Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Basic Parameters of Soils
- −
- The contents of total organic carbon (TOC) and total nitrogen (TN).
- −
- pH—in the suspension of 1 M KCl;
- −
- The grain-size composition was determined applying the areometric method.
2.2.2. Extraction and Analyses of Humic Acids
2.2.3. Statistical Analysis
3. Results and Discussion
3.1. Basic Soil Parameters
3.2. Hydrophilic and Hydrophobic Nature of Humic Acids
3.3. Spectrometric Parameters of Humic Acids in the UV–VIS Range
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, S.L.; Zhang, J.; Dai, S.B.; Li, M.; Xu, X.J. Effect of deposition and erosion within the main river channel and large lakes on sediment delivery to the estuary of the Yangtze River. J. Geophys. Res. 2007, 112, F02005. [Google Scholar] [CrossRef] [Green Version]
- Heritage, G.; Entwistle, N. Impacts of River Engineering on River Channel Behaviour: Implications for Managing Downstream Flood Risk. Water 2020, 12, 1355. [Google Scholar] [CrossRef]
- Thonon, I.; Middelkoop, H.; van der Perk, M. The influence of floodplain morphology and river works on spatial patterns of overbank deposition. Neth. J. Geosci. 2007, 86, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Corenblit, D.; Steiger, J.; Gurnell, A.M.; Tabacchi, E.; Roques, L. Control of sediment dynamics by vegetation as a key function driving biogeomorphic succession within fluvial corridors. Earth Surf. Proc. Land. 2009, 34, 1790–1810. [Google Scholar] [CrossRef]
- Corenblit, D.; Steiger, J.; González, E.; Gurnell, A.M.; Charrier, G.; Darrozes, J.; Dousseau, J.; Julien, F.; Lambs, L.; Larrue, S.; et al. The biogeomorphological life cycle of poplars during the fluvial biogeomorphological succession: A special focus on Populus nigra L. Earth Surf. Proc. Land. 2014, 39, 546–567. [Google Scholar] [CrossRef]
- Mayer, S.; Kölbl, A.; Völkel, J.; Kögel-Knabner, I. Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma 2019, 337, 679–690. [Google Scholar] [CrossRef]
- Suchara, I.; Sucharová, J.; Holá, M. Changes in selected physico-chemical properties of flooding soils in three different land-use types after flooding. Plant Soil Environ. 2021, 67, 99–109. [Google Scholar] [CrossRef]
- Kordowski, J. The role of blocks of dead ice in the deposition of late glacial sediments in a large valley: A case study from the Vistula river valley in the Grudziądz Basin, north Poland. Geogr. Polon. 2013, 86, 341–361. (In Polish) [Google Scholar] [CrossRef]
- Saint-Laurent, D.; Lavoie, L.; Drouin, A.; St-Laurent, J.; Chaleb, B. Floodplain sedimentation rates, soil properties and recent flood history in southern Quebec. Glob. Planet Chang. 2010, 70, 76–91. [Google Scholar] [CrossRef]
- Wójcicki, K.J.; Marynowski, L. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the Kłodnica and Osobłoga river valleys, southern Poland. Geomorphology 2012, 159–160, 15–29. [Google Scholar] [CrossRef]
- Bätz, N.; Verrecchia, E.P.; Lane, S.N. Organic matter processing and soil evolution in a braided river system. Catena 2015, 126, 86–97. [Google Scholar] [CrossRef]
- Hoffmann, T.; Glatzel, S.; Dikau, R. A carbon storage perspective on alluvial sediment storage in the Rhine catchment. Geomorphology 2009, 108, 127–137. [Google Scholar] [CrossRef]
- Davies-Vollum, K.S.; Smith, N.D. Factors affecting the accumulation of organic rich deposits in a modern avulsive floodplain: Examples from the Cumberland Marshes, Saskatchewan, Canada. J. Sediments Res. 2008, 78, 683–692. [Google Scholar] [CrossRef]
- Marie, L.; Pernet-Coudrier, B.; Waeles, M.; Gabon, M.; Riso, R. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices. Sci. Total Environ. 2015, 537, 23–32. [Google Scholar] [CrossRef]
- Wendling, B.; Jucksch, I.; Mendonca, E.S.; Alvarenga, R.C. Organic-matter pools of soil under pines and annual cultures. Commun. Soil Sci. Plant Anal. 2010, 41, 1707–1722. [Google Scholar] [CrossRef]
- Rumpel, K.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; Silva, T.O.; Silva, T.L.; Dias, N.S.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till. Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Zech, W.; Senesi, N.; Guggenberger, G.; Kaiser, K.; Lehmann, J.; Miano, T.M.; Miltner, A.; Schroth, G. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 1997, 79, 117–161. [Google Scholar] [CrossRef]
- Lal, R. Soil C sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, A.I.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, A.C.D.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.H. Humic Matter in Soil and the Environment: Principles and Controversies; Dekker: New York, NY, USA, 2014. [Google Scholar]
- Lal, R. Soil Carbon Sequestration in Latin America. In Carbon Sequestration in Soils of Latin America; Lal, R., Cerri, C.C., Bernoux, M., Etcheves, J., Cerri, E., Eds.; Food Products Press: New York, NY, USA, 2006; pp. 49–64. [Google Scholar]
- Orsi, M. Molecular dynamics simulation of humic substances. Chem. Biol. Technol. Agric. 2014, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.; Chen, Y.; Jamroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B.; Clapp, C.E. Humic substances: Consideration of compositions, aspects of structure and environmental influences. Soil Sci. 2001, 166, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar] [CrossRef]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: New view. Environ. Sci. Technol. 2005, 39, 9009–9016. [Google Scholar] [CrossRef]
- Tejeda-Agredano, M.C.; Mayer, P.; Ortega-Calvo, J.J. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime. Environ. Pollut. 2014, 184, 435–442. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sumida, H. Effects of humic acids on the sorption and bioavailability of pyrene and 1,2-dihydroxynaphthalene. Soil Sci. Plant Nutr. 2015, 61, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Ćwieląg-Piasecka, I.; Medyńska-Juraszek, A.; Jerzykiewicz, M.; Dębicka, M.; Bekier, J.; Jamroz, E.; Kawałko, D. Humic acid and biochar as specific sorbents of pesticides. J. Soils Sediments 2018, 18, 2692–2702. [Google Scholar] [CrossRef] [Green Version]
- Fooken, U.; Liebezeit, G. An IR study of humic acids isolated from sediments and soils. Senck. Marit. 2003, 32, 183–189. [Google Scholar] [CrossRef]
- Gołębiowska, D.; Osuch, M.; Mielnik, L.; Bejger, R. Optical characteristics of humic acids from bottom sediments of lakes with different mictic types. EJPAU 2005, 8, 27. [Google Scholar]
- Rodríguez, F.J.; Schlenger, P.; García-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and H NMR techniques. Sci. Total Environ. 2016, 541, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Derrien, M.; Lee, Y.K.; Park, J.E.; Li, P.; Chen, M.; Lee, S.H.; Lee, S.H.; Lee, J.B.; Hur, J. Spectroscopic and molecular characterization of humic substances (HS) from soils and sediments in a watershed: Comparative study of HS chemical fractions and the origins. Environ. Sci. Pollut. Res. Int. 2017, 24, 16933–16945. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Jaffe, R.; Maie, N.; Tanoue, E. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr. 2008, 53, 1900–1908. [Google Scholar] [CrossRef] [Green Version]
- Canellas, L.P.; Piccolo, A.; Dobbss, L.B.; Spaccini, R.; Olivares, F.L.; Zandonadi, D.B.; Façanha, A.R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 2010, 78, 457–466. [Google Scholar] [CrossRef]
- Lanyi, K. Assessment of the relations between the spectroscopic characteristics of soils and their ability to adsorb organic pollutants. Microchem. J. 2010, 79, 249–256. [Google Scholar] [CrossRef]
- Kumada, K. Chemistry of Soil Organic Matter; Elsevier: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Chen, J.; Gu, B.; LeBoeuf, E.; Pan, H.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Morán Vieyra, F.E.; Palazzi, V.I.; Sanchez de Pinto, M.I.; Borsarelli, C.D. Combined UV-Vis absorbance and fluorescence properties of extracted humic substances-like for characterization of composting evolution of domestic solid wastes. Geoderma 2009, 151, 61–67. [Google Scholar] [CrossRef]
- Polak, J.; Bartoszek, M.; Żądło, M.; Kos, A.; Sułkowski, W.W. The spectroscopic studies of humic acid extracted from sediment collected at different seasons. Chemosphere 2011, 84, 1548–1555. [Google Scholar] [CrossRef]
- Woelki, G.; Friedrich, S.; Hanschmann, G.; Salzer, R. HPLC fractionation and structural dynamics of humic acids. Fresen. J. Anal. Chem. 1997, 357, 548–552. [Google Scholar] [CrossRef]
- Preuße, G.; Friedrich, S.; Salzer, R. Retention behavior of humic substances in reversed phase HPLC. Fresen. J. Anal. Chem. 2000, 368, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Dębska, B.; Drąg, M.; Banach-Szott, M. Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil. Soil Water Res. 2007, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Dębska, B.; Banach-Szott, M.; Dziamski, A.; Gonet, S.S. Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers. Chem. Ecol. 2010, 26, 49–57. [Google Scholar] [CrossRef]
- Dębska, B.; Drąg, M.; Tobiasova, E. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 2012, 21, 603–613. [Google Scholar]
- Daniels, J.M. Floodplain aggradation and pedogenesis in a semiarid environment. Geomorphology 2003, 56, 225–242. [Google Scholar] [CrossRef]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wierzowiecki, M. Sorptive properties of cultivated Fluvisols between Vistula river-bed and flood embankment from Unislaw Basin. Roczn. Glebozn. 2010, 61, 97–104. (In Polish) [Google Scholar]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of bio-fertilizer on the soil organic matter status and carbon sequestration—results from a fiel-scale study. J. Soil. Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef] [Green Version]
- Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Kobierski, M. Physicochemical properties of humic acids of Fluvisols from Unisław Basin. Roczn. Glebozn. 2010, 61, 123–127. (In Polish) [Google Scholar]
- Banach-Szott, M.; Kobierski, M.; Kondratowicz-Maciejewska, K. Humic substances in Fluvisols of the Lower Vistula floodplain, North Poland. Environ. Sci. Pollut. Res. 2018, 25, 23999–24002. [Google Scholar] [CrossRef]
- Rosa, E.; Dębska, B.; Banach-Szott, M.; Tobiasova, E. Use of HPLC, py-GCMS, FTiR methods in the studies of the composition of soil dissolved organic matter. Pol. J. Soil Sci. 2015, 48, 101–110. [Google Scholar] [CrossRef]
- Kobierski, M.; Kondratowicz-Maciejewska, K.; Banach-Szott, M.; Wojewódzki, P.; Peñas Castejón, J.M. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. J. Soils Sediments 2018, 18, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Simansky, V. Can soil properties of Fluvisols be influenced by river flow gradient? Acta Fytotechn. Zootechn. 2018, 21, 63–76. [Google Scholar] [CrossRef]
- Anger, D.A.; Bissonette, N.; Legere, A.; Samson, N. Microbial and biochemical changes induced by rotation and tillage in a soil under barley production. Can. J. Soil Sci. 1993, 73, 39–50. [Google Scholar] [CrossRef]
- Smreczak, B.; Ukalska-Jaruga, A. Dissolved organic matter in agricultural soils. Soil Sci. Ann. 2021, 72, 132234. [Google Scholar] [CrossRef]
- Watanabe, A.; Rumbanraja, J.; Tsutsuki, K.; Kimura, M. Humus composition of soils under forest, coffee and arable cultivation in hilly areas of south Sumatra, Indonesia. Eur. J. Soil Sci. 2001, 52, 599–606. [Google Scholar] [CrossRef]
- Drąg, M.; Dębska, B.; Dziamski, A. Properties of humic substances of forest and meadow soil in the area of the Wierzchlas Reserve. Humic Subst. Ecosyst. 2007, 7, 141–151. [Google Scholar]
- Becher, M.; Banach-Szott, M.; Godlewska, A. Organic matter properties of spent button mushroom substrate in the context of soil organic matter reproduction. Agronomy 2021, 11, 204. [Google Scholar] [CrossRef]
- Tinoco, P.; Almendros, G.; Gonzalez-Vila, F.J.; Sanz, J.; Gonzalez-Perez, J.A. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. J. Soils Sediments 2015, 15, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Filcheva, E.; Hristova, M.; Nikolova, P.; Popova, T.; Chakalov, K.; Savov, V. Quantitative and qualitative characterisation of humic products with spectral parameters. J. Soil Sediments 2018, 18, 2863–2867. [Google Scholar] [CrossRef]
- Albrecht, R.; Petit, J.L.; Terrom, G.; Périssol, C. Comparison between UV spectroscopy and Nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresour. Technol. 2011, 102, 4495–4500. [Google Scholar] [CrossRef]
Parameter | Riverbank Sediments (n = 10) | Fluvisols (n = 18) | p * | Arable Soils (n = 10) | Grassland Soils (n = 8) | p * |
---|---|---|---|---|---|---|
TOC (g kg−1) | 14.4 | 21.4 | 0.008 * | 16.1 | 28.1 | 0.0003 * |
TN (g kg−1) | 1.33 | 2.06 | 0.008 * | 1.6 | 26.3 | 0.004 * |
TOC/TN | 11.5 | 10.5 | 0.12 | 10.2 | 10.9 | 0.218 |
pH | 7.31 | 6.78 | 0.015 * | 6.86 | 6.67 | 0.52 |
Sand (%) | 82.3 | 35.9 | 0.0001 * | 38.4 | 32.9 | 0.53 |
Silt (%) | 12.0 | 44.9 | 0.0001 * | 43.9 | 46.1 | 0.74 |
Clay (%) | 5.7 | 19.2 | 0.0001 * | 17.7 | 21.0 | 0.20 |
DOC (g kg−1) | 0.62 | 0.84 | 0.36 | 0.55 | 1.20 | 0.01 * |
DON (mg kg−1) | 44.8 | 54.2 | 0.48 | 44.9 | 65.7 | 0.038 |
A2/4 | 7.02 | 7.73 | 0.01 * | 7.36 | 8.19 | 0.0009 * |
A2/6 | 34.0 | 45.7 | 0.0004 * | 41.5 | 50.8 | 0.0005 * |
A4/6 | 4.82 | 5.88 | 0.0002 * | 5.63 | 6.20 | 0.0007 * |
ΔAu465 (%) | 57.3 | 54.0 | 0.122 | 51.2 | 57.5 | 0.002 * |
Parameters | pH (1 M KCl) | TOC (g kg−1) | TN (g kg−1) | TOC/TN | DOC (g kg−1) | DON (mg kg−1) |
---|---|---|---|---|---|---|
Riverbank sediments (n = 10) | ||||||
Min. | 7.05 | 5.7 | 0.2 | 9.5 | 0.19 | 13.5 |
Max. | 7.43 | 37.2 | 3.9 | 14.3 | 1.68 | 121.0 |
Mean | 7.31 | 14.4 | 1.3 | 11.5 | 0.62 | 44.8 |
SD | 0.14 | 10.57 | 1.07 | 1.87 | 0.54 | 39.81 |
CV (%) | 1.9 | 73.4 | 82.3 | 16.3 | 87.1 | 88.9 |
Arable soils (n = 10) | ||||||
Min. | 5.52 | 12.2 | 1.2 | 9.1 | 0.34 | 33.6 |
Max. | 7.39 | 20.1 | 2.1 | 12.4 | 0.82 | 58.0 |
Mean | 6.86 | 16.1 | 1.6 | 10.2 | 0.55 | 44.9 |
SD | 0.56 | 3.00 | 0.35 | 0.99 | 0.17 | 8.41 |
CV (%) | 8.2 | 16.6 | 21.9 | 9.7 | 30.9 | 18.7 |
Grassland soils (n = 8) | ||||||
Min. | 5.71 | 21.9 | 1.9 | 9.50 | 0.75 | 43.7 |
Max. | 7.20 | 41.9 | 4.4 | 12.7 | 2.64 | 118.8 |
Mean | 6.67 | 28.1 | 2.64 | 10.9 | 1.20 | 65.7 |
SD | 0.57 | 6.45 | 0.85 | 1.17 | 0.65 | 26.20 |
CV (%) | 8.5 | 22.9 | 32.2 | 10.7 | 54.2 | 39.9 |
Parameters | DOC | ΔAu465 | HIL |
---|---|---|---|
Riverbank sediments (n = 10) | |||
TOC | 0.97 * | - | - |
DOC | - | - | - |
Clay | 0.70 * | - | |
Arable soils (n = 10) | |||
TOC | 0.95 * | - | - |
DOC | - | - | - |
Clay | - | - | 0.75 * |
Grassland soils (n = 8) | |||
TOC | 0.96 * | - | 0.86 * |
DOC | - | - | 0.78 * |
Clay | - | −0.82 * | - |
Parameters | A280 | A400 | A465 | A600 | A665 | A2/4 | A2/6 | A4/6 | ΔAu465 |
---|---|---|---|---|---|---|---|---|---|
Riverbank sediments (n = 10) | |||||||||
Min. | 3.40 | 1.03 | 0.460 | 0.132 | 0.081 | 6.45 | 25.5 | 3.88 | 48.2 |
Max. | 4.67 | 1.34 | 0.679 | 0.221 | 0.146 | 8.21 | 46.6 | 5.68 | 64.2 |
Mean | 3.91 | 1.21 | 0.561 | 0.177 | 0.118 | 7.02 | 34.0 | 4.82 | 57.3 |
SD | 0.36 | 0.11 | 0.07 | 0.03 | 0.02 | 0.55 | 6.09 | 0.59 | 4.56 |
CV (%) | 9.2 | 9.1 | 12.5 | 16.9 | 16.9 | 7.8 | 17.9 | 12.2 | 7.9 |
Arable soils (n = 10) | |||||||||
Min. | 3.09 | 0.073 | 0.373 | 0.111 | 0.061 | 6.68 | 35.3 | 5.17 | 47.1 |
Max. | 4.51 | 1.180 | 0.633 | 0.207 | 0.113 | 8.27 | 20.8 | 6.14 | 56.1 |
Mean | 3.99 | 0.961 | 0.545 | 0.178 | 0.098 | 7.36 | 41.5 | 5.63 | 51.2 |
SD | 0.41 | 0.318 | 0.070 | 0.028 | 0.015 | 0.492 | 4.95 | 0.31 | 2.93 |
CV (%) | 10.3 | 33.1 | 12.8 | 15.7 | 15.3 | 6.7 | 11.9 | 5.5 | 5.7 |
Grassland soils (n = 8) | |||||||||
Min. | 3.05 | 0.706 | 0.350 | 0.103 | 0.056 | 7.98 | 47.0 | 5.84 | 52.5 |
Max. | 3.94 | 0.970 | 0.489 | 0.152 | 0.081 | 8.73 | 54.8 | 6.59 | 64.8 |
Mean | 3.66 | 0.893 | 0.448 | 0.135 | 0.072 | 8.19 | 50.8 | 6.20 | 57.5 |
SD | 0.32 | 0.085 | 0.046 | 0.016 | 0.009 | 0.25 | 2.76 | 0.24 | 4.00 |
CV (%) | 8.7 | 9.5 | 10.3 | 11.8 | 12.5 | 3.0 | 5.4 | 3.9 | 6.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobierski, M.; Banach-Szott, M. Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River. Agronomy 2022, 12, 536. https://doi.org/10.3390/agronomy12020536
Kobierski M, Banach-Szott M. Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River. Agronomy. 2022; 12(2):536. https://doi.org/10.3390/agronomy12020536
Chicago/Turabian StyleKobierski, Mirosław, and Magdalena Banach-Szott. 2022. "Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River" Agronomy 12, no. 2: 536. https://doi.org/10.3390/agronomy12020536
APA StyleKobierski, M., & Banach-Szott, M. (2022). Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River. Agronomy, 12(2), 536. https://doi.org/10.3390/agronomy12020536