the research assessment of a practice’s benefits have not been designed with an explicit objective to capture these adaptation benefits. This might highlight an unfortunate way of framing research questions that does not consider adaptation to extreme events. For example, many studies have been conducted on the genetic resistance of Arabica coffee plants to fungal diseases [73]. Some of these diseases will be exacerbated in the future due to a combination of climatic extremes and societal pressures on smallholders’ production systems [74], but this situation is, according to our results, not taken into account in the breeding process when assessing coffee cultivars. Similarly, many studies have been conducted on drip and controlled irrigation to extend coffee cultivation in suboptimal and drier areas [75,76], but not in anticipation of worsening drought in optimal production areas.
Based on these findings, adaptation programs supporting smallholders in Latin America can currently count on either informal information sources, on studies from other regions or, as suggested by our findings, on incomplete knowledge as research in their region only covers a few of the benefit dimensions for each practice. This might limit the possibility to make informed and robust choices regarding which practices are worth promoting that benefit multiple dimensions of a smallholder’s farm and adaptation. It might also run the risk of promoting practices that perform well in one dimension but expose smallholders to other unexpected risks or pressures. In addition, the lack of knowledge on the multiple benefits of each practice might also limit the ability to grasp opportunities to valorize EbA practices beyond the farms’ plots by, for example, conserving water, soil and biodiversity and thus enhancing the landscape’s environmental performance. Similarly, while the existing evidence base supports the claim that many EbA practices can improve household wellbeing by diversifying income (e.g., tree-based practices in coffee, inter-cropping in beans) and increasing yields, there is need for more research to provide evidence that they can also help increase crop quality, reduce production costs and dependency on external inputs or require limited investments for implementing them. Possibly, the lack of records on these multi-dimensional adaptation benefits might also be due to the lack of explicit attention, in the design of the research reviewed, to test the performance of the practices during or after the occurrence of an hydroclimatic extreme.
Our review supports the global call for investing in research to reduce the impacts of climate extremes on smallholder cropping systems [77]. Filling this knowledge gap could help reveal the large potential that many smallholder EbA adoptable practices have to not only reduce the impacts of climate extremes, but also to support the efforts in responding to the recent international calls from governments (e.g., [78,79,80]) for a transition to agroecology-based food production.
In this respect, strategic research to upscale adaptation programs could fill the knowledge gaps we found and provide evidence for the extent to which many of these EbA practices can provide ecosystem services and goods on- and off-site. For example, a large number of studies have shown the capacity of shaded coffee systems in providing on-site benefits to smallholders and off-site ecosystem services at the landscape scale by enhancing water cycles, reducing soil removal and sediment transport or favoring biological connectivity in the landscape [81,82]. Similarly, more research on smallholder cropping system practices could show that EbA practices, such as no tillage, could help conserve a farm’s natural assets but also, as shown in other production context, provide ecosystem services at the landscape scale by conserving soil structure, water content and biodiversity [83]. The following section builds on the evidence we found and the knowledge gaps discussed above to suggest avenues of future research.

5. Conclusions

Based on the scientific evidence we reviewed, we found that ecosystem-based practices based on locally available biodiversity (e.g., trees species, local genetic resources) and low-impact soil management practices can provide a variety of benefits to different dimensions of coffee, maize and bean smallholder production systems. Interestingly, these practices are already adopted by smallholders in the region and can thus be considered relatively well adapted to their production contexts. However, we also found a significant knowledge gap regarding many positive or negative effects that many of the practices might have on smallholder farming systems. In this respect, in the remainder of this section we conclude with three recommendations for future research.
First, our findings suggest that more research is needed to assess the multiple benefits of specific practices that are largely understudied in one or multiple dimensions relevant to smallholder adaptation. This research might design experiments to assess the performance of practices in different biomes and production contexts on multiple specific benefits that are already known by researchers in Latin America or other regions. An example, in this respect, can be the use of weeding (largely understudied in coffee, maize and beans) which, as suggested by research on other crops in Africa [84], can increase natural farm assets (e.g., water and soil conservation) that can reduce the exposure to hydroclimatic extremes (e.g., dry spells or heavy rainfall). Similarly, except for maize and bean systems, there is a huge knowledge gap on the contribution of an ecosystem-based practice, such as legume cover crops, to the socioeconomic dimension of smallholder farming systems or to reducing the impacts of extreme climatic events, controlling pests and diseases, or conserving water.
Second, more national research efforts are needed to increase experimental evidence for the benefits provided by practices implemented in regionally important cropping systems, and in response to common hydroclimatic extremes affecting smallholders in a variety of biomes and production contexts. This research might use standardized protocols to compile data from a variety of specific crop production locations across these different contexts and in response to specific climate extremes. This interchange might be facilitated by the use of the growing regional digital connectivity in rural areas of Latin America [85], thus facilitating the remote and real-time involvement of smallholders in observing practices effects on a variety of benefit dimensions.
Third, future research should consider similar regional systematization that not only looks into published evidence, but that taps into the rich yet-unpublished knowledge and experiences generated by technical assistance programs and the smallholders’ farming efforts in the region. By directly engaging with farmers (e.g., exploiting the increased digital connectivity), this research could recompile real-time data and then systematically assess the bundle of practices implemented by smallholders and their perceived benefits.

Author Contributions

Conceptualization R.V., C.H., B.R., J.A. and C.D.; methodology R.V., C.H., J.A., B.R.; R.V. and C.D.; formal analysis R.V., M.J.E., J.A, B.R., C.H., C.D.; investigation R.V., M.J.E., P.B.-S., B.R., J.A., C.H. and C.D.; resources R.V., C.H., F.A. and J.A.; data curation R.V. and M.J.E.; writing—original draft preparation, R.V.; writing—review and editing, R.V., P.B.-S., C.H., J.A., M.J.E., B.R., F.A. and C.D.; visualization R.V. and M.J.E.; funding acquisition R.V., C.H., F.A. and J.A. All authors have read and agreed to the published version of the manuscript.

Funding

The funding for this research was mainly provided by the International Climate Initiative ICI of the German Federal Ministry for the Environment, Nature Conservation Building and Nuclear Safety BMUB, as part of the CASCADE project “Ecosystem-based Adaptation for Smallholder Subsistence and Coffee Farming Communities in Central America”. The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety BMUB supports this initiative on the basis of a decision adopted by the German Bundestag.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to thank Mario Chacon and Ruth Martinez for their contribution in the initial stages of this research.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A. PRISMA Diagram for the Selection of Scientific Documents for in-Depth Review of Evidence of Practices

Agronomy 12 02535 i001

Appendix B. List of Papers Retrieved for Search of Evidence for the Effects of Practices in Coffee, Maize and Beans Farming Systems

SectionBoolean Operator between SectionsAgroecosystem ElementsBoolean Operator within SectionsTerms Searched
IORClimateAND((Climat * AND (Variability OR Extreme OR Drought OR Flood OR Storm OR Hurricane OR Rain OR Temperature OR Wetness OR Wind OR Radiation OR Amplitude))
SpeciesAND(Maize OR Corn OR Zea mays OR Maiz OR Milho) OR (Bean OR Phaseolus vulgaris OR Frijol OR Feijão) OR (Coffee OR Coffea OR Café OR Cafeeiro)
SoilAND(Soil AND (Erosion OR Fertility OR Nutrient OR Acidification OR Landslide OR Run off OR Lixiviation OR Loss OR Drainage)
IIORClimateAND((Climat * AND (Variability OR Extreme OR Drought OR Flood OR Storm OR Hurricane OR Rain OR Temperature OR Wetness OR Wind OR Radiation OR Amplitude))
SpeciesAND(Maize OR Corn OR Zea mays OR Maiz OR Milho) OR (Bean OR Phaseolus vulgaris OR Frijol OR Feijão) OR (Coffee OR Coffea OR Café OR Cafeeiro)
Crop effectsAND(Crop AND (Physiology OR Pest OR Disease OR Phenology OR Yield OR Productivity OR Harvest OR Subsistence OR Banana OR “Agroforestry system” OR Quezungual OR Breeding OR Loss)
IIIORClimateAND((Climat * AND (Variability OR Extreme OR Drought OR Flood OR Storm OR Hurricane OR Rain OR Temperature OR Wetness OR Wind OR Radiation OR Amplitude))
SpeciesAND(Maize OR Corn OR Zea mays OR Maiz OR Milho) OR (Bean OR Phaseolus vulgaris OR Frijol OR Feijão) OR (Coffee OR Coffea OR Café OR Cafeeiro)*
Management practicesAND(Management AND (Diversification OR Shade OR “Live fences” OR “N-fixing” OR Manure OR Mulching OR “Cover crop” OR Ditches OR “Sediment trap” OR “Planting density” OR “Contour planting” OR “Planting date” OR Terrace OR “Weed management” OR Residues OR Pest control OR Practice OR “Farming system” OR Tillage OR Drain))
IVANDCountries-Mexico OR Guatemala OR Belize OR Honduras OR El Salvador OR Nicaragua OR Costa Rica OR Panama OR Colombia OR Venezuela OR Ecuador OR Guyana OR Suriname OR French Guiana OR Peru OR Bolivia OR Paraguay OR Brazil OR Cuba OR Jamaica OR Haiti OR Dominican Republic OR Puerto Rico OR Guadeloupe OR Trinidad and Tobago

Appendix C. Scientific Documents Reviewed in Depth for This Review

  • Acevedo, A., Vilches, M. 1992. Comportamiento del rendimiento en plantaciones establecidas con diferentes variedades de sombra, frecuencia y ciclos de poda. Revista Baracoa 22 (1): 39-46.
  • Acosta-Díaz, E., Acosta-Gallegos, JA., Trejo-López, C., Padilla-Ramírez, JS., Amador-Ramírez, MD. 2009. Adaptation traits in dry bean cultivar grown under drought stress. Agricultura Técnica en México 35 (4): 419-428.
  • Acosta-Díaz, E., Hernández-Torres, I., Rodríguez-Guerra, R., Pedroza-Flores, J., Amador-Ramírez, MD., Padilla-Ramírez, JS. 2011. Efecto de la sequía en la producción de biomasa y grano de frijol. Revista mexicana de ciencias agrícolas 2 (2): 249-263.
  • Acosta-Gallegos, JA., White, JW. 1995. Phenological plasticity as an adaptation by common bean to rain-fed environments. Crop Science 35 (1): 199-204.
  • Aguiar, AdCF. 2001. Efecto de especies usadas como abono verde en el enriquecimiento de la fertilidad del suelo y en el manejo de plagas. M.Sc. Thesis. Turrialba, CR, CATIE. 93 p.
  • Aguilar Martínez, S. 2012. Análisis económico de la producción de café y uso del bosque en la Reserva de la Biosfera El Triunfo, Chiapas. M Sc Thesis. San Cristóbal de las Casas, MX, ECOSUR. 126 p.
  • Aguilar, A., Staver, CP., Aguilar, V., Somarriba, S. 1997. Manejo selectivo de malezas en café joven: una oportunidad para la conservación de suelos. In. 5. Congreso Nacional MIP (26-28 Nov 1997., León, Nicaragua). pp. 103-105.
  • Aguilar, V., Staver, C., Milberg, P. 2003. Weed vegetation response to chemical and manual selective ground cover management in a shaded coffee plantation. Weed Research 43 (1): 68-75.
  • Alayon-Gamboa, JA., Ku-Vera, JC. 2011. Vulnerability of smallholder agriculture in Calakmul, Campeche, Mexico. Indian Journal of Traditional Knowledge 10 (1): 125-132.
  • Aldunate-Deromedis, J. 1984. Establecimiento y manejo del frijol terciopelo (Mucuna sp. L.) como cobertura viva para el combate de malezas en maíz (Zea mays L.). M.Sc. Thesis. Turrialba, CR, UCR/CATIE. 130 p.
  • Aleman, F. 2001. Common bean response to tillage intensity and weed control strategies. Agronomy Journal 93 (3): 556-563.
  • Alvarado, J., Andrade, H., Segura, M. 2013. Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (Coffea arabica L.) en el municipio del Líbano, Tolima, Colombia. Colombia Forestal 16 (1): 20-31.
  • Ángeles-Gaspar, E., Ortiz-Torres, E., López, PA., López-Romero, G. 2010. Caracterización y rendimiento de poblaciones de maíz nativas de Molcaxac, Puebla. Revista Fitotecnia Mexicana 33: 287-296.
  • Arana Meza, VH. 2003. Dinámica del nitrógeno en un sistema de manejo orgánico de café (Coffea arabica L.) asociado con poró (Erythrina poeppigiana (Walpers) O.F. Cook). M.Sc. Thesis. Turrialba, CR, CATIE. 100 p.
  • Araújo, A. V., Partelli, F. L., Oliosi, G., & Pezzopane, J. R. M. (2016). Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun. Revista Ciência Agronômica, 47, 700-709.
  • Assis, GA., Assis, FA., Scalco, MS., Parolin, FJT., Fidelis, I., Moraes, JC., Guimarães, RJ. 2012. Leaf miner incidence in coffee plants under different drip irrigation regimes and planting densities. Pesquisa Agropecuária Brasileira 47: 157-162.
  • Ataroff, M. 1990. Dinámica hídrica de nutrientes y erosión en dos formas de manejo del cultivo del café en Los Andes del Edo. (Estado) Mérida. M Sc Thesis. Mérida, Venezuela, Universidad de los Andes. 319 p.
  • Augstburger, F. 1985. Cultivos asociados en climas templados y fríos de Bolivia. Turrialba 35 (2): 117-125.
  • Avelino, J., Perriot, JJ., Guyot, B., Pineda, C., Decazy, F., Cilas, C. 2002. Vers une identification de cafés-terroir au Honduras. Plantations, Recherche, Développement: 7-13.
  • Avelino, J., Romero-Gurdian, A., Cruz-Cuellar, HF., Declerck, FAJ. 2012. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecological Applications 22 (2): 584-596.
  • Avelino, J., Zelaya, H., Merlo, A., Pineda, A., Ordonez, M., Savary, S. 2006. The intensity of a coffee rust epidemic is dependent on production situations. Ecological Modelling 197 (3-4): 431-447.
  • Avila-Vargas, G., Jiménez-Otárola, F., Beer, JW., Gómez, M., Ibrahim, MA. 2001. Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería en las Américas 8 (30): 1-4.
  • Babbar, LI., Zak, DR. 1995. Nitrogen loss from coffee agroecosystems in Costa Rica: Leaching and denitrification in the presence and absence of shade trees. Journal of Environmental Quality 24 (2): 227-233.
  • Baggio, AJ., Caramori, PH., Androcioli, A., Montoya, L. 1997. Productivity of southern Brazilian coffee plantations shaded by different stockings of Grevillea robusta. Agroforestry Systems 37 (2): 111-120.
  • Balmaceda, M., Cruz, S., Monterroso, D. 1994. Efecto de la sombra del café sobre las poblaciones de nemátodos fitopatógenos. In. 37. Congreso Anual de la Sociedad Americana de Fitopatología (10-12 Nov 1997, Costa Rica). Managua, NI, CATIE. pp. 26-27.
  • Bandeira, FPSdF., Blanco, JL., Toledo, VM. 2002. Tzotzil Maya ethnoecology: Landscape perception and management as a basis for coffee agroforest design. Journal of Ethnobiology 22 (2): 247-272.
  • Barradas, VL., Fanjul, L. 1986. Microclimatic characterization of shaded and open-grown coffee (Coffea arabica L.) plantations in Mexico. Agricultural and Forest Meteorology 38 (1-3): 101-112.
  • Barrantes, G., Romero, M., Días, J., Pérez Echeverría, L. 1997. Tasas de erosión y productividad en un sistema agrícola (Cerbatana de Puriscal). In Barrantes M, G., Romero, M., Días, J., Pérez Echeverría, L. Eds. Seminario Desarrollo Rural Sostenible: Avances y Perspectivas (Oct 1995, Coronado, CR). Porvenir. pp. 85-91.
  • Barrios, M., Jiménez, CM., Guharay, F. 1994. Ecología de la interacción de Beauveria bassiana con la broca del café. In. Reunión Informativa sobre Avances de Investigación (Managua, NI). San José, CR, Grupo Entomólogos de Café. v. 6, pp. 72-74.
  • Souza, L. S. B. D., Moura, M. S. B. D., Sediyama, G. C., & Silva, T. G. F. D. (2015). Requerimento hídrico e coeficiente de cultura do milho e feijão-caupi em sistemas exclusivo e consorciado. Revista Caatinga, 28, 151-160.
  • Bautista-Capetillo, C., Zavala, M., Martínez-Cob, A. 2013. Using thermal units for crop coefficient estimation and irrigation scheduling improves yield and water productivity of corn (Zea mays L.). Journal of Irrigation and Drainage Engineering 139 (3): 214-220.
  • Bayuelo-Jimenez, JS., Pena-Valdivia, CB., Aguirre R, JR. 1999. Yield components of samples of two wild Mexican common bean (Phaseolus vulgaris L.) populations grown under cultivation. South African Journal of Plant and Soil 16 (4): 197-203.
  • Bellon, MR., Hodson, D., Hellin, J. 2011. Assessing the vulnerability of traditional maize seed systems in Mexico to climate change. Proceedings of the National Academy of Sciences of the United States of America 108 (33): 13432-13437.
  • Benítez, J., Perfecto, I. 1989. Efecto de diferentes tipos de manejo de café sobre las comunidades de hormigas. Agroecología Neotropical 1 (1): 11-15.
  • Bergamaschi, H., Ometto, JC., Viera, HJ., Angelocci, LR., Libardi, PL. 1988a. Deficiência Hídrica em Feijoeiro. II. Balanço de Energia. Pesquisa Agropecuaria Brasileira 23 (7): 745-758.
  • Bermúdez, M., Castro, L. 1995. Efecto de la aplicación de micorrizas y roca fosfórica sobre el crecimiento y la adquisición de nutrimentos de plantas de frijol en un Ultisol de Costa Rica. In A, AVR., B, BD. Eds. Taller Internacional sobre Bajo Fósforo en el Cultivo de Frijol. Mejoramiento y manejo agronómico del frijol común (Phaseolus vulgaris L.) para adaptación en suelos de bajo fósforo: Memoria (13-15 Nov 1995, San José, Costa Rica). Alajuela, CR, Programa Cooperativo Regional de Frijol para Centroamerica México y el Caribe San José (Costa Rica); CIAT Cali (Colombia); Universidad de Costa Rica Alajuela (Costa Rica). Estación Experimental Fabio Baudrit M. pp. 95-103.
  • Bizari, DR., Matsura, EE., Roque, MW., Souza, ALd. 2009. Consumo de água e produção de grãos do feijoeiro irrigado em sistemas plantio direto e convencional. Ciência Rural 39 (7): 2073-2079.
  • Blanco, M., Corrales, C., Chevez, O., Campos, A. 1995. El crecimiento y rendimiento del frijol común (Phaseolus vulgaris L.) como cultivo intercalado con café (Coffea arabica L.). Agronomía Mesoamericana (6): 134-139.
  • Bolaños, J., Edmeades, GO. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize: I. Responses in grain yield, biomass, and radiation utilization. Field Crops Research 31 (3-4): 233-252.
  • Bolaños, J., Edmeades, GO., Martinez, L. 1992. Eight cycles of selection for drought tolerance in lowland tropical maize: III. Responses in drought-adaptive physiological and morphological traits. Field Crops Research 31 (3-4): 269-286.
  • Bonilla-Morales, N. 2012. Análisis de estabilidad de híbridos experimentales de maíz con alta calidad de proteína en Costa Rica. Agronomía Mesoamericana 23 (2).
  • Vanegas, J. J. C., Zambrano, K. B. M., & Avellaneda-Torres, L. M. (2018). Effect of ecological and conventional managements on soil enzymatic activities in coffee agroecosystems. Pesquisa Agropecuária Tropical, 48, 420-428.
  • Cabrera-Bosquet, L., Sanchez, C., Rosales, A., Palacios-Rojas, N., Luis Araus, J. 2011. Near-Infrared Reflectance Spectroscopy (NIRS) Assessment of delta O-18 and Nitrogen and Ash Contents for Improved Yield Potential and Drought Adaptation in Maize. Journal of Agricultural and Food Chemistry 59 (2): 467-474.
  • Callo-Concha, D., Krishnamurthy, L., Alegre, J. 2002. Cuantificación del carbono secuestrado por algunos sistemas agroforestales y testigos, en tres pisos ecológicos de la Amazonía del Perú. In Krishnamurthy, L., Uribe Gómez, M. Eds. Tecnologías agroforestales para del desarrollo rural sostenible. MX, PNUMA; SEMARNAT. pp. 159-182. (Textos Básicos para la Formación Ambiental 8).
  • Calvache, AM., Reichardt, K., Bacchi, OOS. 1998. Efeito de épocas de deficiência hídrica na evapotranspiração atual da cultura do feijão cv. imbabello. Scientia Agricola 55 (3): 485-497.
  • Calvache, AM., Reichardt, K., Malavolta, E., Bacchi, OOS. 1997a. Efeito da deficiência hídrica e da adubação nitrogenada na produtividade e na eficiência do uso de água em uma cultura do feijão. Scientia Agricola 54 (3): 232-240.
  • Calvache, M., Reichardt, K., Bacchi, OOS., Dourado-Neto, D. 1997b. Deficit irrigation at different growth stages of the common bean (Phaseolus vulgaris L., cv. Imbabello). Scientia Agricola 54 (Spe): 1-16.
  • Campos, BHC de., Carneiro Amado, TJ., Tornquist, CG., Nicoloso, RdS., Fiorin, JE. 2011. Long-term c-co2 emissions and carbon crop residue mineralization in an oxisol under different tillage and crop rotation systems. Revista Brasileira de Ciência do Solo 35 (3): 819-832.
  • Campos, E., Fonseca Castro, C., Ramírez, G., Jiménez, H., Echeverri, J., Zamora, L. 2000. Estudio sobre sistemas de poda por lote. In. 19. Simposio Latinoamericano de Caficultura (2-6 ct 2000, San José, CR). IICA; PROMECAFE; ICAFE. pp. 131-136.
  • Candido, LS., Andrade, JAdC., Garcia, FQ., Gonçalves, LSA., Amaral Júnior, ATd. 2011. Seleção de progênies de meios-irmãos do composto Isanão VF-1 de milho na safra e safrinha. Ciência Rural 41: 947-953.
  • Cannavo, P., Sansoulet, J., Harmand, JM., Siles, P., Dreyer, E., Vaast, P. 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture Ecosystems & Environment 140 (1/2): 1-13.
  • Caramori, PH., Androcioli, A., Bagio, A. 1995. Coffee shade with Grevilea robusta in the North of Parana State, Brazil. Arquivos De Biologia E Tecnologia 38 (4): 1031-1037.
  • Caramori, PH., Androcioli, A., Leal, AC. 1996. Coffee shade with Mimosa scabrella Benth for frost protection in southern Brazil. Agroforestry Systems 33 (3): 205-214.
  • Carballo-Vargas, M., Saunders, JL. 1990. Manejo del suelo, rastrojo y plagas: Interacciones y efecto sobre el maíz. Turrialba 40 (2): 183-189.
  • Cardona, C., Camacho, LH., Orozco, SH. 1959. Diacol Nima. An improved variety of bean. DIA. Bol. Div. 8: 5-24.
  • Caro, H. 1992. Efecto de diferentes concentraciones y frecuencia de aplicación con nitrato de Potasio foliar en la producción de café (Coffea arabica). Agronomía 5 (1): 29-32.
  • Carvalho, M. T. M. de., Madari, BE., Leal, W. G. O. de., da Costa, AR., Machado, P. L. O. de., Silveira, P. M. da., Moreira, JAA., Heinemann, AB. 2013. Nitrogen fluxes from irrigated common bean as affected by mulching and mineral fertilization. Pesquisa Agropecuária Brasileira 48 (5): 478-486.
  • Castañeda Saucedo, MC., Córdova Téllez, L., González Hernández, VA., Delgado Alvarado, A., Santacruz Varela, A., García de los Santos, G. 2006. Respuestas fisiológicas, rendimiento y calidad de semilla en frijol sometido a estrés hídrico. Interciencia 31 (6): 461-466.
  • Castro-Tanzi, S., Dietsch, T., Ureña, N., Vindas, L., Chandler, M. 2012. Analysis of management and site factors to improve the sustainability of smallholder coffee production in Tarrazú, Costa Rica. Agriculture Ecosystems & Environment 188: 172-181.
  • CATIE, (Centro Agronómico Tropical de Investigación y Enseñanza, CR). 1985a. Alternativa de manejo para el sistema tomate-frijol Matagalpa, Nicaragua. Descripción y evaluación en fincas pequeñas. Turrialba, CR, CATIE. 67 p. (Serie Técnica. Informe Técnico. 55).
  • CATIE, (Centro Agronómico Tropical de Investigacipon y Enseñanza, CR). 1986a. Alternativa de manejo para el sistema maíz-frijol, La Esperanza, Honduras: validación/transferencia en fincas pequeñas. Turrialba, CR, CATIE. 88 p. (Serie Técnica. Informe Técnico No. 82).
  • Centurion, JF. 1987. Efeitos de diferentes sistemas de preparo nas propriedades físicas de um solo sob vegetação de cerrado e na cultura do milho. Cientifica (Jaboticabal) 15 (1-2): 1-8.
  • Césare, O. 1966. Consideraciones sobre el manejo de sombrío y de cafetos improductivos. Café de Nicaragua (186): 24-25.
  • Chaves-Barrantes, N. F., Polanía, J. A., Muñoz-Perea, C. G., Rao, I. M., & Beebe, S. E. (2018). Caracterización fenotípica por resistencia a sequía terminal de germoplasma de frijol común. Agronomía Mesoamericana, 29(1), 1-18.
  • Chávez, EL. 1993. Efecto residual de la mucuna sobre el rendimiento de maíz bajo diferentes sistemas de manejo. In Chávez R, EL., Buckles, D. Eds. Taller sobre los Métodos Participativos de Investigación y Extensión Aplicados a las Tecnologías Basadas en Abonos Verdes (1-4 Mar 1993, Catemaco, MX). México, MX, CIMMYT. pp. 89-95.
  • Chávez, R., Schmidt, W., Martínez, K., Flores, J., Tamayo, H., Aduviri, M., Gutiérrez, G., Yufra, V., Segovia, O., García, A. 2005. Espectro de variabilidad genética del germoplasma nativo de maíz (Zea mays L.) de la zona altoandina del sur del Perú. Idesia 23 (3): 49-61.
  • Chávez-Simental, JA., Alvarez-Reyna, V. P. de. 2012. Ecofisiología de seis variedades de frijol bajo las condiciones climáticas de la Región Lagunera. Revista mexicana de ciencias agrícolas 3 (2): 299-309.
  • Cisneros, O., Blanco N, M. 1998. Efecto del asocio de frijol común (Phaseolus vulgaris L.) sobre la dinámica de las malezas, en las calles de café (Coffea arabica L.) como un manejo integrado de plagas, en cuatro años de estudio. In. 7. Congreso Internacional de Manejo Integrado de Plagas - 7. Taller Latinoamericano y del Caribe de Mosca Blanca y Geminivirus (26-30 Oct 1998, Managua, Nicaragua). Managua, NI, Comité Nacional de Manejo Integrado de Plagas. p. 14.
  • Costa, FS., Albuquerque, JA., Bayer, C., Fontoura, SMV., Wobeto, C. 2003. Propriedades físicas de um latossolo bruno afetadas pelos sistemas plantio direto e preparo convencional. Revista Brasileira de Ciência do Solo 27 (3): 527-535.
  • Cruz Guevara, KP. 1996. Evaluación de 6 cultivares de frijol (Phaseolus vulgaris L.), en las condiciones ambientales de las Mercedes de Pocora, Limón, Costa Rica. Lic Thesis. Guácimo, CR, EARTH. 67 p.
  • Cruz, HLd., Ferrari, CdS., Meneghello, GE., Konflanz, V., Zimmer, PD., Vinholes, PdS., Castro, MAdSd. 2007. Avaliação de genótipos de milho para semeadura precoce sob influência de baixa temperatura. Revista Brasileira de Sementes 29: 52-60.
  • Cruz, R. de la., Rojas, E., Merayo, A. 1994. Manejo de la caminadora (Rottboellia cochinchinensis (Lour) W.D. Clayton) en el cultivo de maíz y el periódo de barbecho con leguminosas de cobertura. Manejo Integrado de Plagas (31): 29-35.
  • Cuadra, S., LLano González, A. 2007. Validación de líneas de frijol rojo (Phaseolus vulgaris L.) para ambientes con escasa precipitación en la Región Centro Norte de Nicaragua. In Sierra Santos, RR., Fuentes López, MR., Dardón Avila, DE., Franco Rivera, JA., Rosales Longo, F. Eds. 53. Reunión Anual PCCMC (23-27 Abr 2007, Antigua, Guatemala). Guatemala, GT, PCCMCA. p. 64.
  • Cubillo-Sánchez, D. 1994. Fluctuación poblacional, métodos de muestreo y efecto del asocio tomate-frijol en el manejo de Keiferia lycopersicella (Lepidoptera: Gelechiidae). M.Sc. Thesis. San José, Costa Rica, UCR. 92 p.
  • Da Mota, FS., Shaw, RH. 1975. Determination of optimum sowing time for black beans in Southern Brazil. Agricultural Meteorology 15 (2): 205-220.
  • Da Silva, EA., Brunini, O., Sakai, E., Arruda, FB., De Mattos Pires, RC. 2009. Influencia de deficits hidricos controlados na uniformizacao do florescimento e producao do cafeeiro em tres diferentes condicoes edafoclimaticas do estado de sao paulo. Bragantia 68 (2): 493-501.
  • da Silva, P. C. G., Tiritan, C. S., Echer, F. R., dos Santos Cordeiro, C. F., Rebonatti, M. D., & dos Santos, C. H. (2020). No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk. Field Crops Research, 258, 107947.
  • de Carvalho, A. F., Fernandes-Filho, E. I., Daher, M., Gomes, L. D. C., Cardoso, I. M., Fernandes, R. B. A., & Schaefer, C. E. (2021). Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agroforestry Systems, 95(1), 119-134.
  • De Paiva Valentini, LS., Paes De Camargo, MB., Rolim, GDS., Souza, PS., Gallo, PB. 2010. Temperatura do ar em sistemas de producao de café arébica em monocultivo e arborizados com seringueira e coqueiro-anao na regiao de Mococa, SP. Bragantia 69 (4): 1005-1010.
  • De Sá Pereira, E., Galantini, J. A., Quiroga, A. R., & Landriscini, M. R. (2014). Efecto de los cultivos de cobertura otoño invernales, sobre el rendimiento y acumulación de N en maíz en el sudoeste bonaerense. Ciencia del suelo, 32(2), 219-231.
  • Souza, G. S. D., Alves, D. I., Dan, M. L., Lima, J. S. D. S., Fonseca, A. L. C. C. D., Araújo, J. B. S., & Guimarães, L. A. D. O. P. (2017). Soil physico-hydraulic properties under organic conilon coffee intercropped with tree and fruit species. Pesquisa Agropecuária Brasileira, 52, 539-547.
  • de Souza, HN., de Goede, RGM., Brussaard, L., Cardoso, IM., Duarte, EMG., Fernandes, RBA., Gomes, LC., Pulleman, MM. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture Ecosystems & Environment 146 (1): 179-196.
  • Dendooven, L., Gutierrez-Oliva, VF., Patino-Zuniga, L., Ramirez-Villanueva, DA., Verhulst, N., Luna-Guido, M., Marsch, R., Montes-Molina, J., Gutierrez-Miceli, FA., Vasquez-Murrieta, S., Govaerts, B. 2012. Greenhouse gas emissions under conservation agriculture compared to traditional cultivation of maize in the central highlands of Mexico. Science of the total Environment 431: 237-244.
  • Derry, D. 2000. Efecto de frijol tapado con barbecho corto sobre la biomasa y las reservas de fósforo del suelo en Costa Rica. M.Sc. Thesis. Guelpg, Canadá, University of Guelph. 82 p.
  • Díaz, W., Cortés, SL. 2001. Influencia del manejo intensivo de un cafetal sobre algunos componentes del fruto de (Coffea arabica/ L.). Café Cacao 2 (1): 43-48.
  • Díaz, W., Molina, G., Vázquez, E. 2002. Valoración económica del manejo (Saman + café) de una plantación establecida de (Coffea canephora) Pierre ex Froehner. Café Cacao 3 (3): 15-17.
  • Diaz, W., Relova, RA. 1989. Comportamiento de la vegetación indeseable en plantaciones de cafetos (Coffea arabica L.) bajo diferentes tratamientos de regulación del sombrío. Cultivos Tropicales 11 (4): 19-26.
  • Dotto, MA., Afférri, FS., Peluzio, JM., Melo, AVd., Carvalho, EVd. 2010. Divergência genética entre cultivares comerciais de milho em baixas altitudes no Tocantins, safra 2007/2008. Revista Ciência Agronômica 41: 630-637.
  • Duque, JP. 1953. Importancia de una poda racional en el cafeto cultivado bajo la sombra. Suelo Tico 7 (29): 48-57.
  • Dzib Castillo, BB. 2003. Manejo, secuestro de carbono e ingresos de tres especies forestales de sombra en cafetales de tres regiones contrastantes de Costa Rica. M.Sc. Thesis. Turrialba, CR, CATIE. 114 p.
  • Eakin, H. 2005. Institutional change, climate risk, and rural vulnerability: Cases from central Mexico. World Development 33 (11): 1923-1938.
  • Eakin, H., Tucker, C., Castellanos, E. 2006. Responding to the coffee crisis: a pilot study of farmers’ adaptations in Mexico, Guatemala and Honduras. Geographical Journal 172: 156-171.
  • Erenstein, O. 1999. La conservación de residuos en los sistemas de producción de maíz en Ciudad Guzmán y San Gabriel, Jalisco. México, MX, CIMMYT. 44 p. (CIMMYT NRG Documento. No. 99-01).
  • Escalante López, R., Galdámez Galdámez, J., Vázquez Gómez, J. 1994. Evaluación de tres prácticas mecánicas y manejo de residuos agrícolas para controlar la erosión hídrica en maíz (Zea mays L.), durante 1987, en Villaflores, Chiapas. Avances de Investigación en Ciencias Agronómicas 2: 27-32.
  • Escalante, M., Somarriba, E. 2001. Diseño y manejo de los cafetales del occidente de El Salvador. Agroforestería en las Américas 8 (30): 12-16.
  • Eskafi, FM., Kolbe, MM. 1990. Predation on larval and pupal Ceratitis capitata (Diptera: Tephritidae) by the ant Solenopsis geminata (Hymenoptera: Formicidae) and other predators in Guatemala. Environmental Entomology 19 (1): 148-153.
  • Eskafi, FM., Vanschoonhoven, A. 1981. Interactions of leafhopper (Empoasca kraemeri) population, varietal resistance, insecticide treatment, and plant growth on dry bean yields in a tropical environment. Journal of Economic Entomology 74 (1): 7-12.
  • Evangelista Méndez, RE., Mejía Figueroa, KL., Alvarado Dimas, DJ., Imbernon, J., Gil, SL., Hernández, MA. 2006. Identificación de territorios de café (Coffea arabica) de calidad en El Salvador. Boletín PROMECAFE (107): 7-13.
  • Fanjul, L., Arreolarodriguez, R., Mendezcastrejon, MP. 1985. Stomatal responses to environmental variables in shade and sun grown coffee plants in Mexico. Experimental Agriculture 21 (3): 249-258.
  • Farinelli, R., Lemos, LB., Cavariani, C., Nakagawa, J. 2006. Produtividade e qualidade fisiológica de sementes de feijão em função de sistemas de manejo de solo e adubação nitrogenada. Revista Brasileira de Sementes 28 (2): 102-109.
  • Favarato, L. F., Souza, J. L. D., Galvão, J. C. C., Souza, C. M. D., Balbino, J. M. D. S., & Guarçoni, R. C. (2016). Qualitative attributes and postharvest conservation of green ears of maize grown on different cover crops in organic no-till system. Revista Ceres, 63, 532-537.
  • Fiorentin, CF., Lemos, LB., Jardim, CA., Fornasieri Filho, D. 2011. Formação e manutenção de palhada de gramíneas concomitante à influência da adubação nitrogenada em cobertura no feijoeiro irrigado em sistema de semeadura direta. Bragantia 70 (4): 917-924.
  • Fischer, KS., Edmeades, GO., Johnson, EC. 1989. Selection for the improvement of maize yield under moisture deficits. Field Crops Research 22 (3): 227-243.
  • Fischer, RA., Santiveri, F., Vidal, IR. 2002. Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands II. Maize and system performance. Field Crops Research 79 (2-3): 123-137.
  • Flores, B., Reyes M, S., Delgado M, E. 1995. Efecto del clima y del suelo en el desarrollo y producción de seis variedades de café (Coffea arabica L.) región Coatepec, Ver. In. 15. Simposio sobre Caficultura Latinoamericana (21-24 Jul 1992, Xalapa, MX). Tegucigalpa, HN, IICA. p. 21.
  • Flores, M. 1992. La utilización de leguminosas de cobertura en sistemas agrícolas tradicionales de Centroamérica. Ceiba 33 (1): 135-145.
  • Fournier-Origgi, LA., Di Stéfano-Gandolfi, JF. 2004. Variaciones climáticas entre 1988 y 2001 y sus posibles efectos sobre la fenología de varias especies leñosas y el manejo de un cafetal con sombra en ciudad Colón de Mora, Costa Rica. Agronomía Costarricense 28 (1): 201-120.
  • Fox, RH., Talleyra.H., Bouldin, DR. 1974. Nitrogen fertilization of corn and sorghum grown in Oxisols and Ultisols in Puerto-Rico. Agronomy Journal 66 (4): 534-540.
  • Frahm, MA., Rosas, JC., Mayek-Perez, N., Lopez-Salinas, E., Acosta-Gallegos, JA., Kelly, JD. 2004. Breeding beans for resistance to terminal drought in the lowland tropics. Euphytica 136 (2): 223-232.
  • Fuentes, M., Hidalgo, C., Etchevers, J., León, F., Guerrero, A., Dendooven, L., Verhulst, N., Govaerts, B. 2011. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions. Plant and Soil 355 (1-2): 183-197.
  • FUNICA, (Fundación para el Desarrollo Tecnológico Agropecuario y Forestal de Nicaragua)., ESPAPO, (Empresa de Servicios Profesionales Agroforestales y Pecuarios S.A.). 2005. Informe técnico de la validación de asocio de chiltomo + barrera viva del maíz para el manejo del picudo en la chiltoma. León, NI. 16 p.
  • Gagliardi, S., Avelino, J., Beilhe, L. B., & Isaac, M. E. (2020). Contribution of shade trees to wind dynamics and pathogen dispersal on the edge of coffee agroforestry systems: A functional traits approach. Crop protection, 130, 105071.
  • Galindo, JJ., Abawi, GS., Thurston, HD., Galvez, G. 1983. Effect of mulching on web blight of beans in Costa Rica. Phytopathology 73 (4): 610-615.
  • Gallego Ropero, MC., Armbrecht, I. 2005. Depredación por hormigas sobre la broca del café Hypothenemus hampei (Curculionidae: Scolytinae) en cafetales cultivados bajo dos niveles de sombra en Colombia. Manejo Integrado de Plagas y Agroecología (76): 32-40.
  • Gálvez-Hidalgo, N. 1984. Relaciones entre ciertos factores climáticos y la densidad poblacional en la productividad de Phaseolus vulgaris L. Lic. Thesis. San José, CR, UCR. 74 p.
  • Gambasica, N. V. P., Forero, S. E. A., & Lucheta, A. R. (2018). Green manure: Alternative to carbon sequestration in a Typic Ustipsamment under semiarid conditions. Spanish Journal of Soil Science, 8(3).
  • García Benavides, J., Pinchinat, A. 1974. Efecto de la época de siembra sobre el rendimiento del frijol (Phaseolus vulgaris L.) en Turrialba - Costa Rica. Agronomía Tropical 24 (2): 113-125.
  • Gomes, FGJ., Sá, M. E. de. 2010. Proteína e qualidade de sementes de feijão (Phaseolus vulgaris L.) em função da adubação nitrogenada em plantio direto. Revista Brasileira de Sementes 32 (1): 34-44.
  • da Silva, P.C.G., Tiritan, C.S., Echer, F.R., dos Santos Cordeiro, C.F., Rebonatti, M.D.; dos Santos, C.H., 2020. No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk. Field Crops Research, 258, p.107947.
  • González Eguiarte, DR., Ruiz Corral, JA., Lépiz Ildefonso, R., González Ávila, A., López Alcocer, E., Ramírez Ojeda, G., Zarazúa Villaseñor, P., Durán Puga, N. 2011. Expectations of adaptation to climate change in three bean Varieties in Jalisco. Revista Mexicana de Ciencias Agrícolas (Especial 2): 337-350.
  • González Gutiérrez, JC. 1997. Evaluacion de cuatro variedades de frijol comun (Phaseolus vulgaris L.) bajo dos sistemas de labranza sobre el manejo de malezas, crecimiento y rendimiento del cafe (Coffea arabica L.) en la época de postrera 1996. Ing. Agr. Thesis. Managua, NI, UNA. 45 p.
  • González, F., Kass, D. 1998. Efecto de barbechos mejorados de Acacia mangium sobre la disponibilidad de fósforo en Vigna unguiculata en un ultisol ácido. Agroforestería en las Américas 5 (17-18): 59-63.
  • Gouesnard, B., Rebourg, C., Welcker, C., Charcosset, A. 2002. Analysis of photoperiod sensitivity within a collection of tropical maize populations. Genetic Resources and Crop Evolution 49 (5): 471-481.
  • Grave De P, G., Diaz H, W., Rodriguez, M. 1998. Manejo de la poda y reducción gradual de los árboles de sombra en (Coffea canephora) Pierre ex Froehner. Café Cacao 1 (1): 36-41.
  • Guimarães, CM., Stone, LF., Brunini, O. 2006. Adaptação do feijoeiro comum (Phaseolus vulgaris L.) à seca. Revista Brasileira de Engenharia Agrícola e Ambiental 10 (1): 70-75.
  • Guimarães, CM., Stone, LF., Del Peloso, MJ., Oliveira, JPd. 2011. Genótipos de feijoeiro comum sob deficiência hídrica. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (7): 649-656.
  • Gunera López, JA., Díaz Pérez, JL. 2000. Efecto de labranza y manejo de malezas sobre el comportamiento de la cenosis y el rendimiento de frijol común (Phaseolus vulgaris L.). Ing. Agr. Thesis. Managua, NI, UNA. 45 p.
  • Gutiérrez, C. 1999. Evaluación de la asociación maíz-chile para el manejo de Anthonomus eugenii en Nicaragua. Acciones MIP en hortalizas. Manejo Integrado de Plagas (54): 73-77.
  • Gvozdenovich, J. J., Barbagelata, P. A., Oszust, J. D., & Pérez Bidegain, M. (2018). Escurrimiento y producción de sedimentos en una pequeña cuenca agrícola aforada de Entre Ríos, Argentina: aplicación del modelo wepp. Ciencia del suelo, 36(1), 157-172.
  • Häger, A. 2012. The effects of management and plant diversity on carbon storage in coffee agroforestry systems in Costa Rica. Agroforestry Systems 86 (2): 159-174.
  • Hamada Tobaru, J., Huaringa Joaquin, A., Camarena Mayta, F. 2003. Efecto del manejo agronómico en el rendimiento del frijol Unagem 2. In. ANALES CIENTIFICOS - Universidad Nacional Agraria La Molina (Ene-Abr 2003, La Molina, Perú). Lima, Perú, Universidad Nacional Agraria La Molina. pp. 138-154.
  • Hanson-Snortum, PE. 1991. Los parasitoides asociados al cafeto en Costa Rica. Manejo Integrado de Plagas (20-21): 8-10.
  • Harmand, J-M., Ávila, H., Dambrine, E., Skiba, U., Miguel, S., Renderos, RV., Oliver, R., Jiménez, F., Beer, J. 2007. Nitrogen dynamics and soil nitrate retention in a Coffea arabicaEucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85 (2): 125-139.
  • Hellin, J., Haigh, M. 2002. Impact of Vetiveria zizanioides (vetiver grass) live barriers on maize production in Honduras. In. 12th ISCO Conference Beijing (26-31 May 2002, Beijin, China). Ministry of Water Resources, Republic of China. v. III Technology and Method of Soil and Water Conservation, pp. 277-281.
  • Henderson, AE., Roitberg, BD. 2006. Microhabitat location of Exophthalmus jekelianus (White) (Coleoptera : Curculionidae): Is there a preference for shade-grown coffee? Environmental Entomology 35 (6): 1603-1609.
  • Henriksen, I. 1999. Interspecific competition and nutrient cycling in alley cropping systems with common bean in a humid premontane climate. M.Sc. Thesis. Copenhague, Denmark, University of Copenhagen. 50 p.
  • Henriksen, I., Michelsen, A., Schlönvoigt, A. 2002. Tree species selection and soil tillage in alley cropping systems with Phaseolus vulgaris L. in a humid premontane climate: Biomass production, nutrient cycling and crop responses. Plant and Soil 240 (1): 145-159.
  • Hergoualc’h, K., Blanchartd, E., Skiba, U., Hénault, C., Harmand, JM. 2012. Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture Ecosystems & Environment 148: 102-110.
  • Hergoualc’h, K., Skiba, U., Harmand, J-M., Henault, C. 2008. Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89 (3): 329-345.
  • Hernández Nicaragua, A. 1995. Manejo de ladera bajo el sistema de cultivo frijol. In Informe técnico anual: Masaya 1994. Masaya, NI, INTA. pp. 67-72.
  • Hernández, L., Hernández, N., Soto, CF., Pino, M. A. de los 2010. Estudio fenológico preliminar de seis cultivares de habichuela de la especie Phaseolus vulgaris L. Cultivos Tropicales 31 (1).
  • Hernández, ME., Pérez, J., Krishnamurthy, L., Ordaz, V. 2002. Eficiencia de cinco sistemas agroforestales de café (Coffea spp) para la conservación del suelo y agua. In Krishnamurthy, L., Uribe Gómez, M. Eds. Tecnologías agroforestales para del desarrollo rural sostenible. MX, PNUMA; SEMARNAT. pp. 49-78. (Textos Básicos para la Formación Ambiental 8).
  • Hörbe, TAN., Amado, TJC., Ferreira, AO., Alba, PJ. 2013. Optimization of corn plant population according to management zones in Southern Brazil. Precision Agriculture 14 (4): 450-465.
  • ICAFE, (Instituto del Café de Costa Rica). 2008. Manejo de podas en altas densidades de siembra. In Informe anual de investigaciones Café 2007. Heredia, CR. pp. 161-162.
  • Jauer, A., Dutra, LMC., Zabot, L., Uhry, D., Ludwig, MP., Farias, JR., Garcia, DC., Lúcio, ADC., Lucca Filho, OA., Porto, MDdM. 2006. Efeitos da população de plantas e de tratamento fitossanitário no rendimento de grãos do feijoeiro comum, cultivar “TPS Nobre”. Ciência Rural 36 (5): 1374-1379.
  • Jimenez Avila, E. 1979. Estudios ecológicos del agroecosistema cafetalero: I Estructura de los cafetales de una finca cafetalera en Coatepec, Ver. México. Biotica (Mexico) 4 (1): 1-12.
  • Juárez Arellano, H., Burgos, CF., Saunders, JL. 1978. Efecto del manejo de plagas y poblaciones de maíz (Zea mays L.) sobre la función de un sistema asociado simultáneamente con frijol de costa (Vigna unguiculata Walp.) Journal of Economic Entomology 75 (2): 218-219.
  • Prates Júnior, P., Moreira, S. L. S., Jordão, T. C., Ngolo, A. O., Moreira, B. C., Santos, R. H. S., ... & Kasuya, M. C. M. (2021). Structure of AMF community in an agroforestry system of coffee and macauba palm. Floresta e Ambiente, 28.
  • Kettler, JS. 1996. Weeds in the traditional slash/mulch practice of frijol tapado: Indigenous characterization and ecological implications. Weed Research 36 (5): 385-393.
  • Laird, RJ. 1959. Manejo de los residuos de las cosechas en una rotación de maíz y trigo en el Bajío. México, MX, Secretaría de Agricultura y Ganadería. 23 p. (Folleto Técnico No. 37).
  • Lin, BB. 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology 144 (1-2): 85-94.
  • Lin, BB. 2009. Coffee (Cafe arabica var. Bourbon) fruit growth and development under varying shade levels in the Soconusco Region of Chiapas, Mexico. Journal of Sustainable Agriculture 33 (1): 51-65.
  • Lin, BB. 2010. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology 150 (4): 510-518.
  • Lin, BB., Richards, PL. 2007. Soil random roughness and depression storage on coffee farms of varying shade levels. Agricultural Water Management 92 (3): 194-204.
  • Lomeli-Flores, JR., Barrera, JF., Bernal, JS. 2010. Impacts of weather, shade cover and elevation on coffee leafminer Leucoptera coffeella (Lepidoptera: Lyonetiidae) population dynamics and natural enemies. Crop Protection 29 (9): 1039-1048.
  • Lopes, AS., Pavani, LC., Corá, JE., Zanini, JR., Miranda, HA. 2004. Manejo da irrigação (tensiometria e balanço hídrico climatológico) para a cultura do feijoeiro em sistemas de cultivo direto e convencional. Engenharia Agrícola 24 (1): 89-100.
  • López Benitez, FL. 1996. Comparación de la dinámica de fósforo en cultivo en callejones y coberturas orgánicas para frijol (Phaseolus vulgaris L.) en San Juan Sur, Turrialba, Costa Rica. M.Sc. Thesis. Turrialba, CR, CATIE. 101 p.
  • López Benítez, FL., Kass, DCL. 1996. Efecto de enmiendas orgánicas en la dinámica del fósforo e indicadores de actividad biológica sobre el rendimiento del frijol en un suelo acrudoxic melanudand. Agroforestería de las Américas 3 (11-12): 12-15.
  • Lopez, A. J. de., Muñoz Orozco, A. 1984. Relación de la coloración del grano con la precocidad y la producción en maíces de Valles Altos. Revista Chapingo 9 (43-44): 31-37.
  • Lopez-Bravo, DF., Virginio, ED., Avelino, J. 2012. Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Protection 38: 21-29.
  • Lopez Soto, JL., Ruiz Corral, JA., de Jesus Sanchez Gonzalez, J., Ildefonso, RL. 2005. Adaptación climática de 25 especies de frijol silvestre (Phaseolus spp) en la República Mexicana. Revista Fitotecnia Mexicana 28 (3): 221-230.
  • Macedo Pezzopane, JR., de Souza, PS., Rolim, GdS., Gallo, PB. 2011. Microclimate in coffee plantation grown under grevillea trees shading. Acta Scientiarum-Agronomy 33 (2): 201-206.
  • Macedo Pezzopane, JR., Pedro Junior, MJ., Gallo, PB. 2005. Radiacao solar e saldo de radiacao em cultivo de cafe a pleno sol e consorciado com banana ‘prata ana’. Bragantia 64 (3): 485-497.
  • Macedo Pezzopane, JR., Pedro, MJ, Jr.., Gallo, PB., Paes De Carmargo, MB., Fazuoli, LC. 2007. Avaliacoes fenologicas e agronomicas em cafe arabica cultivado a pleno sol e consorciado com banana ‘Prata Ana’. Bragantia 66 (4): 701-709.
  • Macedo Pezzopane, JR., Simoes Marsetti, MM., de Souza, JM., Macedo Pezzopane, JE. 2010. Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural 40 (6): 1257-1263.
  • Machado Vargas, M. M., Nicholls Estrada, C. I., & Ríos Osorio, L. A. (2018). Social-ecological resilience of small-scale coffee production in the Porce river basin, Antioquia (Colombia).
  • Marcos Solorio, B., Martínez Campos, Á. R., López Urquídez, G. A., López Orona, C. A., & Arteaga Reyes, T. T. (2016). Biomass of the native maize (Zea mays) production systems as an alternative to carbon capture. Revista internacional de contaminación ambiental, 32(3), 361-367.
  • Marenco-Mendoza, RA., Saunders, JL. 1993. Parasitoides del gusano cogollero, Spodoptera frugiperda (Lepidoptera: Noctuidae) en maíz, en Turrialba, Costa Rica. Manejo Integrado de Plagas (27): 18-23.
  • Marquina, S., Pérez, T., Donoso, L., Giuliante, A., Rasse, R., & Herrera, F. (2015). NO, N2O and CO2 soil emissions from Venezuelan corn fields under tillage and no-tillage agriculture. Nutrient Cycling in Agroecosystems, 101(1), 123-137.
  • Matos, EdS., Mendonça, EdS., Cardoso, IM., Lima, PCd., Freese, D. 2011. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems. Revista Brasileira de Ciência do Solo 35: 141-149.
  • Matos, EdS., Mendonça, EdS., Lima, PCd., Coelho, MS., Mateus, RF., Cardoso, IM. 2008. Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization. Revista Brasileira de Ciência do Solo 32: 2027-2035.
  • Meléndez-Celis, G., Briceño-Salazar, JA., Amador-Benavides, MH., Ocampo-Sánchez, RA. 1997. El sistema de frijol tapado y la biodiversidad vegetal. In. Seminario Biodiversidad Vegetal y Manejo Local (8-10 May 1996, San José, Costa Rica). IDEAS. pp. 59-69.
  • Mendez, M. J., & Buschiazzo, D. E. (2015). Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems. Aeolian Research, 16, 117-124.
  • Méndez, MA., Cáceres R., O., Arauz, M., Espino, A. 1998a. Efecto del sistema de labranza sobre las poblaciones de gallinas ciegas Phyllophaga spp. (Coleoptera: Scarabaeidae) en Miraflor, Estelí, Nicaragua. In Caceres, O. Ed. Compartiendo una experiencia de manejo integrado de plagas : PROMIPPAC / Fase 95-98. Esteli, NI, EPAEZ; COSUDE; PROMIPPAC. pp. 102-106.
  • Méndez, MA., Cáceres R., O., Galeano, P., Hernández R., F., Zavala R., M. 1998b. Efecto del asocio de maíz con dos especies de frijol abono Mucuna pruriens Bort y Cannavalia ensiformis l.d.c. en las poblaciones de plagas del suelo y follaje en Miraflor, Estelí, Nicaragua. In Caceres, O. Ed. Compartiendo una experiencia de manejo integrado de plagas : PROMIPPAC / Fase 95-98. Esteli, NI, EPAEZ; COSUDE; PROMIPPAC. pp. 112-116.
  • Méndez, MA., Cáceres R., O., Gómez, M., Arancibia, P., Miranda, J. 1998c. Efecto de la materia orgánica sobre las enfermedades del maíz (Zea mays L.) maís muerto (Stenocarpella maydis) y cabeza loca (Peronosclerospora sorghi) en Totogalpa, Nueva Segovia, Nicaragua. In Caceres, O. Ed. Compartiendo una experiencia de manejo integrado de plagas : PROMIPPAC / Fase 95-98. Esteli, NI, EPAEZ; COSUDE; PROMIPPAC. pp. 107-111.
  • Merayo-Miller, A., Rojas-Calvo, CE., Valverde-Mena, BE., Umaña-Marín, E. 1998. Leguminosas de cobertura para el manejo de Rottboellia cochinchinensis en el asocio yuca/maíz. Manejo Integrado de Plagas (48): 49-53.
  • Messiaen, CM. 1992. L’intérêt de lignées collectées en Haïti pour l’amélioration variétale du haricot grain (Phaseolus vulgaris L). Agronomie 12 (7): 503-513.
  • Mestre-Mestre, A. 1996. Respuesta del café bajo sombra a la fertilización. Avances Técnicos Cenicafé (231): 1-4.
  • Miklas, PN., Rosas, JC., Beaver, JS., Telek, L., Freytag, GF. 1994. Field performance of select tepary bean germplasm in the tropics. Crop Science 34 (6): 1639-1644.
  • Monneveux, P., Quillerou, E., Sanchez, C., Lopez-Cesati, J. 2006. Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment (Mexico). Plant and Soil 279 (1-2): 95-105.
  • Montes, SMNM., Paulo, EM., Fischer, IH. 2012. Incidência da ferrugem alaranjada em cafeeiros nas condições climáticas de presidente prudente, SP. Coffee Science 7 (3): 208-214.
  • Monzón, AJ., Sand, R., Hidalgo, E., Klingen, I. 2007. Effect of coffee management, time and climate on the ocurrence of insect pathogenic fungi in the soil. In Insect pathogenic fungi in Hypothenemus hampei, Leucoptera coffeella and in the soil in coffee plantations in Central America: natural occurrence, management system and genetic diversity. Hogskoloveien, Norway, Norwegian University of Life Science. pp. 13-20.
  • Morais, H., Caramori, PH., Ribeiro, AMD., Gomes, JC., Koguishi, MS. 2006. Microclimatic characterization and productivity of coffee plants grown under shade of pigeon pea in Southern Brazil. Pesquisa Agropecuaria Brasileira 41 (5): 763-770.
  • Moreira, S. L., Pires, C. V., Marcatti, G. E., Santos, R. H., Imbuzeiro, H. M., & Fernandes, R. B. (2018). Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural and Forest Meteorology, 256, 379-390.
  • Mosquera, A. T., Melo, M. M., Quiroga, C. G., Avendaño, D. M., Barahona, M., Galindo, F. D., ... & Sosa, D. N. (2016). Evaluación de fertilización orgánica en cafeto (Coffea arabica) con pequeños productores de Santander, Colombia. Temas agrarios, 21(1), 90-101.
  • Moura, E. G., Hallett, P. D., Mooney, S. J., Silva, F. R., Macedo, V. R. A., & Aguiar, A. C. F. (2020). Physiological and yield response in maize in cohesive tropical soil is improved through the addition of gypsum and leguminous mulch. The Journal of Agricultural Science, 158(1-2), 57-64.
  • Muñoz Arroyo, RA. 2013. Leguminosas como alternativa para la producción de maíz en el Ejido La Bella Ilusión, Maravilla Tenejapa, Chiapas. M Sc Thesis. San Cristobal de las Casas, MX, ECOSUR. 60 p.
  • Mussack, M. 1988. Diagnóstico socio-económico de los sistemas agroforestales de cacao, café y árboles de sombra utilizados en la producción de madera en la costa de Ecuador. US, Southeastern Center for Forest Economics Research. 99 p. (FPEI Working Papers Series (EUA). no. 35.).
  • Nápoles, S., Tabares, G., Mendez, E., Cumba, BN. 1989. Efecto de la modalidad sol o sombra, la densidad de plantas por bolsa y el riego, en la producción de “Caturra Rojo”. I. crecimiento. Ciencia y Técnica en la Agricultura; Café y Cacao 12 (2): 41-50.
  • Nardini, C., Sgarbossa, J., Schwerz, F., Elli, E. F., Medeiros, S. L. P., & Caron, B. O. (2019). Growth and solar radiation use efficiency of corn cultivated in agroforestry systems. Emirates Journal of Food and Agriculture, 535-543.
  • Navarrete-Maya, R., Trejo-Albarrán, E., Navarrete-Maya, J., Prudencio-Sains, JM., Acosta Gallegos, JA. 2009. Reacción de genotipos de frijol a Fusarium spp. y Rhizoctonia solani bajo condiciones de campo e invernadero. Agricultura Técnica en México 35 (4): 459-470.
  • Novaes, P., Souza, JP., Britto Assis Prado, CH. 2011. Grafting for improving net photosynthesis of Coffea arabica in field in Southeast of Brazil. Experimental Agriculture 47 (1): 53-68.
  • Nunes, UR., Santos, NF., Farnezi, MMdM., Andrade Júnior, VC., Brandão Júnior, DdS., Pereira, GD. 2007. Qualidade fisiológica de sementes de feijão em plantio direto sobre diferentes coberturas de plantas em Diamantina, MG. Ciência e Agrotecnologia 31 (6): 1737-1743.
  • Ohep, C., Marcano, F., Pudzzar, S., Colmenárez, C. 2002. Efectos de la labranza conservacionista en los atributos físicos del suelo que influyen sobre el rendimiento del maíz. Bioagro 14 (1): 37-45.
  • Olguín López, J. L., Guevara Gutiérrez, R. D., Carranza Montaño, J. A., Scopel, E., Barreto García, O. A., Mancilla Villa, O. R., & Talavera Villareal, A. (2017). Producción y rendimiento de maíz en cuatro tipos de labranza bajo condiciones de temporal. Idesia (Arica), 35(1), 51-61.
  • Olson, MB., Morris, KS., Méndez, VE. 2012. Cultivation of maize landraces by small-scale shade coffee farmers in western El Salvador. Agricultural Systems 111: 63-74.
  • Ortiz Munoz, J., Anaya-G, M., Fernandez-G, R. 1977. Efecto de las microcuencas para la captación in situ de la lluvia sobre el regimén de humedad del suelo y la producción de maíz (Zea mays L.) y girasol (Helianthus annus L.). Agrociencia (27): 17-32.
  • Ortiz-Ceballos, AI., Fragoso, C. 2004. Earthworm populations under tropical maize cultivation: the effect of mulching with velvetbean. Biology and Fertility of Soils 39 (6): 438-445.
  • Ospina, A. 1979. Plantaciones mixtas de café y pino: la micorriza de los pinos tropicales beneficia el manejo de cafetales, con especial referencia a la zona del Cauca. Ecología y Desarrollo (2): 30-31.
  • Parra, JRP., Zucchi, RA., Neto, SS. 1982. Flutuação populacional e atividade diária de vôo da mosca-do-mediterrâneo em cafeeiros ‘Mundo Novo’. Pesquisa Agropecuaria Brasileira 17 (7): 985-992.
  • Partelli, F. L., Araújo, A. V., Vieira, H. D., Dias, J. R. M., Menezes, L. F. T. D., & Ramalho, J. C. (2014). Microclimate and development of’Conilon’coffee intercropped with rubber trees. Pesquisa Agropecuária Brasileira, 49, 872-881.
  • Pavani, LC., Lopes, AS., Galbeiro, RB. 2008. Manejo da irrigação na cultura do feijoeiro em sistemas plantio direto e convencional. Engenharia Agricola 28 (1): 12-21.
  • Pecina-Martínez, JA., Mendoza-Castillo, MC., López-Santillán, JA., Castillo-González, F., Mendoza-Rodríguez, M. 2009. Respuesta morfológica y fenológica de maíces nativos de Tamaulipas a ambientes contrastantes de México. Agrociencia 43: 681-694.
  • Peña-Cabriales, JJ., Castellanos, JZ. 1993. Effects of water-stress on n2 fixation and grain-yield of Phaseolus vulgaris L. Plant and Soil 152 (1): 151-155.
  • Pereira, JL., Picanco, MC., Pereira, EJG., Silva, AA., Jakelaitis, A., Pereira, RR., Xavier, VM. 2010. Influence of crop management practices on bean foliage arthropods. Bulletin of Entomological Research 100 (6): 679-688.
  • Pereira, T., Coelho, CMM., Santos, JCPd., Bogo, A., Miquelluti, DJ. 2011. Diversidade no teor de nutrientes em grãos de feijão crioulo no Estado de Santa Catarina. Acta Scientiarum. Agronomy 33 (3): 477-485.
  • Pérez Colmenarez, A., Molina Galán, JD., Martínez Garza, A. 2002. Adaptación a clima templado de razas tropicales y subtropicales de maíz de México por selección masal visual. Rendimiento, altura de planta y precocidad. Revista Fitotecnia Mexicana 25 (4): 435-441.
  • Pérez Marin, AM., Cesar Menezes, RS., Silva, ED., Valadares de Sa Barreto Sampaio, E. 2006. Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no agreste paraibano. Revista Brasileira de Ciência do Solo 30 (3): 555-564.
  • Pérez, L., Camejo, R., Viñals, R. 2002. Efectos del manejo de la poda y la reducción gradual de los árboles de sombra sobre el rendimiento en (Coffea canephora) Pierre ex Froehner. Café Cacao 3 (3): 54-56.
  • Pérez-Vega, JC., Blair, MW., Monserrate, F., Ligarreto M., G. 2011. Evaluation of an Andean common bean reference collection under drought stress. Agronomía Colombiana 29 (1): 17-26.
  • Perfecto, I., Vandermeer, J. 1996. Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108 (3): 577-582.
  • Philpott, SM., Lin, BB., Jha, S., Brines, SJ. 2008. A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agriculture Ecosystems & Environment 128 (1-2): 12-20.
  • Piato, K., Lefort, F., Subía, C., Caicedo, C., Calderón, D., Pico, J., & Norgrove, L. (2020). Effects of shade trees on robusta coffee growth, yield and quality. A meta-analysis. Agronomy for Sustainable Development, 40(6), 1-13.
  • Platen, Hv., Rodríguez P., G. 1982. La producción de frijol tapado [Phaseolus vulgaris] en la región de Acosta-Puriscal, Costa Rica. In. Reunión Anual del Programa Cooperativo Centroamericano para el Mejoramiento de Cultivos Alimenticios (22-26 Mar 1982, San José, CR). San José, CR, CATIE. p. 15.
  • Ponette-Gonzalez, AG., Weathers, KC., Curran, LM. 2010. Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology 16 (3): 946-963.
  • Ponti, S. M. C., Videla, C. C., Monterubbianesi, M. G., Andrade, F. H., & Rizzalli, R. H. (2020). Crop intensification with sustainable practices did not increase N2O emissions. Agriculture, Ecosystems & Environment, 292, 106828.
  • Porch, TG. 2006. Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science 192 (5): 390-394.
  • Porch, TG., Ramirez, VH., Santana, D., Harmsen, EW. 2009. Evaluation of common bean for drought tolerance in Juana Diaz, Puerto Rico. Journal of Agronomy and Crop Science 195 (5): 328-334.
  • Portillo, HE., Pitre, HN., Andrews, KL., Meckenstock, DH. 1994. The influence of weeds on insect-related mortality of intercropped sorghum and maize in Southern Honduras. Tropical Agriculture 71 (3): 208-214.
  • Potter, KN., Velazquez-Garcia, I., Scopel, E., Torbert, HA. 2007. Residue removal and climatic effects on soil carbon content of no-till soils. Journal of Soil and Water Conservation 62 (2): 110-114.
  • Ramalho, MAP., Abreu, AdFB., dos Santos, PSJ. 1998. Interactions of genotypes x sowing dates, years x and places on common bean cultivar evaluation in the South and “Alto Paranaiba” regions of Minas Gerais State. Ciencia e Agrotecnologia 22 (2): 176-181.
  • Ramirez, A., Sere, C., Uquillas, J. 1992. An economic-analysis of improved agroforestry practices in the amazon lowlands of Ecuador. Agroforestry Systems 17 (1): 65-86.
  • Ramos, MLG., Boddey, RM. 1987. Yield and nodulation of Phaseolus vulgaris and the competitivity of an introduced rhizobium strain - effects of lime, mulch and repeated cropping. Soil Biology & Biochemistry 19 (2): 171-177.
  • Rendon, MAP., Ibarra-Nunez, G., Parra-Tabla, V., Garcia-Ballinas, JA., Henaut, Y. 2006. Spider diversity in coffee plantations with different management in Southeast Mexico. Journal of Arachnology 34 (1): 104-112.
  • Resende, AV., Furtini Neto, AE., Alves, VMC., Muniz, JA., Curi, N., Lago, FJ. 2006. Resposta do milho a fontes e modos de aplicação de fósforo durante três cultivos sucessivos em solo da região do Cerrado. Ciência e Agrotecnologia 30 (3): 458-466.
  • Reyes, S. 1997. Resultados y proyecciones del mejoramiento de maíz para tolerancia a sequía en Ecuador. In. Developing Drought- and Low N-Tolerant Maize. Proceedings of a Symposium (25-29 Mar 1996, El Batán, MX). México, MX, CIMMYT. pp. 25-29.
  • Ribeiro, N. D., Steckling, S. D. M., Mezzomo, H. C., & Somavilla, I. P. (2019). Genetic parameters and combined selection for phosphorus, phytate, iron, and zinc in Mesoamerican common bean lines. Ciência e Agrotecnologia, 43.
  • Ribeiro, R. H., Besen, M. R., Fioreze, S. L., & Piva, J. T. (2018). Management of nitrogen fertilization in maize cultivated in succession to black oats in a temperate climate. Comunicata Scientiae, 9(2), 202-210.
  • Ricketts, TH., Daily, GC., Ehrlich, PR., Michener, CD. 2004. Economic value of tropical forest to coffee production. Proceedings of the National Academy of Sciences of the United States of America 101 (34): 12579-12582.
  • Rivas Jacobo, M. A., Mendoza Pedroza, S. I., Sangerman-Jarquín, D. M., Sánchez Hernández, M. Á., Herrera Corredor, C. A., & Rojas García, A. R. (2020). Forage evaluation of maize from various origins of Mexico in the semi-arid region. Revista mexicana de ciencias agrícolas, 11(SPE24), 93-104.
  • Rivera Flores, NA. 1998. Estudio sobre el parasitismo de Cephalonomia stephanoderis Betrem en la broca del café (Hypothenemus hampei Ferrari). en plantaciones de café con manejo orgánico, Finca Bella Vista San Miguel Tucuru, Alta Verapaz. Ing Agr Thesis. Guatemala, GT, Universidad de San Carlos de Guatemala. 55 p.
  • Rodrigues, WP., Vieira, HD., Herlen, D., Barbosa, SG., Vittorazzi, C. 2012. Growth and yield of Coffea arabica L. in Northwest Fluminense: 2nd harvest. Revista CERES 59 (6): 809-815.
  • Rodríguez, JA., Sepúlveda, IC., Camargo García, JC., Galvis Quintero, JH. 2009. Pérdidas de suelo y nutrientes bajo diferentes coberturas vegetales en la zona Andina de Colombia. Acta Agronómica 58: 160-166.
  • Rodríguez-Fuentes, H. 1985. Sistemas de labranza, manejo de residuos y su influencia en algunas propiedades químicas del suelo, plagas y la producción de maíz de grano (Zea mays L.). M.Sc. Thesis. Turrialba, CR, CATIE. 88 p.
  • Roese, A. D., Zielinski, E. C., & De Mio, L. L. M. (2020). Plant diseases in afforested crop-livestock systems in Brazil. Agricultural Systems, 185, 102935.
  • Romero López, SA. 2006. Aporte de biomasa y reciclaje de nutrientes en seis sistemas agroforestales de café (Coffea arabica var. Caturra), con tres niveles de manejo. M.Sc. Thesis. Turrialba, CR, CATIE. 110 p.
  • Romero, AR., Blanco, M., Cuadra, M. 1996. Control de malezas y respuesta del cultivo de café (Coffea arabica L.) sembrado en asocio con diferentes variedades de frijol común (Phaseolus vulgaris L.). In. 6. Congreso Internacional de Manejo Integrado de Plagas - 5. Taller Latinoamericano sobre Moscas Blancas y Geminivirus (29 Sep - 4 Oct, Acapulco, MX). UNACh. p. 13.
  • Romero-Perezgrovas, R., Verhulst, N., De La Rosa, D., Hernández, V., Maertens, M., Deckers, J., & Govaerts, B. (2014). Effects of tillage and crop residue management on maize yields and net returns in the Central Mexican highlands under drought conditions. Pedosphere, 24(4), 476-486.
  • Rosado-May, FJ., Garcia Espinosa, R., Gliessman, SR. 1985. Impacto de los fitopatógenos del suelo al cultivo del frijol, en suelos bajo diferente manejo en la Chontalpa, Tabasco. Revista Mexicana de Fitopatologia 3 (2): 80-91.
  • Rosales-Serna, R., Kohashi-Shibata, J., Acosta-Gallegos, JA., Trejo-Lopez, C., Ortiz-Cereceres, J., Kelly, JD. 2004. Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivar. Field Crops Research 85 (2-3): 203-211.
  • Rosemeyer, ME. 1995. Eficiencia de aplicaciones de fósforo en los sistemas frijol tapado y espequeado a través de tres años. In Araya-Villalobos, R., Beck, D. Eds. Taller Internacional sobre Bajo Fósforo en el Cultivo de Frijol. Mejoramiento y manejo agronómico del frijol común (Phaseolus vulgaris L.) para adaptación en suelos de bajo fósforo: Memoria (13-15 Nov 1995, San José, Costa Rica). Alajuela, CR, Programa Cooperativo Regional de Frijol para Centroamerica México y el Caribe San José (Costa Rica); CIAT Cali (Colombia); Universidad de Costa Rica Alajuela (Costa Rica). Estación Experimental Fabio Baudrit M. pp. 157-163.
  • Rosset, P. 1986. Aspectos ecológicos y económicos del manejo de plagas y los policultivos de tomate en América Central. Thesis. Michigan, US, Instituto para el Desarrollo de Alternativas Agrícolas. 128 p.
  • Rosset, P., Díaz, I., Ambrose, R. 1987. Evaluación del sistema de policultivo de tomate y frijol como parte de un sistema de manejo integrado de plagas del tomate. Turrialba 37 (1): 85-92.
  • Rosset, PM. 1989. Evaluation and validation of a tomato and bean polycultural cropping system as a component of IPM for tomatoes in Nicaragua. Griggs, TD., Mclean, BT. Eds. 289-302 p.
  • Roveda, G., Polo, C. 2007. Mecanismos de adaptación de maíz asociado a Glomus spp. en suelos con bajo fósforo disponible. Agronomía Colombiana 25: 349-356.
  • Ruiz Corral, JA., Puga, ND., Sanchez Gonzalez, JdJ., Parra, JR., Gonzalez Eguiarte, DR., Holland, JB., Medina Garcia, G. 2008. Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science 48 (4): 1502-1512.
  • Ruiz Corral, JA., Ramírez Díaz, JL., Hernández Casillas, JM., Aragón Cuevas, F., Sánchez González, JdJ., Ortega Corona, A., Medina García, G., Ramírez Ojeda, G. 2011. Razas Mexicanas de maíz como fuente de germoplasma para la adaptación al cambio climático. Revista Mexicana de Ciencias Agrícolas (Especial 2): 365-379.
  • Russo A, RO. 1983. Efecto de la poda de Erythrina poeppigiana (Walpers) O.F. Cook (Poró), sobre la nodulación, producción de biomasa y contenido de nitrógeno en el suelo en un sistema agroforestal café-poró. M.Sc. Thesis. Turrialba, CR, CATIE. 108 p.
  • Salazar, O., Casanova, M., Nájera, F., Contreras, A., & Tapia, Y. (2020). Net nitrogen mineralisation in maize-cover crop rotations in Mediterranean Central Chile. Journal of Soil Science and Plant Nutrition, 20(3), 1042-1050.
  • Salinas-Garcia, JR., Baez-Gonzalez, AD., Tiscareno-Lopez, M., Rosales-Robles, E. 2001. Residue removal and tillage interaction effects on soil properties under rain-fed corn production in Central Mexico. Soil & Tillage Research 59 (1-2): 67-79.
  • Salinas-Ramirez, N., Escalante-Estrada, JA., Rodriguez-Gonzalez, MT., Sosa-Montes, E. 2008. Yield and nutrimental quality of snap bean (Phaseolus vulgaris L.) through planting dates. Revista Fitotecnia Mexicana 31 (3): 235-241.
  • Sánchez González, E. 2011. Efecto de la sombra y del manejo del café sobre la dinámica poblacional de (Hypothenemus hampei Ferrari) en frutos nuevos y remanentes en Turrialba. M.Sc. Thesis. Turrialba, CR, CATIE. 106 p.
  • Sánchez-de León, Y., Melo-Virginio, Ed., Soto-Muñoz, G., Johnson-Maynard, J., Lugo-Pérez, J. 2006. Earthworm populations, microbial biomass and coffee production in different experimental agroforestry management systems in Costa Rica. Caribbean Journal of Science 42 (3): 397-409.
  • Santillano-Cázares, J., Mendoza-Gómez, A., Vázquez-Angulo, J. C., Medina-Espinoza, E., Ail-Catzim, C. E., & Núñez-Ramírez, F. (2019). The compromise of intercropping: biological pest control versus competition by crop species. Southwestern Entomologist, 44(2), 393-402.
  • Schaller, M. 2001. Root interactions in agroforestry systems. Quantification and management of root interactions between fast-growing timber trees and coffee in plantations in Costa Rica. Eschborn, Germany, GTZ. 66 p. (TOB Publication No. TOB TWF-28e).
  • Schmitt-Harsh, M., Evans, TP., Castellanos, E., Randolph, JC. 2012. Carbon stocks in coffee agroforests and mixed dry tropical forests in the western highlands of Guatemala. Agroforestry Systems 86 (2): 141-157.
  • Schneider, KA., RosalesSerna, R., IbarraPerez, F., CazaresEnriquez, B., AcostaGallegos, JA., RamirezVallejo, P., Wassimi, N., Kelly, JD. 1997b. Improving common bean performance under drought stress. Crop Science 37 (1): 43-50.
  • Sgarbossa, J., Elli, E. F., Schwerz, F., Nardini, C., Miguel Knapp, F., Schmidt, D., ... & Caron, B. O. (2021). Bean–soybean succession under full sun and in agroforestry systems: Impacts on radiation use efficiency, growth and yield. Journal of Agronomy and Crop Science, 207(2), 362-377.
  • Shenk, MD., Saunders, JL. 1984. Vegetation management systems and insect responses in the humid tropics of Costa Rica. Tropical Pest Management 30 (2): 186-193.
  • Shenk, MD., Saunders, JL., Akobundu, IO. 1983. Insect population responses to vegetation management systems in tropical maize production. In. International Weed Science Society Symposium. No-tillage crop production in the tropics. Proceedings (August 6-7, 1981, Monrovia, LR). CATIE. pp. 73-85.
  • Sifuentes Ibarra, E., Macías Cervantes, J., Mendoza Pérez, C., Vázquez Díaz, D. A., Salinas Verduzco, D. A., & Inzunza Ibarra, M. A. (2018). Effect of direct sowing on soil properties and irrigation water use in maize in Sinaloa, Mexico. Revista mexicana de ciencias agrícolas, 9(SPE20), 4235-4243.
  • Siles, P., Harmand, J-M., Vaast, P. 2010. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems 78 (3): 269-286.
  • Silva Cruz, SC., da Silva Pereira, FR., Bicudo, SJ., Santos, JR., de Albuquerque, AW., Machado, CG. 2009a. Consórcio de milho e Brachiaria decumbens em diferentes preparos de solo. Acta Scientiarum-Agronomy 31 (4): 633-639.
  • Silva, E. C. da., Ferreira, SM., Silva, GP., Assis, R. L. de., Guimarães, GL. 2005. Épocas e formas de aplicação de nitrogênio no milho sob plantio direto em solo de cerrado. Revista Brasileira de Ciência do Solo 29 (5): 725-733.
  • Silva, MMd., Libardi, PL., Fernandes, FCS. 2009b. Nitrogen doses and water balance components at phenological stages of corn. Scientia Agricola 66: 515-521.
  • Simpson, LA., Gumbs, FA. 1992. Effect of continued cropping on a heavy clay soil on the coast of Guyana with and without tillage. Tropical Agriculture 69 (2): 111-118.
  • Soler, CMT., Hoogenboom, G., Sentelhas, PC., Duarte, AP. 2007. Impact of water stress on maize grown off-season in a subtropical environment. Journal of Agronomy and Crop Science 193 (4): 247-261.
  • Soto, CF., Morales, D. 1993. Influencia de diferentes condiciones climáticas sobre el crecimiento de posturas de cafetos. Cultivos Tropicales 14 (2-3): 46-52.
  • Soto-Pinto, L., Anzueto, M., Mendoza, J., Jimenez Ferrer, G., de Jong, B. 2010. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems 78 (1): 39-51.
  • Soto-Pinto, L., Perfecto, I., Caballero-Nieto, J. 2002. Shade over coffee: its effects on berry borer, leaf rust and spontaneous herbs in Chiapas, Mexico. Agroforestry Systems 55 (1): 37-45.
  • Sponchiado, BN., White, JW., Castillo, JA., Jones, PG. 1989. Root growth of four common bean cultivar in relation to drought tolerance in environments with contrasting soil types. Experimental Agriculture 25 (2): 249-257.
  • Suares C., F. de., Montenegro, L., Aviles P, C., Moreno M, M., Bolaños, M. 1961. Efecto del sombrío en los primeros años de vida de un cafetal. Santa Tecla, SL, ISIC. 36 p.
  • Tamayo, A., Muñoz Araque, R. 1996. Abonamiento orgánico y químico del frijol (Phaseolus vulgaris) en suelos aluviales de clima medio. Actualidades CORPOICA 10 (107): 10-13.
  • Tardieu, R., Kass, D., Olivier, A. 2000. Efecto de prácticas agroforestales y agrícolas sobre el rendimiento de frijol y la disponibilidad de fósforo en un andisol de Costa Rica. Agroforestería de las Américas 7 (26): 61-64.
  • Theodoro, VCA., Alvarenga, MIN., Guimarães, RJ., Souza, CAS. 2003. Alterações químicas em solo submetido a diferentes formas de manejo do cafeeiro. Revista Brasileira de Ciência do Solo 27: 1039-1047.
  • Tormena, CA., Silva, A. P. da., Imhoff, S. C. del., Dexter, AR. 2008. Quantification of the soil physical quality of a tropical oxisol using the S index. Scientia Agricola 65 (1): 56-60.
  • Tucker, CM., Eakin, H., Castellanos, EJ. 2010. Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico. Global Environmental Change-Human and Policy Dimensions 20 (1): 23-32.
  • Ulloa, M., De la Cruz, R. 1990. Competencia de caminadora Rottboellia cochinchinensis en cultivos de frijol rojo Phaseolus vulgaris L. Manejo Integrado de Plagas (15): 1-12.
  • Uribe Gómez, M., Leos R., JA., Krishnamurthy, L. 2002. Caracterización agronómica y evaluación socioeconómica del sistema tradicional agroforestal café-plátano-cítricos en el municipio de Tlapacoyan, Veracruz. In Krishnamurthy, L., Uribe Gómez, M. Eds. Tecnologías agroforestales para del desarrollo rural sostenible. MX, PNUMA; SEMARNAT. pp. 389-405. (Textos Básicos para la Formación Ambiental 8).
  • Uribe H, A., Mestre M, A. 1980. Efecto de la densidad de población y su sistema de manejo sobre la producción de café. Cenicafé 31 (1): 29-51.
  • Uribe U, R. 1958. Almácigos de café en bolsas de polietileno. Revista Cafetera de Colombia 14 (136): 301-303.
  • Vahrson, WG., Cervantes U, C. 1991. Escorrentía superficial y erosión laminar en Puriscal, Costa Rica. In Vahrson, WG., Alfaro, M., Palacios, G. Eds. Taller de Erosión de Suelos (22-24 Jul 1991, Heredia, Cr). UNA. pp. 116-130.
  • Vallejos, RM., Cruz, Rdl., Merayo-Miller, A. 1993. Establecimiento y adaptación de coberturas vivas en el cultivo de café. Manejo Integrado de Plagas (28): 26-29.
  • Vargas O, G., Rivera, LF., Armbrecht, I. 2006. Efecto del estrés fisiológico en dos especies de hormigas (formicidae) propias de cafetales con y sin sombra. Revista Colombiana De Entomologia 32 (1): 61-66.
  • Vargas-Vazquez, P., Muruaga-Martinez, JS., Martinez-Villarreal, SE., Ruiz-Salazar, R., Hernandez-Delgado, S., Mayek-Perez, N. 2011. Diversidad morfológica del frijol auocote del Carso Huasteco de México. Revista Mexicana de Biodiversidad 82 (3): 767-775.
  • Vasconcelos, JL., Kass, DCL., Somarriba, E., Morera, JA. 1996. Efectos de los cultivos en callejones y otras enmiendas orgánicas sobre las fracciones de fósforo del suelo. Agroforestería de las Américas 3 (11-12): 8-11.
  • Vásquez Mejia, HM. 1996. La asignación de Recursos Como Estrategia de Adaptación Ecológica: El Caso del Manejo del Sistema Yuca+Maiz por Pequeños Agricultores en Sansare, El Progreso 1993-1995. Lic. Thesis. Guatemala, GT, Universidad Rafael Landivar. 108 p.
  • Vázquez-Polo, JR., Macías-Vázquez, F., Menjivar-Flores, JC. 2011. Formas de carbono orgánico en suelos con diferentes usos en el departamento del Magdalena (Colombia). Acta Agronómica 60 (4): 369-379.
  • Verhulst, N., Kienle, F., Sayre, KD., Deckers, J., Raes, D., Limon-Ortega, A., Tijerina-Chavez, L., Govaerts, B. 2011a. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant and Soil 340 (1-2): 453-466.
  • Verhulst, N., Nelissen, V., Jespers, N., Haven, H., Sayre, KD., Raes, D., Deckers, J., Govaerts, B. 2011b. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant and Soil 344 (1-2): 73-85.
  • Vicente, M., Kanthack, RD., Noronha, AB., Stradioto, MFS. 1988. Occurrence of bean golden mosaic virus in bean plants cultivated in two different periods at Presidente Prudente Sao Paulo Brazil. Fitopatologia Brasileira 13 (4): 373-376.
  • Viera, CJ., Kopsell, E., Beer, J., Lok, R., Calvo, G. 1999. Incentivos financieros para establecer y manejar árboles maderables en cafetales. Agroforestería en las Américas 6 (23): 21-23.
  • Villar Sánchez, B. 2000. Estrategia para el manejo de suelos ácidos en frijol (Phaseolus vulgaris L.) en el estado de Chiapas, México. Agronomía Mesoamericana 11 (1): 155-158.
  • Wasonga, CJ., Pastor-Corrales, MA., Porch, TG., Griffiths, PD. 2012. Multi-environment selection of small sieve snap beans reduces production constraints in East Africa and subtropical regions. Hortscience 47 (8): 1000-1006.
  • White, JW., Castillo, JA. 1989. Relative effect of root and shoot genotypes on yield of common bean under drought stress. Crop Science 29 (2): 360-362.
  • Wittman, HK., Johnson, MS. 2008. Fallow management practices in Guatemala’s Western Highlands: Social drivers and biophysical impacts. Land Degradation & Development 19 (2): 178-189.
  • Xavier, C. V., Moitinho, M. R., Teixeira, D. D. B., de Araujo Santos, G. A., de Andrade Barbosa, M., Milori, D. M. B. P., ... & Júnior, N. L. S. (2019). Crop rotation and succession in a no-tillage system: implications for CO2 emission and soil attributes. Journal of environmental management, 245, 8-15.
  • Xavier, C. V., Moitinho, M. R., Teixeira, D. D. B., de Araujo Santos, G. A., Cora, J. E., & La Scala Jr, N. (2020). Crop rotation and sequence effects on temporal variation of CO2 emissions after long-term no-till application. Science of the Total Environment, 709, 136107.
  • Zaidi, PH., Srinivasan, G., Cordova, HS., Sanchez, C. 2004. Gains from improvement for mid-season drought tolerance in tropical maize (Zea mays L.). Field Crops Research 89 (1): 135-152.
  • Zavala Mendoza, F., Méndez Talavera, ER., Gómez Rivera, SN. 1988. Influencia de labranza, cultivos y métodos de manejo de malezas, sobre el comportamiento de la cenosis. Ing. Agr. Thesis. Managua, NI, Instituto Superior de Ciencias Agropecuarias. 77 p.
  • Zea, JL. 1992. Efecto de intercalar leguminosas con diferentes dosis de fosforo sobre el rendimiento de maíz, Zea mays L. en Centroamérica. Agronomía Mesoamericana 3: 16-22.
  • Zepeda-Bautista, R., Carballo-Carballo, A., Hernández-Aguilar, C. 2009. Interacción genotipo-ambiente en la estructura y calidad del nixtamal-tortilla del grano en híbridos de maíz. Agrociencia 43: 695-706.
  • Zimmerer, KS. 2011. The landscape technology of spate irrigation amid development changes: Assembling the links to resources, livelihoods, and agrobiodiversity-food in the Bolivian Andes. Global Environmental Change-Human and Policy Dimensions 21 (3): 917-934.

References

  1. Jakobsen, K.T. In the Eye of the Storm—The Welfare Impacts of a Hurricane. World Dev. 2012, 40, 2578–2589. [Google Scholar] [CrossRef]
  2. Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Change 2003, 13, 51–59. [Google Scholar] [CrossRef]
  3. Munang, R.; Thiaw, I.; Alverson, K.; Goumandakoye, M.; Mebratu, D.; Liu, J. Using Ecosystem-Based Adaptation Actions to Tackle Food Insecurity. Environ. Sci. Policy Sustain. Dev. 2013, 55, 29–35. [Google Scholar] [CrossRef]
  4. Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
  5. Almeida, A.; Rios, A.R.; Prager, S.; Schiek, B.; Gonzalez, C.E. Climate Change Vulnerability and Economic Impacts in the Agricultural Sector in Latin America and the Caribbean; IDB, Ed.; International Centre for Tropical Agriculture (CIAT): Palmira, Colombia, 2020. [Google Scholar]
  6. Baumeister, E. Pequeños Productores de Granos Básicos en América Central: Cuantificación, Caracterización, Nivel de Ingresos, Pobreza y Perfiles Demográficos, Socioeconómicos y Ocupacionales; FAO-RUTA, Ed.; FAO: Rome, Italy, 2010. [Google Scholar]
  7. Harvey, C.A.; Saborio-Rodríguez, M.; Martinez-Rodríguez, M.R.; Viguera, B.; Chain-Guadarrama, A.; Vignola, R.; Alpizar, F. Climate change impacts and adaptation among smallholder farmers in Central America. Agric. Food Secur. 2018, 7, 57. [Google Scholar] [CrossRef]
  8. Presanca-FAO; PESA-PRESISAN. Centroamérica en Cifras. Datos de Seguridad Alimentaria Nutricional y Agricultura Familiar; FAO: Rome, Italy, 2011. [Google Scholar]
  9. Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, M.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
  10. Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, M.; et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res. 2005, 110, D23. [Google Scholar] [CrossRef]
  11. Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Mastrandrea, M.D.; Mach, K.J.; Plattner, G.-K.; Allen, S.K.; et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; IPCC: Geneva, Switzerland, 2012. [Google Scholar]
  12. Baca, M.; Läderach, P.; Haggar, J.; Schroth, G.; Ovalle, O. An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE 2014, 9, e88463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Hannah, L.; Donatti, C.I.; Harvey, C.A.; Alfaro, E.; Rodriguez, D.A.; Bouroncle, C.; Castellanos, E.; Diaz, F.; Fung, E.; Hidalgo, H.G.; et al. Regional modeling of climate change impacts on smallholder agriculture and ecosystems in Central America. Clim. Change 2016, 141, 29–45. [Google Scholar] [CrossRef] [Green Version]
  14. Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.; Vicuña, S. Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1499–1566. [Google Scholar]
  15. Edwin, J.; Castellanos, M.F.L.; Astigarraga, L.; Chacón, N.; Cuvi, N.; Huggel, C.; Raquel, L.; Sara, M.; Moncassim Vale, M.; Ometto, J.P.; et al. IPCC Sixth Assessment Report (AR6): Climate Change 2022—Impacts, Adaptation and Vulnerability: Regional Factsheet Central and South America; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
  16. Chandra, A.; McNamara, K.E.; Dargusch, P. Climate-smart agriculture: Perspectives and framings. Clim. Policy 2017, 18, 526–541. [Google Scholar] [CrossRef] [Green Version]
  17. Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2013, 34, 1–20. [Google Scholar] [CrossRef]
  18. Brouder, S.M.; Gomez-Macpherson, H. The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agric. Ecosyst. Environ. 2014, 187, 11–32. [Google Scholar] [CrossRef]
  19. Kremen, C.; Miles, A. Ecosystem Services in Biologically Diversified versus Conventional Farming Systems: Benefits, Externalities, and Trade-Offs. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
  20. Alpízar, F.; Saborío-Rodríguez, M.; Martínez-Rodríguez, M.R.; Viguera, B.; Vignola, R.; Capitán, T.; Harvey, C.A. Determinants of food insecurity among smallholder farmer households in Central America: Recurrent versus extreme weather-driven events. Reg. Environ. Change 2020, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
  21. Eakin, H.; Tucker, C.M.; Castellanos, E.; Diaz-Porras, R.; Barrera, J.F.; Morales, H. Adaptation in a multi-stressor environment: Perceptions and responses to climatic and economic risks by coffee growers in Mesoamerica. Environ. Dev. Sustain. 2013, 16, 123–139. [Google Scholar] [CrossRef]
  22. Harvey, C.A.; Pritts, A.A.; Zwetsloot, M.J.; Jansen, K.; Pulleman, M.M.; Armbrecht, I.; Avelino, J.; Barrera, J.F.; Bunn, C.; García, J.H.; et al. Transformation of coffee-growing landscapes across Latin America. A review. Agron. Sustain. Dev. 2021, 415, 429–456. [Google Scholar] [CrossRef]
  23. Vergara, W.; Rios, A.R.; Trapido, P.; Malarin, H. Agriculture and the future climate in Latin America and the Caribbean: Systemic impacts and potential responses. In Discussion Paper; Inter-American Development Bank: Washington, DC, USA, 2014. [Google Scholar]
  24. Canet Brenes, G.; Soto Víquez, C.; Ocampo Thomason, P.; Rivera Ramírez, J.; Navarro Hurtado, A.; Guatemala Morales, G.; Rodríguez, V. Instituto Interamericano de Cooperacion para la Agricultura; IICA: Manesar, India, 2016. [Google Scholar]
  25. ITC. Coffee Exporter’s Guide, 3rd ed.; International Trade Center: Geneva, Switzerland, 2011; p. 247. [Google Scholar]
  26. FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2019. [Google Scholar]
  27. Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Secur. 2020, 25, 100327. [Google Scholar] [CrossRef]
  28. Guzzon, F.; Arandia Rios, L.W.; Caviedes Cepeda, G.M.; Céspedes Polo, M.; Chavez Cabrera, A.; Muriel Figueroa, J.; Medina Hoyos, A.E.; Jara Calvo, T.W.; Molnar, T.L.; Narro León, L.A.; et al. Conservation and Use of Latin American Maize Diversity: Pillar of Nutrition Security and Cultural Heritage of Humanity. Agronomy 2021, 11, 172. [Google Scholar] [CrossRef]
  29. Bunn, C.; Castro, F.; Lundy, M.; Läderach, P. Climate Change and Cocoa Cultivation. In Achieving Sustainable Cultivation of Cocoa; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 445–468. [Google Scholar]
  30. Comisión Económica para América Latina y el Caribe (CEPAL). Impactos Potenciales del Cambio Climático Sobre el Café en Centroamérica; Comisión Económica para América Latina y el Caribe (CEPAL): Buenos Aires, Argentina; Consejo Agropecuario Centroamericano del Sistema de la Integración Centroamericano (CAC/SICA): San José, Costa Rica, 2014. [Google Scholar]
  31. Läderach, P. Climate change adaptation of coffee production in space and time. Clim. Change 2016, 141, 47–62. [Google Scholar] [CrossRef] [Green Version]
  32. Ovalle-Rivera, O. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE 2015, 10, e0124155. [Google Scholar]
  33. Vignola, R.; Harvey, C.A.; Bautista-Solis, P.; Avelino, J.; Rapidel, B.; Donatti, C.; Martinez, R. Ecosystem-based adaptation for smallholder farmers: Definitions, opportunities and constraints. Agric. Ecosyst. Environ. 2015, 211, 126–132. [Google Scholar] [CrossRef] [Green Version]
  34. Côte, F.X.; Rapidel, B.; Sourisseau, J.M.; Affholder, F.; Andrieu, N.; Bessou, C.; Caron, P.; Deguine, J.P.; Faure, G.; Hainzelin, E.; et al. Levers for the agroecological transition of tropical agriculture. Agron. Sustain. Dev. 2022, 42, 1–11. [Google Scholar] [CrossRef]
  35. Harvey, C.A.; Martínez-Rodríguez, M.R.; Cárdenas, J.M.; Avelino, J.; Rapidel, B.; Vignola, R.; Donatti, C.I.; Vilchez-Mendoza, S. The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agric. Ecosyst. Environ. 2017, 246, 279–290. [Google Scholar] [CrossRef] [Green Version]
  36. Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
  37. Herring, R.J. Opposition to transgenic technologies: Ideology, interests and collective action frames. Nat. Rev. Genet. 2008, 9, 458–463. [Google Scholar] [CrossRef] [PubMed]
  38. Kabat, P.; Van Vierssen, W.; Veraart, J.; Vellinga, P.; Aerts, J. Climate proofing The Netherlands. Nature 2005, 438, 283–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  39. Erenstein, O.; Sayre, K.; Wall, P.; Hellin, J.; Dixon, J. Conservation Agriculture in Maize- and Wheat-Based Systems in the (Sub)tropics: Lessons from Adaptation Initiatives in South Asia, Mexico, and Southern Africa. J. Sustain. Agric. 2012, 36, 180–206. [Google Scholar] [CrossRef]
  40. Lopez-Ridaura, S.; Sanders, A.; Barba-Escoto, L.; Wiegel, J.; Mayorga-Cortes, M.; Gonzalez-Esquivel, C.; Lopez-Ramirez, M.A.; Escoto-Masis, R.M.; Morales-Galindo, E.; García-Barcena, T.S. Immediate impact of COVID-19 pandemic on farming systems in Central America and Mexico. Agric. Syst. 2021, 192, 103178. [Google Scholar] [CrossRef]
  41. Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
  42. Altieri, M.A.; Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities; Third World Network TWN: Penang, Malaysia, 2008. [Google Scholar]
  43. Lasco, R.D.; Delfino, R.J.P.; Catacutan, D.C.; Simelton, E.S.; Wilson, D.M. Climate risk adaptation by smallholder farmers: The roles of trees and agroforestry. Curr. Opin. Environ. Sustain. 2014, 6, 83–88. [Google Scholar] [CrossRef] [Green Version]
  44. Rao, K.P.C.; Verchot, L.V.; Laarman, J. Adaptation to climate change through sustainable management and development of agroforestry systems. J. SAT Agric. Res. 2007, 4, 1–30. [Google Scholar]
  45. Cerdán, C.R.; Rebolledo, M.C.; Soto, G.; Rapidel, B.; Sinclair, F.L. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric. Syst. 2012, 110, 119–130. [Google Scholar] [CrossRef]
  46. Hellin, J.; Welchez, L.A.; Cherrett, I. The Quezungual System: An indigenous agroforestry system from western Honduras. Agrofor. Syst. 1999, 46, 229–237. [Google Scholar] [CrossRef]
  47. IKI. Ecosystem-Based Adaptation. Available online: https://www.international-climate-initiative.com/en/topics/ecosystem-based-adaptation-eba/ (accessed on 12 April 2022).
  48. Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2014, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
  49. Redden, R.J.; Hatfield, J.L.; Vara Prasad, P.V.; Ebert, A.W.; Yadav, S.S.; O'Leary, G.J. Temperature, climate change, and global food security. In Temperature and Plant Development; John Wiley & Sons, Inc.: New York, NY, USA, 2013; pp. 181–202. [Google Scholar]
  50. García-Barrios, L.; Ong, C. Ecological interactions, management lessons and design tools in tropical agroforestry systems. In Advances in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2014; pp. 221–236. [Google Scholar]
  51. Robinson, R.A.; Cowling, W. Return to resistance: Breeding crops to reduce pesticide dependence. Australas. Plant Pathol. 1996, 25, 216–217. [Google Scholar] [CrossRef]
  52. Mercer, K.L.; Perales, H.R.; Wainwright, J.D. Climate change and the transgenic adaptation strategy: Smallholder livelihoods, climate justice, and maize landraces in Mexico. Glob. Environ. Change 2012, 22, 495–504. [Google Scholar] [CrossRef]
  53. Ramirez, A.; Sere, C.; Uquillas, J. An economic analysis of improved agroforestry practices in the Amazon lowlands of Ecuador. Agrofor. Syst. 1992, 17, 65–86. [Google Scholar] [CrossRef]
  54. Branca, G.; Lipper, L.; McCarthy, N.; Jolejole, M.C. Food security, climate change, and sustainable land management. A review. Agron. Sustain. Dev. 2013, 33, 635–650. [Google Scholar] [CrossRef] [Green Version]
  55. Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef] [Green Version]
  56. Rockström, J.; Barron, J.; Fox, P. Rainwater management for increased productivity among small-holder farmers in drought prone environments. Phys. Chem. Earth Parts A/B/C 2002, 27, 949–959. [Google Scholar] [CrossRef]
  57. Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: A case study in the Netherlands. Environ. Res. Lett. 2015, 10, 045004. [Google Scholar] [CrossRef]
  58. Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Shiferaw, B.A.; Okello, J.J.; Reddy, R.V. Adoption and adaptation of natural resource management innovations in smallholder agriculture: Reflections on key lessons and best practices. Environ. Dev. Sustain. 2007, 11, 601–619. [Google Scholar] [CrossRef] [Green Version]
  60. Morton, J.F. The impact of climate change on smallholder and subsistence agriculture. Proc. Natl. Acad. Sci. USA 2007, 104, 19680–19685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Lin, B.B. Resilience in Agriculture through Crop Diversification: Adaptive Management for Environmental Change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
  62. Marenya, P.P.; Barrett, C. Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya. Food Policy 2007, 32, 515–536. [Google Scholar] [CrossRef]
  63. Bationo, A.; Kihara, J.; Vanlauwe, B.; Waswa, B.; Kimetu, J. Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agric. Syst. 2007, 94, 13–25. [Google Scholar] [CrossRef] [Green Version]
  64. Wall, P.C. Tailoring Conservation Agriculture to the Needs of Small Farmers in Developing Countries. J. Crop Improv. 2007, 19, 137–155. [Google Scholar] [CrossRef]
  65. Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
  66. Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: Contributions to food sovereignty. Agron. Sustain. Dev. 2011, 32, 1–13. [Google Scholar] [CrossRef] [Green Version]
  67. Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
  68. Boillat, S.; Scarpa, F.M.; Robson, J.P.; Gasparri, I.; Aide, T.M.; Aguiar, A.P.D.; Anderson, L.O.; Batistella, M.; Fonseca, M.G.; Futemma, C.; et al. Land system science in Latin America: Challenges and perspectives. Curr. Opin. Environ. Sustain. 2017, 26–27, 37–46. [Google Scholar] [CrossRef]
  69. Berdegué, J.A.; Fuentealba, R. The state of smallholders in agriculture in Latin America. In New Directions for Smallholder Agriculture; Oxford University Press: Oxford, UK, 2014; pp. 115–152. [Google Scholar]
  70. Abegunde, V.O.; Sibanda, M.; Obi, A. The Dynamics of Climate Change Adaptation in Sub-Saharan Africa: A Review of Climate-Smart Agriculture among Small-Scale Farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef]
  71. Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder farmers’ adaptation to climate change and determinants of their adaptation decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
  72. Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
  73. Silva, M.D.C.; Várzea, V.; Guerra-Guimarães, L.; Azinheira, H.G.; Fernandez, D.; Petitot, A.S.; Bertrand, B.; Lashermes, P.; Nicole, M. Coffee resistance to the main diseases: Leaf rust and coffee berry disease. Braz. J. Plant Physiol. 2006, 18, 119–147. [Google Scholar] [CrossRef] [Green Version]
  74. Avelino, J. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef] [Green Version]
  75. DaMatta, F.M.; Chaves, A.R.; Pinheiro, H.A.; Ducatti, C.; Loureiro, M.E. Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci. 2003, 164, 111–117. [Google Scholar] [CrossRef]
  76. Serafim, M.E.; de Oliveira, G.C.; de Oliveira, A.S.; de Lima, J.M.; Guimaraes, P.T.G.; Costa, J.C. Intensive coffee cultivation management in the physiographic region of the upper San Francisco river, MG: A case study. BioScience 2011, 27, 964–977. [Google Scholar]
  77. Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
  78. Gliessman, S. Agroecology in a changing climate. Agroecol. Sustain. Food Syst. 2022, 46, 489–490. [Google Scholar] [CrossRef]
  79. HLPE. Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. In A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; Committee on World Food Security: Rome, Italy, 2019. [Google Scholar]
  80. Mwaura, A. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2022. [Google Scholar]
  81. Jha, S.; Bacon, C.M.; Philpott, S.M.; Rice, R.A.; Méndez, V.E.; Läderach, P.A.; Méndez, V.E.; Läderach, P. A Review of Ecosystem Services, Farmer Livelihoods, and Value Chains in Shade Coffee Agroecosystems. In Issues in Agroecology—Present Status and Future Prospectus; Springer: Berlin/Heidelberg, Germany, 2011; pp. 141–208. [Google Scholar]
  82. Ricketts, T.H.; Daily, G.C.; Ehrlich, P.R.; Michener, C.D. Economic value of tropical forest to coffee production. Proc. Natl. Acad. Sci. USA 2004, 101, 12579–12582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Tamburini, G.; De Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2015, 53, 233–241. [Google Scholar] [CrossRef] [Green Version]
  84. Lee, N.; Thierfelder, C. Weed control under conservation agriculture in dryland smallholder farming systems of southern Africa. A review. Agron. Sustain. Dev. 2017, 37, 48. [Google Scholar] [CrossRef]
  85. Loukos, P.; Arathoon, L. Landscaping the Agritech Ecosystem for Smallholder Farmers in Latin America and the Caribbean; Inter-American Development Bank: Washington, DC, USA, 2021. [Google Scholar]
Figure 1. Number and geographical distribution across Latin America of the research documents analyzed for coffee n = 120, maize n = 99 and beans n = 85.
Figure 1. Number and geographical distribution across Latin America of the research documents analyzed for coffee n = 120, maize n = 99 and beans n = 85.
Agronomy 12 02535 g001
Figure 2. (a) Table of records (n = 221) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for coffee smallholder adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green) or two or more records (darker green). For records of negative effects, the table shows only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 168) visually displays the benefits provided by those practices for which at least two or more records confirmed their positive effects (i.e., darker green cells in the accompanying table).
Figure 2. (a) Table of records (n = 221) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for coffee smallholder adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green) or two or more records (darker green). For records of negative effects, the table shows only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 168) visually displays the benefits provided by those practices for which at least two or more records confirmed their positive effects (i.e., darker green cells in the accompanying table).
Agronomy 12 02535 g002
Figure 3. (a) Table of records (n = 225) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for maize smallholder adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green), two or more records (darker green). For records of negative effects, the table shows only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 150) visually displays the benefits provided by those practices for which at least two or more records confirm their positive effects (i.e., darker green cells in the accompanying table).
Figure 3. (a) Table of records (n = 225) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for maize smallholder adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green), two or more records (darker green). For records of negative effects, the table shows only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 150) visually displays the benefits provided by those practices for which at least two or more records confirm their positive effects (i.e., darker green cells in the accompanying table).
Agronomy 12 02535 g003
Figure 4. (a) Table of records (n = 186) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for bean smallholders' adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green), two or more records (darker green). For record of negative effects, the table show only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 129) visually display the benefits provided by those practices for which at least two or more records confirm their positive effects (i.e., darker green cells in the accompanying table).
Figure 4. (a) Table of records (n = 186) and knowledge gaps regarding the effects of agricultural practices (first column) on multiple benefits organized by the benefit dimensions and sub-dimensions relevant for bean smallholders' adaptation. Cells in the table show where we found no record of positive effect (empty cells); only one record (light green), two or more records (darker green). For record of negative effects, the table show only one record one (*) or two or more records (**). (b) Sankey evidence synthesis diagram (n = 129) visually display the benefits provided by those practices for which at least two or more records confirm their positive effects (i.e., darker green cells in the accompanying table).
Agronomy 12 02535 g004
Table 1. Total number of documents retrieved and analyzed by practice and crop system.
Table 1. Total number of documents retrieved and analyzed by practice and crop system.
PracticesDescription Number of DocumentsTotal
CoffeeMaizeBeans
Multi-use shade trees *Include mix of planted species with different uses 40 40
N-fixing shade trees *Use N-fixing trees as shade 31 31
Improved cultivars **Use unspecified genetically improved varieties 82230
No tillage *No disturbance of soil superficial structures 24 24
Multi-species cropping *Use mix annual crops in structured systems 311822
Land races varieties *Use seeds from landraces 12921
Mulching *Cover soil with vegetation biomass residues 91120
Cover crop *Use leguminous crops as vegetation cover 17311
Inorganic fertilizationUse inorganic fertilizers 33410
IrrigationProvide water in stress periods 32510
Timber shade trees *Include comercial wood tree species 10 10
Pruning *Cut non-productive tissue 9 9
Biological Control **Use of natural predators 71 8
ConservationTillage *Minimize intensity and/or frequency of tillage 257
Sowing date *Adjust sowing date 1 67
Density of plants *Increase crop plant density 2327
Rotation *Alternate crops 516
Grafting **Improve cutivar by grafting 4 15
HybridsUse hybrid varieties 5 5
Mychorrize *Inoculate N-fixing organisms in roots 145
Alley Croping *Combine rows of trees/shrubs with crops 1124
Weeding *Manually eliminate undesired vegetation 1124
Organic fertilization *Apply organic fertilization 21 3
Change Crop *Change cultivated crop 2 2
Live barriers *Plants in plot borders and/or on contour lines 2 2
Agro-silvopastoral *Use a mix of crops, trees and grasses 1 1
Total1209985304
* Ecosystem-based practices. ** Practices that can be ecosystem-based depending on the technology used.
Table 2. List of the benefits and evidence, and the number of records registered regarding the positive (Pos) and negative (Neg) effects of coffee, maize and beans agricultural practices on smallholders in Latin America. In parentheses next to each variable description we included a reference to the literature* supporting the inclusion of benefit in the list.
Table 2. List of the benefits and evidence, and the number of records registered regarding the positive (Pos) and negative (Neg) effects of coffee, maize and beans agricultural practices on smallholders in Latin America. In parentheses next to each variable description we included a reference to the literature* supporting the inclusion of benefit in the list.
DimensionSub-DimensionVariablesCodePosNegTot
Adaptation benefitsBuffers extremesBuffering temperature extremes (min) (a)BufMaxT25025
Buffering temperature extremes (max) (a)BufMinT24024
Buffering physical impacts of heavy rainfall on crops (a)BufRain808
Reducing excessive radiation (a)RedRad16016
Protecting against strong winds (a)ProStrWin10010
Reducing competition for light (b)RedLightC123
84286
Genetic toleranceProviding genetic tolerance to drought (a)GenTolDro33033
Providing genetic tolerance to extreme rainfall (a)GenTolRai202
Providing genetic tolerance to high temperatures (a)GenTolHig909
Providing genetic tolerance to low temperatures (a)GenTolLow808
Providing genetic tolerance to strong winds (a)GenTolWin101
Providing genetic tolerance to climate change (a)GenTolCC303
56056
Decrease incidence of crop diseaseActing as a barrier for disease dispersal (c)BarDecDis112
Providing genetic tolerance or resistance to disease (a)TolCroDD606
Improving beneficial biodiversity habitats (c)HabDecDis303
Improving soil physical properties (c)SoilDecDis314
Regulating microclimate conditions to control disease (c)MicDecDis369
16824
Decrease incidence of crop pestsActing as a barrier for pest dispersal (c)BarDecPes404
Promoting biological control of pests (c)BioConDP11011
Providing genetic tolerance or resistance to pests (d)TolCroDP101
Improving beneficial biodiversity habitats (c)HabDecPes12113
Improving chemo-physical soil quality to control pests (c)SoilDecPes314
Improving microclimate conditions to minimize pests (c)MicDecPes426
Reducing alternative hosts of pest bearer (c)RedHosDP011
35540
Crop phenologyHomogenizing flowering seasonality (e)StanFlo213
Extending longevity of perennial crops (f)ExtCofLiv202
Reducing the crop life cycle period (c)ShortCroCyc19120
23225
Total records of Adaptation benefits 21417231
Farms’ natural assetsSoil conservationReducing soil erosion (20)RedEro19221
Reducing gully formation (g)RedGully202
Reducing soil nutrients leaching (c)RedLeach303
Reducing competition for nutrients (c)RedNutC011
Increasing organic carbon within the soil (c)IncSOC19322
Improving soil fertility (c)ImpSoilFer37239
Improving soil structure (h)ImpSoilStr22224
10210112
Water conservationIncreasing water infiltration into soil (c)IncWatInf808
Increasing water retention in soil (c)IncWatRet32335
Increasing water-use efficiency (i)IncWUE14115
54458
Biodiversity conservationIncreasing pollinator health (j)FavBenBio606
Favoring beneficial microorganisms in the soil (c)FavBenMic14216
20222
Total records of Farms’ natural assets benefits 17616192
Socioeconomic supportCrop performance/Increase CropIncreasing crop quality (k)IncProQua22022
Increasing the system’s overall biomass production (l)IncSysBio25126
Increasing crop yield (m)IncCroYld12838166
Increasing crop biomass production (r)IncCroBio38745
Increasing the number of crop cycles per year (l)IncCroCyc101
Increasing the number of chances to harvest (m)IncHarOdd404
21846264
Economy/CostsIncreasing household income (n)IncHowInc33235
Diversifying household income (n, o)DivHouInc55156
Reducing the management costs of the practice (n)RedCostMP132740
Reducing investment costs (p)ShoRturn10010
11130141
AdoptionReducing the requirement for structural changes (q)FewChaReq112
Reducing the need for technical assistance (r)FewInfUpg011
123
Reduce external inputsReducing weed abundance (u)RedWedAbu26228
Reducing the use of chemical fertilizers (t)RedFert121123
Reducing labour requirements (n)RedLabReq62026
Reducing the use of chemical pesticides (v)RedPest8816
524193
Total records of Socioeconomic support benefits 382119501
Total772152924
* a = [49]; b = [50]; c = [42]; d = [51]; e = [52]; f = [53]; g = [54]; h = [55]; i = [56]; j = [13]; k = [57]; l = [58]; m = [59]; n = [60]; o = [61]; p = [62]; q = [17]; r = [63]; s = [64]; t = [65]; u = [66]; v = [67].
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Vignola, R.; Esquivel, M.J.; Harvey, C.; Rapidel, B.; Bautista-Solis, P.; Alpizar, F.; Donatti, C.; Avelino, J. Ecosystem-Based Practices for Smallholders’ Adaptation to Climate Extremes: Evidence of Benefits and Knowledge Gaps in Latin America. Agronomy 2022, 12, 2535. https://doi.org/10.3390/agronomy12102535

AMA Style

Vignola R, Esquivel MJ, Harvey C, Rapidel B, Bautista-Solis P, Alpizar F, Donatti C, Avelino J. Ecosystem-Based Practices for Smallholders’ Adaptation to Climate Extremes: Evidence of Benefits and Knowledge Gaps in Latin America. Agronomy. 2022; 12(10):2535. https://doi.org/10.3390/agronomy12102535

Chicago/Turabian Style

Vignola, Raffaele, M. Jimena Esquivel, Celia Harvey, Bruno Rapidel, Pavel Bautista-Solis, Francisco Alpizar, Camila Donatti, and Jacques Avelino. 2022. "Ecosystem-Based Practices for Smallholders’ Adaptation to Climate Extremes: Evidence of Benefits and Knowledge Gaps in Latin America" Agronomy 12, no. 10: 2535. https://doi.org/10.3390/agronomy12102535

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop