Cultivar Mixture Enhances Crop Yield by Decreasing Aphids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Experimental Design
2.2. Aphid Abundance
2.3. Wheat Performance
2.4. Rust Disease Survey
2.5. Statistical Analysis
3. Results
3.1. Aphid Populations
3.2. Wheat Performance
3.3. Rust Disease Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adu-Gyamfi, P.; Mahmood, T.; Trethowan, R. Can wheat varietal mixtures buffer the impacts of water deficit? Crop Pasture Sci. 2015, 66, 757–769. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.Y.; Wang, L.Y.; Reddy, G.V.P.; Zhao, Z.H. Mild drought facilitates the increase in wheat aphid abundance by changing host metabolism. Ann. Entomol. Soc. Am. 2021, 114, 79–83. [Google Scholar] [CrossRef]
- Jin, F.; Wang, J.; Shao, H.; Jin, M.J. Pesticide use and residue control in China. J. Pestic. Sci. 2010, 35, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.L.; Zhang, F.X.; Liu, C.; Yu, H.; Cao, B.G.; Tian, S.Q.; Liao, Y.C.; Siddique, K.H.M. Wheat yield improvements in China: Past trends and future directions. Field Crops Res. 2015, 177, 117–124. [Google Scholar] [CrossRef]
- Robertson, G.P.; Swinton, S.M. Reconciling agricultural productivity and environmental integrity: A grand challenge for agriculture. Front. Ecol. Environ. 2005, 3, 38–46. [Google Scholar] [CrossRef]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Kelty, M.J. The role of species mixtures in plantation forestry. For. Ecol. Manag. 2006, 233, 195–204. [Google Scholar] [CrossRef]
- Grettenberger, I.M.; Tooker, J.F. Moving beyond resistance management toward an expanded role for seed mixtures in agriculture. Agric. Ecosyst. Environ. 2015, 208, 29–36. [Google Scholar] [CrossRef]
- Andow, D.A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 1991, 36, 561–586. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. Agron. Sustain. Dev. 2017, 37, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Chen, H.R.; Fan, J.H.; Wang, Y.Y.; Li, Y.; Chen, J.B.; Fan, J.X.; Yang, S.S.; Hu, L.P.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Mundt, C.C. Use of multiline cultivars and cultivar mixtures for disease management. Annu. Rev. Phytopathol. 2002, 40, 381–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Power, A.G. Leafhopper response to genetically diverse maize stands. Entomol. Exp. Appl. 1988, 49, 213–219. [Google Scholar] [CrossRef]
- Koricheva, J.; Hayes, D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta-analysis. Funct. Ecol. 2018, 32, 1704–1717. [Google Scholar] [CrossRef] [Green Version]
- Shoffner, A.V.; Tooker, J.F. The potential of genotypically diverse cultivar mixtures to moderate aphid populations in wheat (Triticum aestivum L.). Arthropod Plant Interact. 2013, 7, 33–43. [Google Scholar] [CrossRef]
- Walling, L.L. The myriad plant responses to herbivores. J. Plant Growth Regul. 2000, 19, 195–216. [Google Scholar] [CrossRef]
- Kaczmarek, S.; Matysiak, K. Wheat cultivars, their mixtures and reduced herbicide doses as a practical solution in integrated weed management. Rom. Agric. Res. 2017, 34, 363–370. [Google Scholar]
- Vidal, T.; Boixel, A.L.; Durand, B.; de Vallavieille-Pope, C.; Huber, L.; Saint-Jean, S. Reduction of fungal disease spread in cultivar mixtures: Impact of canopy architecture on rain-splash dispersal and on crop microclimate. Agric. For. Meteorol. 2017, 246, 154–161. [Google Scholar] [CrossRef]
- Genung, M.A.; Lessard, J.P.; Brown, C.B.; Bunn, W.A.; Cregger, M.A.; Reynolds, W.N.; Felker-Quinn, E.; Stevenson, M.L.; Hartley, A.S.; Crutsinger, G.M.; et al. Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors. PLoS ONE 2010, 5, e8711. [Google Scholar] [CrossRef]
- Qin, X.L.; Li, Y.Z.; Shi, C.X.; Song, D.P.; Wen, X.X.; Liao, Y.C.; Siddique, K.H.M. The number of cultivars in varietal winter-wheat mixtures influence aboveground biomass and grain yield in North China. Plant Soil 2019, 439, 131–143. [Google Scholar] [CrossRef]
- Jump, A.S.; Marchant, R.; Penuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009, 14, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Xu, B.C.; Liu, L.; Gu, Y.J.; Liu, Q.Q.; Turner, N.C.; Li, F.M. Does a mixture of old and modern winter wheat cultivars increase yield and water use efficiency in water-limited environments? Field Crops Res. 2014, 156, 12–21. [Google Scholar] [CrossRef]
- Borg, J.; Kiaer, L.P.; Lecarpentier, C.; Goldringer, I.; Gauffreteau, A.; Saint-Jean, S.; Barot, S.; Enjalbert, J. Unfolding the potential of wheat cultivar mixtures: A meta-analysis perspective and identification of knowledge gaps. Field Crops Res. 2018, 221, 298–313. [Google Scholar] [CrossRef]
- Dai, J.; Wiersma, J.J.; Nolen, D.L. Performance of hard red spring wheat cultivar mixtures. Agron. J. 2012, 104, 17–21. [Google Scholar] [CrossRef]
- Kiaer, L.P.; Skovgaard, I.M.; Ostergard, H. Grain yield increase in cereal variety mixtures: A meta-analysis of field trials. Field Crops Res. 2009, 114, 361–373. [Google Scholar] [CrossRef]
- Cox, C.M.; Garrett, K.A.; Bowden, R.L.; Fritz, A.K.; Dendy, S.P.; Heer, W.F. Cultivar mixtures for the simultaneous management of multiple diseases: Tan spot and leaf rust of wheat. Phytopathology 2004, 94, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Gigot, C.; de Vallavieille-Pope, C.; Huber, L.; Saint-Jean, S. Using virtual 3-D plant architecture to assess fungal pathogen splash dispersal in heterogeneous canopies: A case study with cultivar mixtures and a non-specialized disease causal agent. Ann. Bot. 2014, 114, 863–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.L.; Chu, B.Y.; Wang, C.C.; Li, L.F.; Zhou, Y.L.; Luo, Y.; Ma, Z.H. Spore concentrations of Blumeria graminis f. sp. tritici in relation to weather factors and disease development in Gansu, China. Can. J. Plant Pathol. 2020, 42, 52–61. [Google Scholar] [CrossRef]
- Power, A.G. Virus spread and vector dynamics in genetically diverse plant-populations. Ecology 1991, 72, 232–241. [Google Scholar] [CrossRef]
- Kessler, A.; Halitschke, R. Specificity and complexity: The impact of herbivore-induced plant responses on arthropod community structure. Curr. Opin. Plant Biol. 2007, 10, 409–414. [Google Scholar] [CrossRef]
- Ninkovic, V.; Olsson, U.; Pettersson, J. Mixing barley cultivars affects aphid host plant acceptance in field experiments. Entomol. Exp. Appl. 2002, 102, 177–182. [Google Scholar] [CrossRef]
- Ninkovic, V. Volatile communication between barley plants affects biomass allocation. J. Exp. Bot. 2003, 54, 1931–1939. [Google Scholar] [CrossRef] [Green Version]
- Glinwood, R.; Ahmed, E.; Qvarfordt, E.; Ninkovic, V.; Pettersson, J. Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod Plant Interact. 2009, 3, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Brabec, M.; Honek, A.; Pekar, S.; Martinkova, Z. Population dynamics of aphids on cereals: Digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE 2014, 9, e106228. [Google Scholar] [CrossRef]
- Archer, T.L.; Johnson, G.D.; Peairs, F.B.; Pike, K.S.; Kroening, M.K. Effect of plant phenology and climate on Russian wheat aphid (Homoptera: Aphididae) damage to winter wheat. Environ. Entomol. 1998, 27, 221–231. [Google Scholar] [CrossRef]
- Wall, G.W.; Kanemasu, E.T. Carbon dioxide exchange rates in wheat canopies. Part I. Influence of canopy geometry on trends in leaf-area index, light interception and instantaneous exchange-rates. Agric. For. Meteorol. 1990, 49, 81–102. [Google Scholar] [CrossRef]
- Mundt, C.C.; Brophy, L.S.; Schmitt, M.S. Disease severity and yield of pure-line wheat cultivars and mixtures in the presence of eyespot, yellow rust, and their combination. Plant Pathol. 1995, 44, 173–182. [Google Scholar] [CrossRef]
- Newton, A.C.; Ellis, R.P.; Hackett, C.A.; Guy, D.C. The effect of component number on Rhynchosporium secalis infection and yield in mixtures of winter barley cultivars. Plant Pathol. 1997, 46, 930–938. [Google Scholar] [CrossRef]
- Vera, C.L.; Fox, S.L.; DePauw, R.M.; Smith, M.A.H.; Wise, I.L.; Clarke, F.R.; Procunier, J.D.; Lukow, O.M. Relative performance of resistant wheat varietal blends and susceptible wheat cultivars exposed to wheat midge, Sitodiplosis mosellana (Gehin). Can. J. Plant Sci. 2013, 93, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cui, H.Y.; Chang, X.Y.; Zhu, M.M.; Zhao, Z.H. Increased nitrogen fertilization inhibits biocontrol activity promoted by the intercropping partner plant. Insect Sci. 2021, 28, 1179–1190. [Google Scholar] [CrossRef]
Treatment | Actual AUDPC (The Area under the Disease Progress Stairs) | Estimated AUDPC | Relative Control Efficacy (%) |
---|---|---|---|
Susceptible cultivar | 123.87 | ||
Resistant cultivar | 0.42 | 0 | |
Mixture of resistant and susceptible cultivar | 22.03 | 50.15 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.; Pan, S.; Fan, M.; Chu, B.; Ma, Z.; Gao, F.; Zhao, Z. Cultivar Mixture Enhances Crop Yield by Decreasing Aphids. Agronomy 2022, 12, 335. https://doi.org/10.3390/agronomy12020335
Duan X, Pan S, Fan M, Chu B, Ma Z, Gao F, Zhao Z. Cultivar Mixture Enhances Crop Yield by Decreasing Aphids. Agronomy. 2022; 12(2):335. https://doi.org/10.3390/agronomy12020335
Chicago/Turabian StyleDuan, Xueying, Shiye Pan, Mingyuan Fan, Bingyao Chu, Zhanhong Ma, Feng Gao, and Zihua Zhao. 2022. "Cultivar Mixture Enhances Crop Yield by Decreasing Aphids" Agronomy 12, no. 2: 335. https://doi.org/10.3390/agronomy12020335
APA StyleDuan, X., Pan, S., Fan, M., Chu, B., Ma, Z., Gao, F., & Zhao, Z. (2022). Cultivar Mixture Enhances Crop Yield by Decreasing Aphids. Agronomy, 12(2), 335. https://doi.org/10.3390/agronomy12020335