Specialty Crop Germplasm and Public Breeding Efforts in the United States
Abstract
:1. Introduction
2. Specialty Crops Breeding in the U.S. Public Sector
3. Specialty Crops Germplasm Maintained by the USDA/ARS/NGS
4. Uses of Germplasm in Specialty Crops Breeding and Research: Capsicum Example
4.1. Breeding for Disease Resistance
4.2. Breeding for Fruit Quality
4.3. Breeding for Male Sterility and Floral Development
4.4. Breeding for Salt and Drought Tolerance
4.5. Germplasm Collection Strategies and Maintenance
4.6. Genomic Structure and Evolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Specialty Crop Research Initiative (SCRI). 2021. Available online: https://nifa.usda.gov/funding-opportunity/specialty-crop-research-initiative-scri (accessed on 17 January 2022).
- Lampert, P.; Soode, E.; Menrad, K.; Theuvsen, L. Distributing asparagus: A climate perspective considering producer and consumer aspects. Agroecol. Sustain. Food Syst. 2016, 40, 169–186. [Google Scholar] [CrossRef]
- Orton, T.J. Horticultural Plant Breeding; Academic Press: New York, NY, USA, 2019; p. 410. [Google Scholar]
- Orton, T.J. Pathways to collaboration in agricultural research and extension. In Pathways to Collaboration; Fowler, J., Holowinsky, R., Channell, A., Crocomo, O., Kreier, J., Sharp, W., Eds.; Science and Technology Publishers: Columbia, SC, USA, 2017; Volume 2, pp. 323–368. [Google Scholar]
- Fernandez-Cornejo, J.; Keller, J.; Spielman, D.; Gill, M.; King, J.; Heisey, P. The Seed Industry in U.S. Agriculture: An Exploration of Data and Information on Crop Seed Markets, Regulation, Industry Structure, and Research and Development; Resource Economics Division, Economic Research Service, U.S. Department of Agriculture: Agriculture Information Bulletin Number 786; 2004. Available online: https://www.ers.usda.gov/webdocs/publications/42517/13587_aib786fm_1_.pdf?v=0 (accessed on 3 December 2021).
- Qaim, M. Role of new plant breeding technologies for food security and sustainable agricultural development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- Shelton, A.C.; Tracy, W.F. Cultivar development in the U.S. public sector. Crop Sci. 2017, 57, 1823–1835. [Google Scholar] [CrossRef] [Green Version]
- Coe, M.T.; Evans, K.M.; Gasic, K.; Main, D. Plant breeding capacity in U.S. public institutions. Crop Sci. 2020, 60, 2373–2385. [Google Scholar] [CrossRef]
- The U.S. Land-Grant University System: An Overview. 2019. Available online: https://www.everycrsreport.com/reports/R45897.html (accessed on 3 December 2021).
- Ramchiary, N.; Kehie, M.; Brahma, V.; Kumaria, S.; Tandon, P. Application of genetics and genomics towards Capsicum translational research. Plant Biotechnol. Rep. 2014, 8, 101–123. [Google Scholar] [CrossRef]
- Tripodi, P.; Greco, B. Large scale phenotyping provides Insight into the diversity of vegetative and reproductive organs in a wide collection of wild and domesticated peppers (Capsicum spp.). Plants 2018, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Babu, B.S.; Pandravada, S.R.; Rao, R.D.V.J.P.; Anitha, K.; Chakrabarty, S.K.; Varaprasad, K.S. Global sources of pepper genetic resources against arthropods, nematodes and pathogens. Crop Protection. 2011, 30, 389–400. [Google Scholar] [CrossRef]
- Stommel, J.R.; Camp, M.J.; Luo, Y.; Welten-Schoevaars, A.M. Genetic diversity provides opportunities for improvement of fresh-cut pepper quality. Plant Genetics Res. 2016, 14, 112–120. [Google Scholar] [CrossRef]
- Naegele, R.P.; Tomlinson, A.J.; Hausbeck, M.K. Evaluation of a diverse, worldwide collection of wild, cultivated, and landrace pepper (Capsicum annuum) for resistance to Phytophthora fruit rot, genetic diversity, and population structure. Phytopathology 2015, 105, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Sanogo, S.; Bosland, P.W. Using recombinant inbred lines to monitor changes in the race structure of Phytophthora capsici in chile pepper in New Mexico. Plant Health Prog. 2015, 16, 235–240. [Google Scholar] [CrossRef]
- Mallard, S.; Cantet, M.; Massire, A.; Bachellez, A.; Ewert, S.; Lefebvre, V. A key QTL cluster is conserved among accessions and exhibits broad-spectrum resistance to Phytophthora capsici: A valuable locus for pepper breeding. Mol. Breed. 2013, 32, 349–364. [Google Scholar] [CrossRef]
- Gurung, S.; Short, D.P.G.; Hu, X.; Sandoya, G.V.; Hayes, R.J.; Subbarao, K.V. Screening of wild and cultivated Capsicum germplasm reveals new sources of Verticillium wilt resistance. APS Publ. 2015, 99, 1404–1409. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Yoon, J.B.; Lee, J. A SNP-based genetic linkage map of Capsicum baccatum and its comparison to the Capsicum annuum reference physical map. Mol. Breed. 2016, 36, 61. [Google Scholar] [CrossRef]
- Potnis, N.; Branham, S.E.; Jones, J.B.; Wechter, W.P. Genome-wide association study of resistance to Xanthomonas gardneri in the USDA pepper (Capsicum) collection. Phytopathology 2019, 109, 1217–1225. [Google Scholar] [CrossRef]
- Jarret, R.L.; Gillaspie, A.G.; Barkely, N.A.; Pinnow, D.L. The occurrence and control of pepper mild mottle virus (PMMoV) in the USDA/ARS Capsicum germplasm collection. Seed Technol. 2008, 30, 26–36. [Google Scholar]
- Retes-Manjarrez, J.E.; Hernández-Verdugo, S.; Evrard, A.; Garzón-Tiznado, J.A. Heritability of the resistance to pepper huasteco yellow vein virus in wild genotypes of Capsicum annuum. Euphytica 2017, 213, 275. [Google Scholar] [CrossRef]
- Sánchez-Solana, F.; del Mar, G.M.; Lacasa, A.; Lacasa, C.M.; Ros, C.; Sánchez-López, E. New pepper accessions proved to be suitable as a genetic resource for use in breeding nematode-resistant rootstocks. Plant Genet. Res. 2016, 14, 28–34. [Google Scholar] [CrossRef]
- Gisbert, C.; Trujillo-Moya, C.; Sánchez-Torres, P.; Sifres, A.; Sánchez-Castro, E.; Nuez, F. Resistance of pepper germplasm to Meloidogyne incognita. Ann. Appl. Biol. 2013, 162, 110–118. [Google Scholar] [CrossRef]
- Gonzalez, M.M.; Bosland, P.W. Strategies for stemming genetic erosion of Capsicum germplasm in the Americas. Diversity 1991, 7, 52–53. [Google Scholar]
- Jarret, R.L.; Berke, T. Variation for fruit morphological characteristics in a Capsicum chinense Jacq. germplasm collection. HortScience 2008, 43, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.; Di Dato, F.; Ricci, S.; Mennella, G.; Cardi, T.; Tripodi, P. A multi-trait characterization of the ‘Friariello’ landrace: A Mediterranean resource for sweet pepper breeding. Plant Genet. Res. 2017, 15, 165–176. [Google Scholar] [CrossRef]
- Guzman, I.; Hamby, S.; Romero, J.; Bosland, P.W.; O’Connell, M.A. Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci. 2010, 179, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Kang, M.; Jung, A.; Han, K.; Lee, J.; Jo, J.; Lee, H.; An, J.; Kim, S.; Kang, B. Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotechnol. J. 2019, 17, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Guzman, I.; Vargas, K.; Chacon, F.; McKenzie, C.; Bosland, P.W. Health-promoting carotenoids and phenolics in 31 Capsicum accessions. HortScience 2021, 56, 36–41. [Google Scholar] [CrossRef]
- Stommel, J.R.; Lightbourn, G.J.; Winkel, B.S.; Griesbach, R.J. Transcription factor families regulate the anthocyanin biosynthetic pathway in Capsicum annuum. J. Am. Soc. Hortic. Sci. 2009, 134, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Lightbourn, G.J.; Griesbach, R.J.; Novotny, J.A.; Clevidence, B.A.; Rao, D.D.; Stommel, J.R. Effects of anthocyanin and carotenoid combinations on foliage and immature fruit color of Capsicum annuum L. J. Hered. 2008, 99, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Antonious, G.F.; Jarret, R.L. Screening Capsicum accessions for capsaicinoids content. J. Environ. Sci. Health 2006, 41, 717–729. [Google Scholar] [CrossRef]
- Antonious, G.F.; Kochhar, T.S.; Jarret, R.L.; Snyder, J.C. Antioxidants in hot pepper: Variation among accessions. J. Environ. Sci. Health 2006, 41, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Taiti, C.; Costa, C.; Migliori, C.A.; Comparini, D.; Figorilli, S.; Mancuso, S. Correlation between volatile compounds and spiciness in domesticated and wild fresh chili peppers. Food Bioprocess Technol. 2019, 12, 1366–1380. [Google Scholar] [CrossRef]
- Rodriguez-Burruezo, A.; Raigon, M.D.; Prohens, J.; Nuez, F. Characterization for bioactive compounds of Spanish pepper landraces. Acta Hortic. 2011, 918, 537–543. [Google Scholar] [CrossRef]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J. Sci. Food Agric. 2020, 100, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Popovsky-Sarid, S.; Borovsky, Y.; Faigenboim, A.; Parsons, E.P.; Lohrey, G.T.; Alkalai-Tuvia, S.; Fallik, E.; Jenks, M.A.; Paran, I. Genetic and biochemical analysis reveals linked QTLs determining natural variation for fruit post-harvest water loss in pepper (Capsicum). Theor. Appl. Genet. 2017, 130, 445–459. [Google Scholar] [CrossRef] [PubMed]
- Peña-Yam, L.P.; Muñoz-Ramírez, L.S.; Avilés-Viñas, S.A.; Canto-Flick, A.; Guzmán-Antonio, A.; Santana-Buzzy, N. Floral Biology Studies in habanero pepper (Capsicum chinense Jacq.) to Implement in a cross-breeding program. Agriculture 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, M.S.; Jindal, S.K. Induction and exploitation of nuclear and cytoplasmic male sterility in pepper (Capsicum spp.): A review. J. Hortic. Sci. Biotechnol. 2014, 89, 471–479. [Google Scholar] [CrossRef]
- Jindal, S.K.; Dhaliwal, M.S.; Meena, O.P. Molecular advancements in male sterility systems of Capsicum: A review. Plant Breed. 2020, 139, 42–64. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Rodriguez, D.S.; Crosby, K.; Leskovar, D.; Jifon, J. Rapid screening for relative salt tolerance among chile pepper genotypes. HortScience 2010, 45, 1192–1195. [Google Scholar] [CrossRef]
- Toquica, S.P.; Rodriguez, F.; Martinez, E.; Duque, M.C.; Tohme, J. Molecular characterization by AFLPs of Capsicum germplasm from the Amazon Department in Colombia, characterization by AFLPs of Capsicum. Genet. Res. Crop Evol. 2003, 50, 639–647. [Google Scholar] [CrossRef]
- Brilhante, B.D.G.; de Oliveira Santos, T.; Santos, P.H.A.D.; Neto, J.D.S.; Rangel, L.H.; Valadares, F.V.; de Almeida, R.N.; Rodrigues, R.; Júnior, A.C.S.; Kamphorst, S.H.; et al. Phenotypic and molecular characterization of Brazilian Capsicum germplasm. Agronomy 2021, 11, 854. [Google Scholar] [CrossRef]
- Pertuze, R.; Matteo, M.; Contreras, S.; Pino, M.T.; Blanco, C.; Saavedra, G. Morphoagronomic characterization of 49 Capsicum sp. accessions for breeding selection purposes. Acta Hortic. 2016, 1127, 467–470. [Google Scholar] [CrossRef]
- Jarvis, A.; Williams, K.; Williams, D.; Guarino, L.; Caballero, P.J.; Mottram, G. Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genet. Res. Crop Evol. 2005, 52, 671–682. [Google Scholar] [CrossRef]
- Albrecht, E.; Zhang, D.; Mays, A.D.; Saftner, R.A.; Stommel, J.R. Genetic diversity in Capsicum baccatum is significantly influenced by its ecogeographical distribution. BMC Genet. 2012, 13, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, E.; Zhang, D.; Saftner, R.A.; Stommel, J.R. Genetic diversity and population structure of Capsicum baccatum genetic resources. Genet. Res. Crop Evol. 2012, 59, 517–538. [Google Scholar] [CrossRef]
- Ortiz, R.; de la Flor, F.D.; Alvarado, G.; Crossa, J. Classifying vegetable genetic resources A case study with domesticated Capsicum spp. Sci. Hortic. 2010, 126, 186–191. [Google Scholar] [CrossRef]
- Sood, S.; Kumar, N. Morphological studies of bell pepper germplasm. Int. J. Veg. Sci. 2011, 17, 144–156. [Google Scholar] [CrossRef]
- Kraft, K.H.; de Jesús Luna-Ruíz, J.; Gepts, P. A new collection of wild populations of Capsicum in Mexico and the southern United States. Genet. Res. Crop Evol. 2013, 60, 225–232. [Google Scholar] [CrossRef]
- Mongkolporn, O.; Chunwongse, J.; Hanyong, S.; Wasee, S. Establishment of a core collection of chilli germplasm using microsatellite analysis. Plant Genet. Res. 2015, 13, 104–110. [Google Scholar] [CrossRef]
- Nicolaï, M.; Cantet, M.; Lefebvre, V.; Sage-Palloix, A.; Palloix, A. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Res. Crop Evol. 2013, 60, 2375–2390. [Google Scholar] [CrossRef]
- Lee, H.; Na-Young, R.; Hee-Jin, J.; Kwon, J.; Jo, J.; Ha, Y.; Jung, A.; Han, J.; Venkatesh, J.; Byoung-Cheorl, K. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 2016, 17, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.; Jatav, P.K.; Haq, S.U.; Verma, K.S.; Kaul, V.K.; Kothari, S.L.; Kachhwaha, S. Translation initiation codon (ATG) or SCoT markers-based polymorphism study within and across various Capsicum accessions: Insight from their amplification, cross-transferability and genetic diversity. J. Genet. 2019, 98, 61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Zhang, Z.-H.; Gu, X.-Z.; Mao, S.-L.; Li, X.-X.; Chadœuf, J.; Alain, P.; Wang, L.-H.; Zhang, B.-X. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J. Int. Agric. 2016, 15, 1991–2001. [Google Scholar] [CrossRef]
- Pozzobon, M.T.; Schifino-Wittmann, M.T.; De Bem Bianchetti, L. Chromosome numbers in wild and semidomesticated Brazilian Capsicum L. (Solanaceae) species: Do x = 12 and x = 13 represent two evolutionary lines? Bot. J. Linn. Soc. 2006, 151, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Nimmakayala, P.; Abburi, V.L.; Abburi, L.; Suresh, B.A.; Cantrell, R.; Park, M.; Choi, D.; Hankins, G.; Malkaram, S.; Reddy, U.K. Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol. Genet. Genom. 2014, 289, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.-Z.; Cao, Y.-C.; Li, X.-X.; Wang, H.-P.; Wang, L.-H.; Zhang, B.-X.; Zhang, X.-M.; Zhang, Z.-H.; Zhao, H. Genetic diversity and population structure analysis of Capsicum germplasm accessions. J. Int. Agric. 2019, 18, 1312–1320. [Google Scholar] [CrossRef]
Specialty Crop | 2000 | 2020 | Yield Increase (%) |
---|---|---|---|
Yield (kg/ha) | |||
Beans, dry | 1840 | 2204 | 19.8 |
Cabbages and other brassicas | 23,650 | 50,717 | 114.4 |
Carrots and turnips | 38,562 | 56,094 | 45.5 |
Cauliflowers and broccoli | 16,404 | 21,834 | 33.1 |
Chick peas | 1421 | 1822 | 28.2 |
Chillies and peppers, green | 24,039 | 36,365 | 51.3 |
Eggplants (aubergines) | 33,459 | 36,888 | 10.2 |
Lentils | 1587 | 1616 | 1.8 |
Maize, green | 15,331 | 20,452 | 33.4 |
Melons, other (inc.cantaloupes) | 23,076 | 35,686 | 54.6 |
Okra | 7641 | 7835 | 2.5 |
Onions, dry | 48,375 | 71,100 | 47 |
String beans | 8743 | 10,370 | 18.6 |
Sugar beet | 58,565 | 65,972 | 12.6 |
Sunflower seed | 1501 | 2007 | 33.7 |
Sweet potatoes | 16,292 | 24,553 | 50.7 |
Watermelons | 25,365 | 44,504 | 75.5 |
Mean Yield increase (%) | 37.2 |
AESG3:I35/Institution | Crop/Genus/Species | Contact |
---|---|---|
Clemson University | Specialty Capsicum | Dr. Sandra Branham; sebranh@clemson.edu |
Clemson University | Brassica spp. greens | Dr. Sandra Branham; sebranh@clemson.edu |
Colorado State University | Specialty Capsicum | Michael Bartolo; michael.bartolo@colostate.edu |
Colorado State University | Specialty vegetables | Dr. Mark Uchanski; mark.uchanski@colostate.edu |
Cornell University | Specialty Capsicum | Dr. Michael Mazourek; mm284@cornell.edu |
Michigan State University | Fragaria spp. | Dr. Cholani Weebadde; weebadde@msu.edu |
Michigan State University | Stevia rebaudiana | Dr. Ryan Warner; warnerry@msu.edu |
New Mexico State University | Specialty Capsicum | Dr. Dennis Nicuh Lozada; dlozada@nmsu.edu |
North Carolina State University | Stevia rebaudiana | Dr. Todd Wehner; tcwehner@gmail.com |
North Carolina State University | Vaccinium spp. | Dr. Hamid Ashrafi; hamidashrafi@ncsu.edu |
Ohio State University | Specialty Capsicum | Dr. Leah McHale; mchale.21@osu.edu |
Oregon State University | Hazelnut | Dr. Shawn Mehlenbacher; shawn.mehlenbacher@oregonstate.edu |
Oregon State University | Mint, brambles | Dr. Kelly Vining; kelly.vining@oregonstate.edu |
Oregon State University | Specialty Capsicum | Dr. James Myers; james.myers@oregonstate.edu |
Purdue University | Brassica spp. greens | Dr. Jules Janick; janick@purdue.edu |
Rutgers University | Specialty Capsicum | Dr. James Simon; jimsimon@sebs.rutgers.edu |
Rutgers University | Specialty vegetables | Dr. James Simon; jimsimon@sebs.rutgers.edu |
Rutgers University | Vaccinium spp. | Dr. Nicholi Vorsa; vorsa@sebs.rutgers.edu |
Texas A&M University | Specialty Capsicum | Dr. Kevin Crosby; k-crosby@tamu.edu |
University of Arkansas | Leafy greens | Dr. Ainong Shi; ashi@uark.edu |
University of California Davis | Specialty Capsicum | Dr. Allen Van Deynze; avandeynze@ucdavis.edu |
University of California Davis | Fragaria spp. | Dr. Stephen Knapp; sjknapp@ucdavis.edu |
University of California Davis | Nut crops | Dr. Patrick Brown; pjbrown@ucdavis.edu |
University of California Davis | Nut crops | Dr. Thomas Gradziel; tmgradziel@ucdavis.edu |
University of California Davis | Nut crops | Dr. David Neale; dbneale@ucdavis.edu |
University of California Davis | Nut crops | Dr. Dan Parfitt; deparfitt@ucdavis.edu |
University of California Davis | Specialty vegetables | Dr. Lynn Epstein; lepstein@ucdavis.edu |
University of California Riverside | Specialty vegetables | Dr. Mikeal Roose; mikeal.roose@ucr.edu |
University of Florida | Bramble | Dr. Zhanao Deng; zdeng@ufl.edu |
University of Florida | Specialty Capsicum | Dr. Bala Rathinasabapathi; brath@ufl.edu |
University of Florida | Fragaria spp. | Dr. Seonghee Lee; seonghee105@ufl.edu |
University of Florida | Vaccinium spp. | Dr. Patricio Munoz; p.munoz@ufl.edu |
University of Florida | Vanilla planifolia | Dr. Alan Chambers; ac@ufl.edu |
University of Hawaii | Tropical fruits | Dr. Richard Manshardt; manshard@hawaii.edu |
University of Minnesota | Specialty vegetables | Dr. Tom Michaels; michaels@umn.edu |
University of Puerto Rico | Specialty Capsicum | Dr. Linda Wessel-Beaver; lindawessel.beaver@upr.edu |
University of Wisconsin | Organic produce | Dr. Julie Dawson; dawson@hort.wisc.edu |
University of Wisconsin | Specialty vegetables | Dr. Irwin Goldman; ilgoldma@wisc.edu |
University of Wisconsin | Vaccinium spp. | Dr. Juan Zapala; jezalapa@wisc.edu |
USDA/ARS | Specialty vegetables | Dr. Philipp Simon; philipp.simon@ars.usda.gov |
USDA/ARS | Solanaceae | Dr. John Bamberg; john.bamberg@ars.usda.gov |
USDA/ARS | Specialty Capsicum | Dr. John Stommel; john.stommel@usda.gov |
Genebank Location | Crops and Species | No. of Accessions | Crops and Species | No. of Accessions |
---|---|---|---|---|
Ames, IA, USA | Actaea | 43 | medicinals | 1084 |
Apiaceae | 2832 | mint | 170 | |
Brassica | 2019 | Ocimum | 106 | |
Calendula | 78 | Origanum | 21 | |
Cichorium | 285 | Pastinaca | 59 | |
Cucumis | 4943 | Perilla | 25 | |
Cuphea | 638 | Portulaca | 13 | |
Jerusalem artichoke | 53 | Potentilla | 105 | |
Lamiaceae | 178 | Prunella | 72 | |
Malvaceae | 3 | spinach | 413 | |
Corvallis, OR, USA | blue honeysuckle | 16 | pawpaw | 15 |
elderberry | 84 | quince | 161 | |
goji berry | 3 | Ribes | 429 | |
hazelnut | 504 | Rubus | 571 | |
hops | 2 | Fragaria | 1975 | |
medlar | 32 | Vaccinium | 641 | |
mint | 304 | wintergreen | 3 | |
mountain mint | 51 | |||
Davis, CA, USA | almond | 323 | olive | 142 |
apricot | 298 | persimmon | 69 | |
fig | 149 | pistachio | 185 | |
hardy kiwifruit | 39 | plum | 171 | |
kiwifruit | 92 | pomegranate | 179 | |
mulberry | 46 | walnut | 386 | |
Geneva, NY, USA | Allium | 784 | cabbage | 811 |
Apium | 159 | radish | 702 | |
asparagus | 29 | squash | 506 | |
Brassica | 3043 | tomatillo | 99 | |
Griffin, GA, USA | Bambara | 30 | peanut | 8208 |
Capsicum | 4829 | Cucurbitaceae | 1462 | |
eggplant | 490 | gourd | 655 | |
hibiscus | 473 | legume | 1177 | |
okra | 1734 | sesame | 1141 | |
Hilo, HI, USA | breadfruit | 57 | macademia | 24 |
carambola | 38 | papaya | 24 | |
guava | 44 | peach palm | 15 | |
litchi | 93 | pili nut | 5 | |
Longan | 18 | Rambutan | 44 | |
Miami, FL, USA | Acerola | 5 | Annona | 18 |
avocado | 156 | jackfruit | 10 | |
Caimito | 3 | litchi | 20 | |
Canistel | 12 | mango | 321 | |
Carambola | 12 | Sapodilla | 51 | |
coconut | 13 | tamarind | 6 | |
custard apple | 10 | white sapote | 3 | |
Jaboticaba | 7 | |||
Mayaguez, PR, USA | Cacao | 219 | Musa | 47 |
mamey sapote | 27 | |||
Pullman, WA, USA | Allium sativa | 131 | lentil | 3021 |
Allium wild | 211 | lupin | 790 | |
Astragalus | 813 | Medic | 4776 | |
fababean | 546 | rhubard | 70 | |
Lathyrus | 582 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orton, T.; Ayeni, A. Specialty Crop Germplasm and Public Breeding Efforts in the United States. Agronomy 2022, 12, 239. https://doi.org/10.3390/agronomy12020239
Orton T, Ayeni A. Specialty Crop Germplasm and Public Breeding Efforts in the United States. Agronomy. 2022; 12(2):239. https://doi.org/10.3390/agronomy12020239
Chicago/Turabian StyleOrton, Thomas, and Albert Ayeni. 2022. "Specialty Crop Germplasm and Public Breeding Efforts in the United States" Agronomy 12, no. 2: 239. https://doi.org/10.3390/agronomy12020239
APA StyleOrton, T., & Ayeni, A. (2022). Specialty Crop Germplasm and Public Breeding Efforts in the United States. Agronomy, 12(2), 239. https://doi.org/10.3390/agronomy12020239