Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Fruit Post-Harvest Processing
2.3. Physical Attributes of Green Coffee Beans
2.3.1. Bean Mass of 100 Beans, Apparent Density and Size
2.3.2. Colour Analysis
2.4. Chemical Characterization of Green Coffee Beans
Chlorogenic Acids, P-Coumaric acid, Caffeine, Trigonelline and Soluble Sugars in the Green Coffee Bean
2.5. Statistical Analysis
3. Results
3.1. Altitude and Light and Their Interactions Impact on Green Bean Traits
3.2. Physical Characterization of Green Coffee Beans
3.3. Chemical Coffee Green Bean Characterization
4. Discussion
4.1. Coffee Bean Physical Attributes
4.2. Chemical Compounds Involved in Bean Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davis, A.P.; Rakotonasolo, F. Six new species of coffee (Coffea) from northern Madagascar. Kew Bull. 2021, 76, 497–511. [Google Scholar] [CrossRef]
- Santos, C.A.F.; Leitão, A.E.; Pais, I.P.; Lidon, F.C.; Ramalho, J.C. Perspectives on the potential impacts of climate changes on coffee plant and bean quality. Emir. J. Food Agric. 2015, 27, 152–163. [Google Scholar] [CrossRef]
- ICO–International Coffee Organisation Coffee Market Report July 2020. 2020. Available online: http://www.ico.org/show_news.asp?id=361 (accessed on 1 June 2022).
- Campuzano-Duque, L.F.; Herrera, J.C.; Ged, C.; Blair, M.W. Bases for the establishment of robusta coffee (Coffea canephora) as a new crop for Colombia. Agronomy 2021, 11, 2550. [Google Scholar] [CrossRef]
- ICO–International Coffee Organisation Coffee Price Rise Continues in November Reaching a 10-Year High. November Issue. 2021. Available online: http://www.ico.org (accessed on 3 March 2022).
- Tolessa, K.; D’heer, J.; Duchateau, L.; Boeckx, P. Influence of growing altitude, shade and harvest period on quality and biochemical composition of Ethiopian specialty coffee. J. Sci. Food Agric. 2017, 97, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Semedo, J.N.; Rodrigues, W.P.; Martins, M.Q.; Martins, L.D.; Pais, I.P.; Rodrigues, A.P.; Leitão, A.E.; Partelli, F.L.; Campostrini, E.; Tomaz, M.A.; et al. Coffee responses to drought, warming and high [CO2] in a context of future climate change scenarios. In Theory and Practice of Climate Adaptation; Alves, F., Leal, W., Azeiteiro, U., Eds.; Climate Change Management Series; Springer: Cham, Switzerland, 2018; Chapter 26; pp. 465–477. [Google Scholar] [CrossRef]
- DaMatta, F.M.; Rahn, E.; Läderach, P.; Ghini, R.; Ramalho, J.C. Why could the coffee crop endure climate change and global warming to a greater extent than previously estimated? Clim. Chang. 2019, 152, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Tsegay, G.; Redi-Abshiro, M.; Chandravanshi, B.S.; Ele, E.; Mohammed, A.M.; Mamo, H. Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chem. 2020, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D.; Trevisan, F.; de Vos, R.C.H. Coffee berry and green bean chemistry–Opportunities for improving cup quality and crop circularity. Food Res. Int. 2022, 151, 110825. [Google Scholar] [CrossRef] [PubMed]
- Koutouleas, A.; Sarzynski, T.; Bordeaux, M.; Bosselmann, A.S.; Campa, C.; Etienne, H.; Turreira-García, N.; Rigal, C.; Vaast, P.; Ramalho, J.C.; et al. Shaded-coffee: A nature-based strategy for coffee production under climate change? A Review. Front. Sustain. Food Syst. 2022, 6, 877476. [Google Scholar] [CrossRef]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef]
- Ahmed, S.; Brinkley, S.; Smith, E.; Sela, A.; Theisen, M.; Thibodeau, C.; Warne, T.; Anderson, E.; Van Dusen, N.; Giuliano, P.; et al. Climate change and coffee quality: Systematic review on the effects of environmental and management variation on secondary metabolites and sensory attributes of Coffea arabica and Coffea canephora. Front. Plant Sci. 2021, 12, 708013. [Google Scholar] [CrossRef]
- Magrach, A.; Ghazoul, J. Climate and pest-driven geographic shifts in global coffee production: Implications for forest cover, biodiversity and carbon storage. PLoS ONE 2015, 10, e0133071. [Google Scholar] [CrossRef] [PubMed]
- van der Vossen, H.; Bertrand, B.; Charrier, A. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): A review. Euphytica 2015, 204, 243–256. [Google Scholar] [CrossRef]
- Davis, A.P.; Chadburn, H.; Moat, J.; O’Sullivan, R.; Hargreaves, S.; Lughadha, E.N. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 2019, 5, eaav3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- DaMatta, F.M.; Avila, R.T.; Cardoso, A.A.; Martins, S.C.V.; Ramalho, J.C. Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. J. Agric. Food Chem. 2018, 66, 5264–5274. [Google Scholar] [CrossRef]
- Dubberstein, D.; Lidon, F.C.; Rodrigues, A.P.; Semedo, J.N.; Marques, I.; Rodrigues, W.P.; Gouveia, D.; Armengaud, J.; Semedo, M.C.; Martins, S.; et al. Resilient and sensitive key points of the photosynthetic machinery of Coffea spp. to the single and superimposed exposure to severe drought and heat stresses. Front. Plant Sci. 2020, 11, 1049. [Google Scholar] [CrossRef]
- Ramalho, J.C.; Rodrigues, A.P.; Semedo, J.N.; Pais, I.P.; Martins, L.D.; Simões-Costa, M.C.; Leitão, A.E.; Fortunato, A.S.; Batista-Santos, P.; Palos, I.M.; et al. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2]. PLoS ONE 2013, 8, e82712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, W.P.; Martins, M.Q.; Fortunato, A.S.; Rodrigues, A.P.; Semedo, J.N.; Simões-Costa, M.C.; Pais, I.P.; Leitão, A.E.; Colwell, F.; Goulao, L.; et al. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora Species. Glob. Chang. Biol. 2016, 22, 415–431. [Google Scholar] [CrossRef]
- Avila, R.T.; Almeida, W.L.; Costa, L.C.; Machado, K.L.G.; Barbosa, M.L.; Souza, R.P.B.; Martino, P.B.; Juárez, M.A.T.; Marçal, D.M.S.; Ramalho, J.D.C.; et al. Elevated air [CO2] Improves photosynthetic performance and alters biomass accumulation and partitioning in drought-stressed coffee plants. Environ. Exp. Bot. 2020, 177, 104137. [Google Scholar] [CrossRef]
- Semedo, J.N.; Rodrigues, A.P.; Lidon, F.C.; Pais, I.P.; Marques, I.; Gouveia, D.; Armengaud, J.; Martins, S.; Semedo, M.C.; Silva, M.J.; et al. Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in Coffea spp. can be strengthened by elevated air CO2. Tree Physiol. 2021, 41, 708–727. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, J.C.; Pais, I.P.; Leitão, A.E.; Guerra, M.; Reboredo, F.H.; Máguas, C.M.; Carvalho, M.L.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; Lidon, F.J.C.; et al. Can elevated air [CO2] conditions mitigate the predicted warming impact on the quality of coffee bean? Front. Plant Sci. 2018, 9, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakocevic, M.; Batista, E.R.; Pazianotto, R.A.A.; Scholz, M.B.S.; Souza, G.A.R.; Campostrini, E.; Ramalho, J.C. Leaf gas exchange and bean quality fluctuations over the whole canopy vertical profile of arabic coffee cultivated under elevated CO2. Funct. Plant Biol. 2021, 48, 469–482. [Google Scholar] [CrossRef] [PubMed]
- DaMatta, F.; Ramalho, J. Impacts of drought and temperature stress on coffee physiology and production: A review. Braz. J. Plant Physiol. 2006, 18, 55–81. [Google Scholar] [CrossRef]
- Vinecky, F.; Davrieux, F.; Mera, A.C.; Alves, G.S.C.; Lavagnini, G.; Leroy, T.; Bonnot, F.; Rocha, O.C.; Bartholo, G.F.; Guerra, A.F.; et al. Controlled irrigation and nitrogen, phosphorous and potassium fertilization affect the biochemical composition and quality of Arabica coffee beans. J. Agric. Sci. 2017, 155, 902–918. [Google Scholar] [CrossRef] [Green Version]
- Oliosi, G.; Giles, J.A.D.; Rodrigues, W.P.; Ramalho, J.C.; Partelli, F.L. Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Aust. J. Crop Sci. 2016, 10, 528–538. [Google Scholar] [CrossRef]
- Dubberstein, D.; Rodrigues, W.P.; Semedo, J.N.; Rodrigues, A.P.; Pais, I.P.; Leitão, A.E.; Partelli, F.L.; Campostrini, E.; Reboredo, F.; Scotti-Campos, P.; et al. Mitigation of the negative impact of warming on the coffee crop-The role of increased air [CO2] and management strategies. In Climate Resilient Agriculture-Strategies and Perspectives; Srinivasarao, C., Shanker, A.K., Shanker, C., Eds.; Intech: London, UK, 2018; Chapter 4; pp. 57–85. ISBN 978-953-51-5660-4. [Google Scholar] [CrossRef] [Green Version]
- Koutouleas, A.; Sarzynski, T.; Bertrand, B.; Bordeaux, M.; Bosselmann, A.S.; Campa, C.; Etienne, H.; Turreira-García, N.; Léran, S.; Markussen, B.; et al. Shade effects on yield across different Coffea arabica cultivars-how much is too much? A meta-analysis. Agron. Sustain. Dev. 2022, 42, 55. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; Alvarenga, N.B.; Lidon, F.C. Identification of chemical clusters discriminators of Arabica and Robusta green coffee. Int. J. Food Prop. 2013, 16, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Naik, B.J.; Kim, S.C.; Seenaiah, R.; Basha, P.A.; Song, E.Y. Coffee cultivation techniques, impact of climate change on coffee production, role of nanoparticles and molecular markers in coffee crop improvement, and challenges. J. Plant Biotechnol. 2021, 48, 207–222. [Google Scholar] [CrossRef]
- Bertrand, C.; Noirot, M.; Doulbeau, S.; de Kochko, A.; Hamon, S.; Campa, C. Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae. Qualitative comparison with leaves. Plant Sci. 2003, 165, 1355–1361. [Google Scholar] [CrossRef]
- Oestreich-Janzen, S. Chemistry of Coffee: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Cambridge, UK, 2013; pp. 1–28. [Google Scholar] [CrossRef]
- Upadhyay, R.; Rao, L.J.M. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr. 2013, 53, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Pluchinotta, F.R.; Marventano, S.; Buscemi, S.; Li Volti, G.; Galvano, F.; Grosso, G. Coffee components and cardiovascular risk: Beneficial and detrimental effects. Int. J. Food Sci. Nutr. 2014, 65, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Yeager, S.E.; Batali, M.E.; Guinard, J.-X.; Ristenpart, W.D. Acids in coffee: A review of sensory measurements and meta analysis of chemical composition. Crit. Rev. Food Sci. Nutr. 2021, 23, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Farah, A.; Monteiro, M.C.; Calado, V.; Franca, A.S.; Trugo, L.C. Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chem. 2006, 98, 373–380. [Google Scholar] [CrossRef]
- Romero-González, R.R.; Verpoorte, R. Salting-out gradients in centrifugal partition chromatography for the isolation of chlorogenic acids from green coffee beans. J. Chromatogr. A 2009, 1216, 4245–4251. [Google Scholar] [CrossRef]
- Girma, B.; Gure, A.; Wedajo, F. Influence of altitude on caffeine, 5-caffeoylquinic acid, and nicotinic acid contents of arabica coffee varieties. Hindawi J. Chem. 2020, 2020, 3904761. [Google Scholar] [CrossRef]
- Carelli, M.L.; Fahl, J.I.; Ramalho, J.C. Aspects of nitrogen metabolism in coffee plants. Braz. J. Plant Physiol. 2006, 18, 9–21. [Google Scholar] [CrossRef]
- Vaast, P.; Bertrand, B.; Perriot, J.J.; Guyot, B.; Génard, M. Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J. Sci. Food Agric. 2006, 86, 197–204. [Google Scholar] [CrossRef]
- Joët, T.; Laffargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; Kochko, A.; Dussert, S. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
- Barbosa, J.N.; Borem, F.M.; Cirillo, M.A.; Malta, M.R.; Alvarenga, A.A.; Alves, H.M.R. Coffee quality and its interactions with environmental factors in Minas Gerais, Brazil. J. Agric. Sci. 2012, 4, 181–190. [Google Scholar] [CrossRef]
- Bertrand, B.; Boulanger, R.; Dussert, S.; Ribeyre, F.; Berthiot, L.; Descroix, F.; Joët, T. Climatic factors directly impact the volatile organic compound fingerprint in green arabica coffee bean as well as coffee beverage quality. Food Chem. 2012, 135, 2575–2583. [Google Scholar] [CrossRef]
- Cheng, B.; Furtado, A.; Smyth, H.E.; Henry, R.J. Influence of genotype and environment on coffee quality. Trends Food Sci. Technol. 2016, 57, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Decazy, F.; Avelino, J.; Guyot, B.; Perriot, J.J.; Pineda, C.; Cilas, C. Quality of different Honduran coffees in relation to several environments. J. Food Sci. 2003, 68, 2356–2361. [Google Scholar] [CrossRef]
- Joët, T.; Salmona, J.; Laffargue, A.; Descroix, F.; Dussert, S. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation. Plant Cell Environ. 2010, 33, 1220–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, M.; Parajuli, K.; Regmi, S.; Budhathoki, S. Effect of altitude and shade on production and physical attributes of coffee in Gulmi, Syangja and Palpa districts of Nepal. J. Agric. Nat. Resour. 2021, 4, 222–238. [Google Scholar] [CrossRef]
- Bote, A.D.; Struik, P.C. Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. J. Hortic. For. 2011, 3, 336–341. [Google Scholar] [CrossRef]
- Ehrenbergerová, L.; Klimková, M.; Cano, Y.G.; Habrová, H.; Lvončik, S.; Volařik, D.; Khum, W.; Němec, P.; Kim, S.; Jelínek, P.; et al. Does shade impact coffee yield, tree trunk, and soil moisture on Coffea canephora plantations in Mondulkiri, Cambodia? Sustainability 2021, 13, 13823. [Google Scholar] [CrossRef]
- Bosselmann, A.S.; Dons, K.; Oberthur, T.; Olsen, C.S.; Ræbild, A.; Usma, H. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agric. Ecosyst. Environ. 2009, 129, 253–260. [Google Scholar] [CrossRef]
- Bote, A.D.; Vos, J. Tree management and environmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS-Wagening. J. Life Sci. 2017, 83, 39–46. [Google Scholar] [CrossRef]
- Worku, M.; de Meulenaer, B.; Duchateau, L.; Boeckx, P. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Res. Int. 2018, 105, 278–285. [Google Scholar] [CrossRef]
- Avelino, J.; Barboza, B.; Araya, J.C.; Fonseca, C.; Davrieux, F.; Guyot, B.; Cilas, C. Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs of Costa Rica, Orosi and Santa María de Dota. J. Sci. Food Agric. 2005, 85, 1869–1876. [Google Scholar] [CrossRef]
- Esteves, A.B.; Oliveira, J.S. Contribuição para o estudo das caracteristicas dos cafés de Angola. In Estudos, Ensaios e Documentos; Junta de Investigações do Ultramar: Lisboa, Portugal, 1970; Volume 126, p. 177. [Google Scholar]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; Lidon, F.C. Application of colour parameters for assessing the quality of arabica and robusta green coffee. Emir. J. Food Agric. 2014, 26, 9–17. [Google Scholar] [CrossRef] [Green Version]
- NP 2285; Dried Extracts of Coffee and Coffee Substitutes–Determination of Apparent Density through Free-Flowing. Instituto Português de Qualidade: Lisbon, Portugal, 1991.
- ISO 4150; Green Coffee or Raw Coffee—Size Analysis—Manual and Machine Sieving iTeh Standard. International Organization for Standardization: Geneva, Switzerland, 2011; p. 12. Available online: https://www.iso.org/standard/44602.html (accessed on 5 November 2021).
- Kath, J.; Byrareddy, V.M.; Mushtaq, S.; Craparo, A.; Porcel, M. Temperature and rainfall impacts on robusta coffee bean characteristics. Clim. Risk Manag. 2021, 32, 100281. [Google Scholar] [CrossRef]
- Silveira, T.M.L.; Tavares, E.; Glória, M.B.A. Profile and levels of bioactive amines in instant coffee. J. Food Compos. Anal. 2007, 20, 451–457. [Google Scholar] [CrossRef]
- Sdiri, S.; Rambla, J.L.; Besada, C.; Granell, A.; Salvador, A. Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Biol. Technol. 2017, 133, 48–56. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990; p. 1928. [Google Scholar]
- Geromel, C.; Ferreira, L.P.; Davrieux, F.; Guyot, B.; Ribeyre, F.; Scholz, M.B.S.; Pereira, L.F.P.; Vaast, P.; Pot, D.; Leroy, T.; et al. Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiol. Biochem. 2008, 46, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Alves, S.T.; Dias, R.C.E.; Benassi, M.D.T.; Scholz, M.B.D.S. HPLC analysis of nicotinic acid, trigonelline, chlorogenic acid and caffeine in roasted coffee. Química Nova 2006, 29, 1164–1168. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; Lidon, F.C. Chemical descriptors for sensory and parental origin of commercial Coffea genotypes. Int. J. Food Sci. Nutr. 2012, 63, 835–842. [Google Scholar] [CrossRef]
- Trugo, L.C.; Macrae, R. A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chem. 1984, 15, 219–227. [Google Scholar] [CrossRef]
- Medlicott, A.P.; Thompson, A.K. Analysis of sugars and organic acids in ripening mango fruits (Mangifera indica L. var Keitt) by high performance liquid chromatography. J. Sci. Food Agric. 1985, 36, 561–566. [Google Scholar] [CrossRef]
- Lidon, F.C.; Oliveira, K.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; Scotti-Campos, P.; Ribeiro-Barros, A.I.; et al. Selenium biofortification of rice grains and implications on macronutrients quality. J. Cereal Sci. 2018, 81, 22–29. [Google Scholar] [CrossRef]
- Molin, R.N.D.; Andreotti, M.; Reis, A.R.; Furlani, E., Jr.; Braga, G.C.; Scholz, M.B.S. Physical and sensory characterization of coffee produced in the topoclimatic conditions at Jesuítas, Paraná State (Brazil). Acta Sci.-Agron. 2008, 30, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Ricci, M.S.F.; Costa, J.R.; Pinto, A.N.; Santos, V.L.S. Organic cultivation of coffee cultivars grown under full sun and under shading. Pesqui. Agropecuária Bras. 2006, 41, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Kamal, B.K.; Acharya, B.; Srivastava, A.; Pandey, M. Effect of different altitudes in qualitative and quantitative attributes of green coffee beans (Coffea arabica) in Nepal. Int. J. Hortic. Agric. Food Sci. 2021, 5, 1–7. [Google Scholar] [CrossRef]
- Muschler, R.G. Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor. Syst. 2001, 85, 131–139. [Google Scholar] [CrossRef]
- Borém, F.M.; Ribeiro, F.C.; Figueiredo, L.P.; Giomo, G.S.; Fortunato, V.A.; Isquierdo, E.P. Evaluation of the sensory and colour quality of coffee beans stored in hermetic packaging. J. Stored Prod. Res. 2013, 52, 1–6. [Google Scholar] [CrossRef]
- Afonso, P.C., Jr.; Corrêa, P.C. Influence of storage time in colour of natural and washed coffee grains. Ciência E Agrotecnologia 2003, 27, 1268–1276. [Google Scholar] [CrossRef]
- Mendonça, J.C.F.; Franca, A.S.; Oliveira, L.S. Physical characterization of non-defective and defective Arabica and Robusta coffees before and after roasting. J. Food Eng. 2009, 92, 474–479. [Google Scholar] [CrossRef]
- Bertrand, B.; Vaast, P.; Alpizar, E.; Etienne, H.; Davrieux, F.; Charmetant, P. Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol. 2006, 26, 1239–1248. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Smyth, H.E.; Furtado, A.; Henry, R.J. Slower development of lower canopy beans produces better coffee. J. Exp. Bot. 2020, 71, 4201–4214. [Google Scholar] [CrossRef]
- Lemos, M.F.; Perez, C.; Cunha, P.H.P.; Filgueiras, P.R.; Pereira, L.L.; Fonseca, A.F.A.; Ifa, D.R.; Scherer, R. Chemical and sensory profile of new genotypes of brazilian Coffea canephora. Food Chem. 2020, 310, 125850. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.M.M.; Batista, N.N.; Miguel, M.G.; Simão, J.B.P.; Soares, J.R.; Schwan, R.F. Coffee growing altitude influences the microbiota, chemical compounds and the quality of fermented coffees. Food Res. Int. 2020, 129, 108872. [Google Scholar] [CrossRef] [PubMed]
- Malta, M.R.; Chagas, S.J.R. Evaluation of non-volatile compounds in different cultivars of coffee cultivated in southern Minas Gerais. Acta Sci.-Agron. 2009, 31, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Mintesnot, A.; Dechassa, N. Effect of altitude, shade, and processing methods on the quality and biochemical composition of green coffee beans in Ethiopia. East Afr. J. Sci. 2018, 12, 87–100. [Google Scholar]
- Rendón, M.Y.; Salva, J.G.T.; Bragagnolo, N. Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chem. 2014, 147, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Siebert, M.; Detering, T.; Berger, R.G. An immobilized fungal chlorogenase rapidly degrades chlorogenic acid in a coffee beverage without altering its sensory properties. LWT 2019, 115, 108426. [Google Scholar] [CrossRef]
- Kraehenbuehl, K.; Page-Zoerkler, N.; Mauroux, O.; Gartenmann, K.; Blank, I.; Bel-Rhlid, R. Selective enzymatic hydrolysis of chlorogenic acid lactones in a model system and in a coffee extract. Application to reduction of coffee bitterness. Food Chem. 2017, 218, 9–14. [Google Scholar] [CrossRef]
- Clifford, M.N. Coffee Volume 1: Chemistry; Carke, R.J., Macrae, R., Eds.; Elsevier Applied Science: London, UK, 1985; Chapter 5; pp. 153–202. ISBN 0-85334-368-3. [Google Scholar]
- Maria, C.A.; Trugo, L.C.; Moreira, R.F.A.; Werneck, C.C. Composition of green coffee fractions and their contribution to the volatile profile formed during roasting. Food Chem. 1994, 50, 141–145. [Google Scholar] [CrossRef]
- Scholz, B.M.; Kitzberger, C.S.G.; Durand, N.; Rakocevic, M. From the field to coffee cup: Impact of planting design on chlorogenic acid isomers and other compounds in coffee beans and sensory attributes of coffee beverage. Eur. Food Res. Technol. 2018, 244, 1793–1802. [Google Scholar] [CrossRef]
- Redgwell, R.; Fischer, M. Coffee carbohydrates. Braz. J. Plant Physiol. 2006, 18, 165–174. [Google Scholar] [CrossRef]
Attributes | Altitude (A) | Light Condition (L) | A * L Interaction | Altitude | Light Condition | ||||
---|---|---|---|---|---|---|---|---|---|
650 m | 825 m | 935 m | DS | MS | FS | ||||
Mass of 100 beans | <2 × 10−16 *** | 1.8 × 10−5 *** | ns | ns | ns | ns | ns | ns | ns |
Apparent density | 2 × 10−6 *** | 0.0354 * | ns | ns | ns | ns | ns | ns | ns |
Commercial homogeneity | 1.6 × 10−5 *** | ns | ns | 0.0083 ** | ns | ns | 0.0001 *** | 0.0003 *** | ns |
Average sieve | 0.0472 * | ns | ns | ns | ns | ns | ns | ns | ns |
Frequent sieve | ns | ns | ns | ns | ns | ns | ns | ns | ns |
L* | 0.02319 * | ns | ns | ns | ns | ns | ns | ns | ns |
a* | ns | ns | ns | ns | ns | ns | ns | ns | ns |
b* | 4 × 10−6 *** | ns | ns | ns | ns | ns | ns | ns | ns |
C* | 4 × 10−6 *** | ns | ns | ns | ns | ns | ns | ns | ns |
H° | 0.0040 ** | ns | ns | ns | ns | ns | ns | ns | ns |
CI | 0.0032 ** | ns | ns | ns | ns | ns | ns | ns | ns |
3-FQA | ns | ns | 0.0099 ** | 0.0007 *** | ns | ns | 0.0070 ** | 0.0486 * | ns |
4-FQA | 0.0003 *** | ns | 0.0076 *** | ns | 0.0056 * | ns | 2.50 × 10−5 *** | 0.0003 * | 0.0071 * |
5-FQA | 0.0025 ** | ns | 0.0025 ** | ns | 0.0001 ** | ns | 0.0004 ** | 0.0124 | 0.001 |
3-CQA | 0.0038 ** | ns | ns | ns | ns | ns | ns | ns | ns |
4-CQA | ns | 0.0182 * | ns | ns | ns | ns | ns | ns | ns |
5-CQA | 0.0386 * | 0.0031 ** | 0.0379 * | ns | 0.0009 *** | 0.0456 * | ns | ns | 0.0009 *** |
Total CQAs | 0.0169 * | ns | ns | ns | ns | ns | ns | ns | ns |
3,4-diCQA | 1 × 10−5 *** | ns | ns | ns | ns | ns | ns | ns | ns |
3,5-diCQA | 0.0001 *** | ns | ns | ns | ns | ns | ns | ns | ns |
4,5di-CQA | 6 × 10−6 *** | ns | ns | ns | ns | ns | ns | ns | ns |
Trigonelline | 5.1 × 10−5 *** | 0.0007 *** | 9.2 × 10−5 *** | ns | ns | ns | 0.000 *** | ns | ns |
Caffeine | ns | ns | ns | ns | ns | ns | ns | ns | ns |
p-coumaric acid | ns | 0.0488 | 0.0340 | ns | 0.0022 * | 0.0022 * | 0.0279 | ns | ns |
Sucrose | ns | ns | 0.0199* | ns | 0.0021 ** | ns | ns | ns | ns |
Glucose | 4 × 10−6 *** | ns | ns | 0.0075 ** | 0.0479 * | ns | 0 *** | 7.0 × 10−6 *** | 0.0437 * |
Fructose | ns | ns | 0.0007 *** | ns | ns | 7 × 10−5 *** | 0.0233 * | ns | 0.0018 ** |
Arabinose | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Total sugars | ns | ns | 0.0105 * | ns | 0.005 ** | ns | ns | 0.0293 * | ns |
Attributes | Light Condition | Altitude | ||
---|---|---|---|---|
650 m | 825 m | 935 m | ||
Frequent sieve | DS | 17.0 ± 0.3 Aa | 17.0 ± 0.5 Aa | 18.0 ± 0.3 Aa |
MS | 17.0 ± 0.3 Aa | 17.0 ± 0.3 Aa | 17.0 ± 0.4 Aa | |
FS | 17.0 ± 0.2 Aa | 17.0 ± 0.2 Aa | 18.0 ± 0.3 Aa | |
Average sieve | DS | 17.1 ± 0.0 Aa | 17.1 ± 0.0 Aa | 17.9 ± 0.0 Aa |
MS | 16.9 ± 0.0 Aa | 17.3 ± 0.0 Aa | 17.6 ± 0.0 Aa | |
FS | 16.2 ± 0.0 Aa | 17.1 ± 0.0Aa | 17.5 ± 0.0 Aa | |
Commercial homogeneity | DS | 0.49 ± 0.02 Aa | 0.52 ± 0.02 Aa | 0.52 ± 0.01 Aa |
MS | 0.46 ± 0.02 Ab | 0.54 ± 0.01 Aa | 0.51 ± 0.02 Aa | |
FS | 0.45 ± 0.01 Ab | 0.54 ± 0.01 Aa | 0.53 ± 0.02 Aa |
Attributes | Light Condition | Altitude | ||
---|---|---|---|---|
650 m | 825 m | 935 m | ||
Mass of 100 beans (g) | DS | 16.0 ± 0.5 Aab | 14.3 ± 0.2 Ab | 17.2 ± 0.4 ABa |
MS | 15.1 ± 0.2 Ab | 14.5 ± 0.2 Ab | 18.5 ± 0.7 Aa | |
FS | 14.3 ± 0.4 Ab | 13.2 ± 0.2 Ab | 16.0 ± 0.5 Ba | |
Apparent density (g mL−1) | DS | 0.62 ± 0.02 ABb | 0.65 ± 0.02 Aab | 0.69 ± 0.00 Aa |
MS | 0.61 ± 0.02 Bb | 0.67 ± 0.01 Aa | 0.69 ± 0.01 Aa | |
FS | 0.67 ± 0.01 Aab | 0.62 ± 0.01 Ab | 0.69 ± 0.00 Aa |
Attribute | Light Condition | Altitude | ||
---|---|---|---|---|
650 m | 825 m | 935 m | ||
L* | DS | 87.7 ± 0.2 Aa | 87.7 ± 0.4 Aa | 88.6 ± 0.3 Aa |
MS | 87.7 ± 0.3 Aa | 88.2 ± 0.2 Aa | 88.6 ± 0.6 Aa | |
FS | 87.7 ± 0.2 Aa | 87.5 ± 0.1 Aa | 88.3 ± 0.2 Aa | |
a* | DS | −3.05 ± 0.06 Aa | −3.05 ± 0.06 Aa | −3.07 ± 0.04 Aa |
MS | −2.97 ± 0.10 Aa | −3.16 ± 0.04 Aa | −2.99 ± 0.08 Aa | |
FS | −3.02 ± 0.06 Aa | −2.92 ± 0.04 Aa | −3.01 ± 0.06 Aa | |
b* | DS | 17.2 ± 0.22 Aa | 16.3 ± 0.1 Ab | 16.2 ± 0.1 Ab |
MS | 17.3 ± 0.19 Aa | 16.3 ± 0.2 Ab | 16.2 ± 0.2 Ab | |
FS | 17.4 ± 0.26 Aa | 16.4 ± 0.2 Ab | 16.3 ± 0.1 Ab | |
C* | DS | 17.7 ± 0.2 Aa | 16.6 ± 0.1 Ab | 16.4 ± 0.1 Ab |
MS | 17.5 ± 0.2 Aa | 16.6 ± 0.2 Ab | 16.5 ± 0.3 Ab | |
FS | 17.7 ± 0.3 Aa | 16.7 ± 0.2 Ab | 16.6 ± 0.1 Ab | |
H° | DS | 99.9 ± 0.2 Aa | 101 ± 0 Aa | 100 ± 0 Aa |
MS | 99.7 ± 0.4 Aa | 101 ± 0 Aa | 100 ± 0 Aa | |
FS | 99.8 ± 0.2 Aa | 100 ± 0 Aa | 100 ± 0 Aa | |
CI | DS | −1.99 ± 0.04 Aa | −2.20 ± 0.04 Ab | −2.14 ± 0.02 Ab |
MS | −1.96 ± 0.07 Aa | −2.20 ± 0.04 Ab | −2.08 ± 0.03 Aab | |
FS | −1.98 ± 0.05 Aa | −2.03 ± 0.03 Aa | −2.09 ± 0.04 Aa |
Atributtes | Light Condition | Altitude | ||
---|---|---|---|---|
650 m | 825 m | 935 m | ||
Trigonelline (mg g−1 DW) | DS | 11.1 ± 0. 3 Aa | 10.4 ± 0.3 Aa | 9.37 ± 1.01 Ca |
MS | 11.4 ± 0.6 Ab | 9.91 ± 0.8 Ab | 25.8 ± 0.2 Ba | |
FS | 11.9 ± 0.5 Ab | 9.63 ± 0.6 Ab | 32.1 ± 1.4 Aa | |
p-coumaric acid (mg g−1 DW) | DS | 0.41 ± 0.01 Aa | 0.57 ± 0.01 Aa | 0.43 ± 0.07 Aa |
MS | 0.43 ± 0.01 Aa | 0.30 ± 0.03 Ba | 0.42 ± 0.04 Aa | |
FS | 0.41 ± 0.01Aa | 0.42 ± 0.04 ABa | 0.33 ± 0.04 Aa | |
Caffeine (mg g−1 DW) | DS | 16.2 ± 0.2 Aa | 13.8 ± 0.4 Aa | 14.7 ± 0.5 Aa |
MS | 15.9 ± 0.2 Aa | 14.2 ± 0.2 Aa | 15.1 ± 0.3 Aa | |
FS | 15.2 ± 0.4 Aa | 13.6 ± 0.3 Aa | 14.8 ± 0.2 Aa | |
3-CQA (mg g−1 DW) | DS | 2.42 ± 0.13 Aa | 2.52 ± 0.26 Aa | 1.92 ± 0.18 Aa |
MS | 2.41 ± 0.09 Aa | 2.24 ± 0.19 Aa | 2.35 ± 0.07 Aa | |
FS | 2.50 ± 0.05 Aa | 2.62 ± 0.07 Aa | 2.17 ± 0.12 Aa | |
4-CQA (mg g−1 DW) | DS | 3.32 ± 0.09 Aab | 3.61 ± 0.11 Aa | 2.67 ± 0.31Ab |
MS | 3.51 ± 0.15 Aa | 3.24 ± 0.10 Aa | 3.34 ± 0.11 Aa | |
FS | 3.60 ± 0.19 Aa | 3.60 ± 0.24 Aa | 3.08 ± 0.14 Aa | |
5-CQA (mg g−1 DW) | DS | 21.6 ± 0.6 Aa | 28.2 ± 1.2 Aa | 25.8 ± 0.8 Aa |
MS | 21.8 ± 1.3 Ab | 25.9 ± 0.9 Aab | 32.0 ± 0.8 Aa | |
FS | 24.9 ± 2.3 Aa | 30.0 ± 1.9 Aa | 28.4 ± 0.9 Aa | |
Total CQAs (mg g−1 DW) | DS | 27.4 ± 0.5Aa | 34.3 ± 1.4 Aa | 30.4 ± 3.3 Aa |
MS | 27.7 ± 1.4 Ab | 31.3 ± 1.1 Aab | 37.7 ± 1.0 Aa | |
FS | 31.1 ± 2.7 Aa | 36.2 ± 2.3 Aa | 33.7 ± 1.2 Aa | |
4-FQA (mg g−1 DW) | DS | 0.32 ± 0.04 Aa | 0.16 ± 0.01 Bb | 0.16 ± 0.04 Ab |
MS | 0.31 ± 0.02 Aa | 0.18 ± 0.02 ABb | 0.18 ± 0.01 Ab | |
FS | 0.25 ± 0.02 Aa | 0.23 ± 0.02 Aa | 0.17 ± 0.01 Aa | |
5-FQA (mg g−1 DW) | DS | 2.79 ± 0.16 Aa | 1.84 ± 0.07 Bb | 1.79 ± 0.29 Ab |
MS | 2.82 ± 0.09 Aa | 2.13 ± 0.21 ABb | 2.16 ± 0.14 Ab | |
FS | 2.55 ± 0.14 Aab | 3.14 ± 0.20 Aa | 2.11 ± 0.14 Ab | |
3,4-diCQA (mg g−1 DW) | DS | 0.98 ± 0.08 Aa | 0.65 ± 0.03 Aab | 0.34 ± 0.11 Ab |
MS | 1.17 ± 0.10 Aa | 0.44 ± 0.15 Ab | 0.54 ± 0.03 Ab | |
FS | 1.02 ± 0.09 Aa | 0.56 ± 0.03 Ab | 0.60 ± 0.03 Ab | |
3,5-diCQA (mg g−1 DW) | DS | 3.03 ± 0.10 Aa | 2.04 ± 0.08 Aab | 1.26 ± 0.42 Ab |
MS | 3.42 ± 0.28 Aa | 1.49 ± 0.15 Ab | 1.83 ± 0.55 Ab | |
FS | 2.90 ± 0.29 Aa | 1.76 ± 0.47 Aa | 1.69 ± 0.07Aa | |
4,5-diCQA (mg g−1 DW) | DS | 0.80 ± 0.06 Aa | 0.48 ± 0.04 Aab | 0.37 ± 0.11 Ab |
MS | 1.08 ± 0.10 Aa | 0.23 ± 0.03 Ab | 0.53 ± 0.04 Ab | |
FS | 0.82 ± 0.07 Aa | 0.40 ± 0.10 Ab | 0.45 ± 0.11 Aab |
Attributes | Light Condition | Altitude | ||
---|---|---|---|---|
650 m | 825 m | 935 m | ||
Sucrose (mg g−1 DW) | DS | 44.3 ± 0.48 Aa | 43.3 ± 2.10 ABa | 43.1 ± 0.53 Aa |
MS | 44.6 ± 1.76 Aa | 40.7 ± 1.31 Ba | 42.9 ± 0.84 Aa | |
FS | 42.9 ± 0.74 Aa | 46.2 ± 0.76 Aa | 44.7 ± 0.65 Aa | |
Glucose (mg g−1 DW) | DS | 1.77 ± 0.21 Aa | 1.22 ± 0.07 Ab | 0.66 ± 0.05 Bc |
MS | 1.74 ± 0.12 Aa | 1.25 ± 0.09 Ab | 0.84 ± 0.06 ABc | |
FS | 1.28 ± 0.05 Ba | 0.88 ± 0.10 Ab | 1.05 ± 0.12 Aab | |
Fructose (mg g−1 DW) | DS | 0.65 ± 0.05 Aa | 0.96 ± 0.1 Aa | 0.51 ± 0.06 Ba |
MS | 0.64 ± 0.03 Aa | 0.76 ± 0.09 Aa | 0.76 ± 0.17 Ba | |
FS | 0.71 ± 0.03 Ab | 0.69 ± 0.08 Ab | 1.22 ± 0.22 Aa | |
Arabinose (mg g−1 DW) | DS | 0.96 ± 0.09 Aa | 0.92 ± 0.09 Aa | 0.92 ± 0.02 Aa |
MS | 1.07 ± 0.15 Aa | 0.93 ± 0.10 Aa | 0.93 ± 0.12 Aa | |
FS | 0.98 ± 0.05 Aa | 0.70 ± 0.08 Aa | 1.00 ± 0.07 Aa | |
Total sugars (mg g−1 DW) | DS | 47.7 ± 0.8 Aa | 46.4 ± 2.05 ABa | 45.2 ± 0.50 Aa |
MS | 48.1 ± 1.7 Aa | 43.6 ± 1.13 Bb | 45.4 ± 0.88 Aab | |
FS | 45.9 ± 0.7 Aa | 48.4 ± 0.80 Aa | 48.0 ± 0.51 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassamo, C.T.; Mangueze, A.V.J.; Leitão, A.E.; Pais, I.P.; Moreira, R.; Campa, C.; Chiulele, R.; Reis, F.O.; Marques, I.; Scotti-Campos, P.; et al. Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique. Agronomy 2022, 12, 2540. https://doi.org/10.3390/agronomy12102540
Cassamo CT, Mangueze AVJ, Leitão AE, Pais IP, Moreira R, Campa C, Chiulele R, Reis FO, Marques I, Scotti-Campos P, et al. Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique. Agronomy. 2022; 12(10):2540. https://doi.org/10.3390/agronomy12102540
Chicago/Turabian StyleCassamo, Crimildo T., Adilson V. J. Mangueze, António E. Leitão, Isabel P. Pais, Rita Moreira, Claudine Campa, Rogério Chiulele, Fabrício O. Reis, Isabel Marques, Paula Scotti-Campos, and et al. 2022. "Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique" Agronomy 12, no. 10: 2540. https://doi.org/10.3390/agronomy12102540
APA StyleCassamo, C. T., Mangueze, A. V. J., Leitão, A. E., Pais, I. P., Moreira, R., Campa, C., Chiulele, R., Reis, F. O., Marques, I., Scotti-Campos, P., Lidon, F. C., Partelli, F. L., Ribeiro-Barros, A. I., & Ramalho, J. C. (2022). Shade and Altitude Implications on the Physical and Chemical Attributes of Green Coffee Beans from Gorongosa Mountain, Mozambique. Agronomy, 12(10), 2540. https://doi.org/10.3390/agronomy12102540