Effect of Harvest Date on Kernel Quality and Antioxidant Activity in su1 Sweet Corn Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiments
2.2. Sample Preparation for Biochemical Analysis
2.3. Determination of Kernel Moisture at Harvest
2.4. Determination of Sugars and Phytoglycogen
2.5. Determination of Total Phenols
2.6. Antioxidant Activity Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Kernel Moisture Change during Maturation
3.2. Kernel Sugars and Phytoglycogen Change during Maturation
3.3. Kernel Total Phenols and Antioxidant Activity Change during Maturation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyer, C.D.; Shannon, J.C. The use of endosperm genes for sweet corn improvement. Plant Breed. Rev. 1984, 1, 139–161. [Google Scholar]
- Tracy, W.F. Sweet corn. In Specialty Corns; Hallauer, A.R., Ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 155–198. [Google Scholar]
- Mishra, U.; Tyagi, S.; Gadag, R.; Elayaraja, K.; Pathak, H. Analysis of water soluble and insoluble polysaccharides in kernels of different corns (Zea mays L.). Curr. Sci. 2016, 111, 1522–1524. [Google Scholar] [CrossRef]
- Szymanek, M. Influence of sweet corn harvest date on kernels quality. Res. Agric. Eng. 2009, 55, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Rogers, B.; Stone, P.; Shaw, S.; Sorensen, I. Effect of sowing time on sweetcorn yield and quality. N. Z. J. Agric. Res. 2000, 30, 55–61. [Google Scholar]
- Marshall, S.W.; Tracy, W.F. Sweet corn. In Corn: Chemistry and Technology; White, P.J., Johnson, L.A., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2003; pp. 537–569. [Google Scholar]
- Varseveld, G.W.; Baggett, J.R. Cob corn freezing trials with high sugar sweet corn. Or. Veg. Digest. 1980, 29, 5–7. [Google Scholar]
- Azanza, F.; Bar-Zur, A.; Juvik, J.A. Variation in sweet corn kernel characteristics associated with stand establishment and eating quality. Euphytica 1996, 1, 7–18. [Google Scholar] [CrossRef]
- Hale, T.A.; Hassell, R.L.; Phillips, T.; Halpin, E. Taste panel perception of sweetness and sweetness acceptability compared to high pressure liquid chromatography analysis of sucrose and total sugars among three phenotypes (su, se and sh2) at varying maturities of fresh sweet corn. Horttechnology 2005, 15, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Wann, E.V.; Brown, G.B.; Hills, W.A. Genetic modification of sweet corn quality. J. Am. Soc. Hortic. Sci. 1971, 96, 441–444. [Google Scholar]
- Reyes, F.G.R.; Varseveld, G.W.; Kuhn, M.C. Sugar composition and flavor quality of high sugar (shrunken) and normal sweet corn. J. Food Sci. 1982, 47, 753–755. [Google Scholar] [CrossRef]
- Evensen, K.B.; Boyer, C.D. Carbohydrate composition and sensory quality of fresh and stored sweet corn. J. Am. Soc. Hortic. Sci. 1986, 111, 734–738. [Google Scholar]
- Creech, R.G. Genetic control of carbohydrate synthesis in maize endosperm. Genetics 1965, 52, 1175–1186. [Google Scholar] [CrossRef]
- Wong, A.D.; Juvik, J.A.; Breeden, D.C.; Swiader, J.M. Shrunken sweet corn yield and the chemical components of quality. J. Am. Soc. Hortic. Sci. 1994, 119, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Szymanek, M.; Tanaśa, W.; Kassarb, F.H. Kernel carbohydrates concentration in sugary-1, sugary enhanced and shrunken sweet corn kernels. Agric. Agric. Sci. Procedia 2015, 7, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Letrat, K.; Pulam, T. Breeding for increased Sweetnes in sweet corn. Int. J. Plant Breed. 2007, 1, 27–30. [Google Scholar]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479–3485. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Derito, C.M.; Liu, M.K.; He, X.J.; Dong, M.; Liu, R.H. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 2010, 58, 6621–6629. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Lee, C.Y.; Smith, N.; Schroeder, D.; Han, J.T. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the american diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Bajčan, D.; Tomáš, J.; Uhlířová, G.; Árvay, J.; Trebichalský, P.; Stanovič, R.; Šimanský, V. Antioxidant potential of spinach, peas and sweet corn in relation to freezing period. Czech J. Food Sci. 2013, 31, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Croatian Meteorological and Hydrological Service (DHMZ). Available online: https://klima.hr/razno/publikacije/agroklimatski_atlas_RH_1981_2020.pdf (accessed on 2 March 2022).
- Simla, S.K.; Lertrat, K.; Suriharn, B. Carbohydrate characters of six vegetable waxy corn varieties as affected by harvest time and storage duration. Asian J. Plant Sci. 2010, 9, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Hodge, J.E.; Hofreiter, B.T. Determination of reducing sugars and carbohydrates. In Methods in Carbohydrate Chemistry; Whistler, R.L., Wolfrom, M.L., Eds.; Academic Press: New York, NY, USA, 1962; pp. 380–394. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- SAS/ACCESS® 9.4 Interface to ADABAS: Reference; SAS Institute Inc.: Cary, NC, USA, 2013.
- Szymanek, M. Processing of Sweet Corn. In Trends in Vital Food and Control Engineering; Eissa, A.A., Ed.; InTech Europe: Rijeka, Croatia, 2012; pp. 85–98. [Google Scholar]
- Croatian Meteorological and Hydrological Service (DHMZ). Available online: https://meteo.hr/klima.php?section=klima_pracenje¶m=klel&Grad=osijek&Mjesec=07&Godina=2018 (accessed on 2 March 2022).
- Croatian Meteorological and Hydrological Service (DHMZ). Available online: https://meteo.hr/klima.php?section=klima_pracenje¶m=klel&Grad=osijek&Mjesec=07&Godina=2019 (accessed on 2 March 2022).
- Azanza, F.; Tadmor, Y.; Klein, B.P.; Rocheford, T.R.; Juvik, J.A. Quantitative trait loci influencing chemical and sensory characteristics of eating quality in sweet corn. Genome 1996, 39, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Sanchez, F.; Taylor, G. Reducing post-harvest losses and improving quality in sweet corn (Zea mays L.): Challenges andsolutions for less food waste and improved food security. Food Energy Secur. 2021, 10, e277. [Google Scholar] [CrossRef]
- Nemeskéri, E.; Molnár, K.; Rácz, C.; Dobos, A.C.; Helyes, L. Effect of water supply on spectral traits and their relationship with the productivity of sweet corns. Agronomy 2019, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Huang, L.; Deng, Y.; Chi, J.; Zhang, Y.; Wei, Z.; Zhang, M. Phenolic content and antioxidant activity of eight representative sweet corn varieties grown in South China. Int. J. Food Prop. 2017, 20, 3043–3055. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, J.; Zhang, S.; Xiao, W.; Guan, C.; Wang, G.; Wang, Y. Changes in the phenolic compound content and antioxidant activity in developmental maize kernels and expression profiles of phenolic biosynthesis-related genes. J. Cereal Sci. 2020, 96, 103113. [Google Scholar] [CrossRef]
- Špoljarić Marković, S.; Ledenčan, T.; Viljevac Vuletić, M.; Galić, V.; Jambrović, A.; Zdunić, Z.; Šimić, D.; Svečnjak, Z. Chemical components of kernel quality in sh2 sweet corn genotypes (Zea mays L. saccharata Sturt.) as affected by harvest date. J. Cent. Eur. Agric. 2020, 21, 577–588. [Google Scholar]
- Hu, X.; Liu, H.; Yu, Y.; Li, G.; Qi, X.; Li, Y.; Li, T.; Guo, X.; Liu, R.H. Accumulation of phenolics, antioxidant and antiproliferative activity of sweet corn (Zea mays L.) during kernel maturation. Int. J. Food Sci. Technol. 2021, 56, 2462–2470. [Google Scholar] [CrossRef]
- Gupta, D. Methods for determination of antioxidant capacity. A review. Int. J. Pharm. Sci. Res. 2015, 6, 546–566. [Google Scholar]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 127, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khampas, S.; Lertrat, K.; Lomthaisong, K.; Suriharn, B. Variability in phytochemicals and antioxidant activity in corn at immaturity and physiological maturity stages. Int. Food Res. J. 2013, 20, 3149–3157. [Google Scholar]
- Kim, J.T.; Chung, I.M.; Kim, M.J.; Lee, J.S.; Son, B.Y.; Bae, H.H.; Go, Y.S.; Kim, S.L.; Baek, S.B.; Kim, S.H.; et al. Comparison of antioxidant activity assays in fresh purple waxy corn (Zea mays L.) during grain filling. Appl. Biol. Chem. 2022, 65, 1. [Google Scholar] [CrossRef]
- Song, J.; Liu, C.; Li, D.; Meng, L. Effect of cooking methods on total phenolic and carotenoid amounts and DPPH radical scavenging activity of fresh and frozen sweet corn (Zea mays) kernels. Czech J. Food Sci. 2013, 31, 607–612. [Google Scholar] [CrossRef] [Green Version]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
Month | Precipitation (mm) | Temperature (°C) | ||||
---|---|---|---|---|---|---|
2018 | 2019 | LTA | 2018 | 2019 | LTA | |
April | 21 | 69 | 51 | 17.0 | 12.8 | 12.3 |
May | 27 | 151 | 74 | 20.6 | 14.0 | 17.0 |
June | 127 | 131 | 82 | 21.7 | 23.1 | 20.6 |
July | 132 | 57 | 64 | 22.5 | 22.6 | 22.3 |
Total precipitation | 307 | 408 | 271 | |||
Average temperature | 20.4 | 18.3 | 18.1 |
Year | DAP | OS 254su | OS 255su | OS 256su | OS 247su | OS 230su |
---|---|---|---|---|---|---|
17 | 78.3 ± 0.1 aAB | 79.2 ± 0.9 aA | 78.6 ± 0.9 aAB | 77.5 ± 0.4 aB | 77.7 ± 0.3 aB | |
19 | 74.0 ± 0.4 bC | 78.6 ± 0.6 aA | 76.0 ± 0.6 bB | 75.3 ± 0.8 bBC | 74.3 ± 0.8 bC | |
2018 | 21 | 73.3 ± 0.2 bcB | 76.2 ± 0.7 bA | 74.7 ± 0.7 bAB | 72.7 ± 0.1 cC | 73.1 ± 0.2 bBC |
23 | 71.9 ± 0.4 cBC | 75.1 ± 0.7 bA | 72.5 ± 0.7 cB | 70.9 ± 0.4 dC | 69.7 ± 0.4 cC | |
25 | 69.3 ± 0.9 dBC | 72.6 ± 0.5 cA | 70.2 ± 0.5 dB | 68.6 ± 0.9 eC | 68.6 ± 0.6 cC | |
17 | 78.8 ± 0.2 aB | 81.0 ± 0.3 aA | 78.9 ± 0.7 aB | 78.7 ± 0.0 aB | 78.3 ± 0.0 aB | |
19 | 75.2 ± 0.2 bBC | 78.4 ± 0.9 bA | 76.5 ± 0.2 bB | 74.5 ± 0.1 bC | 75.1 ± 0.7 bBC | |
2019 | 21 | 73.5 ± 1.3 cB | 75.2 ± 0.1 bA | 74.8 ± 0.6 cAB | 71.9 ± 0.6 cC | 71.8 ± 0.4 cC |
23 | 70.9 ± 0.0 dB | 72.8 ± 0.3 cA | 71.5 ± 0.3 dAB | 69.7 ± 0.7 dBC | 68.4 ± 0.2 dC | |
25 | 69.3 ± 0.8 eB | 71.2 ± 0.7 dA | 69.6 ± 0.8 eB | 64.2 ± 0.9 eD | 67.0 ± 0.7 eC |
Year | DAP | OS 254su | OS 255su | OS 256su | OS 247su | OS 230su |
---|---|---|---|---|---|---|
17 | 18.9 ± 1.3 aB | 21.3 ± 2.5 aA | 16.5 ± 1.9 aC | 18.2 ± 1.1 aB | 20.0 ± 1.4 aAB | |
19 | 18.7 ± 0.2 aA | 15.9 ± 0.4 bB | 14.3 ± 1.8 bB | 15.1 ± 0.7 bB | 18.6 ± 0.0 aA | |
2018 | 21 | 15.3 ± 1.7 bBC | 15.6 ± 1.0 bB | 13.6 ± 0.4 bC | 12.2 ± 0.1 cC | 18.4 ± 0.2 aA |
23 | 13.1 ± 0.0 cB | 12.1 ± 0.6 cB | 13.5 ± 2.4 bB | 10.2 ± 0.3 dC | 16.4 ± 0.1 bA | |
25 | 11.2 ± 0.3 dB | 11.8 ± 0.0 cB | 11.1 ± 0.9 cB | 7.5 ± 3.4 eC | 14.5 ± 0.7 cA | |
17 | 24.5 ± 0.6 aB | 28.7 ± 1.7 A | 25.3 ± 0.0 B | 20.4 ± 0.3 C | 18.8 ± 1.7 C | |
19 | 20.4 ± 0.1 bA | 19.5 ± 1.2 A | 19.9 ± 0.1 A | 15.3 ± 3.2 B | 15.4 ± 1.8 B | |
2019 | 21 | 18.9 ± 2.4 bA | 17.9 ± 1.2 AB | 16.8 ± 0.4 B | 13.9 ± 2.0 C | 12.0 ± 0.9 D |
23 | 14.6 ± 1.1 cA | 13.0 ± 2.5 A | 13.1 ± 2.3 A | 12.8 ± 0.1 B | 11.1 ± 0.7 B | |
25 | 11.5 ± 0.8 dA | 9.4 ± 0.4 B | 10.8 ± 0.3 A | 9.6 ± 0.8 B | 7.6 ± 0.6 C |
Year | DAP | OS 254su | OS 255su | OS 256su | OS 247su | OS 230su |
---|---|---|---|---|---|---|
17 | 16.4 ± 0.6 a | 15.5 ± 1.0 a | 17.4 ± 0.8 a | 10.1 ± 1.2 a | 16.0 ± 0.6 a | |
19 | 18.5 ± 0.1 b | 19.7 ± 0.2 b | 20.3 ± 0.7 b | 20.0 ± 0.3 b | 18.2 ± 0.5 b | |
2018 | 21 | 19.9 ± 0.7 b | 19.8 ± 0.4 b | 20.6 ± 0.2 b | 21.1 ± 0.1 b | 18.7 ± 0.1 b |
23 | 22.8 ± 0.1 c | 23.2 ± 0.2 cb | 22.6 ± 1.0 c | 23.9 ± 0.4 c | 21.5 ± 0.1 c | |
25 | 23.5 ± 0.1 c | 23.3 ± 0.1 c | 23.6 ± 0.4 c | 25.0 ± 1.4 c | 22.2 ± 0.3 c | |
17 | 14.2 ± 0.3 a | 12.5 ± 0.7 a | 13.9 ± 0.0 a | 15.8 ± 0.1 a | 16.5 ± 0.7 a | |
19 | 17.8 ± 0.0 b | 18.2 ± 0.5 b | 18.0 ± 0.1 b | 19.9 ± 1.3 b | 19.8 ± 0.8 b | |
2019 | 21 | 18.5 ± 1.0 b | 18.9 ± 0.5 b | 19.3 ± 0.2 b | 20.5 ± 0.8 b | 21.2 ± 0.4 b |
23 | 22.3 ± 0.5 c | 22.8 ± 1.0 c | 22.8 ± 0.9 c | 23.0 ± 0.1 c | 23.6 ± 0.3 c | |
25 | 23.4 ± 0.4 c | 24.3 ± 0.2 c | 23.7 ±0.1 c | 24.2 ± 0.3 c | 25.0 ± 0.3 d |
Year | DAP | OS 254su | OS 255su | OS 256su | OS 247su | OS 230su |
---|---|---|---|---|---|---|
17 | 254 ± 37 aB | 204 ± 37 aC | 238 ± 32 aB | 252 ± 2 aB | 291 ± 17 aA | |
19 | 255 ± 2 aA | 167 ± 1 bC | 241 ± 8 aB | 241 ± 25 aB | 286 ± 24 aA | |
2018 | 21 | 219 ± 31 bB | 181 ± 12 abC | 222 ± 3 aB | 246 ± 13 aB | 288 ± 25 aA |
23 | 220 ± 31 bB | 180 ± 33 abB | 238 ± 1 aA | 235 ± 32 aA | 257 ± 33 bA | |
25 | 244 ± 6 abA | 159 ± 12 bC | 220 ± 6 aB | 245 ± 57 aA | 258 ± 16 bA | |
17 | 278 ± 0 aB | 223 ± 19 aC | 331 ± 27 aA | 283 ± 13 aB | 357 ± 9 aA | |
19 | 250 ± 13 abB | 186 ± 28 bC | 300 ± 9 bA | 249 ± 0 bB | 285 ± 0 bA | |
2019 | 21 | 252 ± 22 abA | 184 ± 3 bB | 277 ± 4 bA | 243 ± 7 bA | 272 ± 18 bA |
23 | 245 ± 23 bB | 173 ± 14 bC | 234 ± 14 cB | 230 ± 0 Bb | 282 ± 1 bA | |
25 | 229 ± 4 bB | 178 ± 2 bC | 246 ± 0 cB | 229 ± 0 bB | 286 ± 9 bA |
Year | DAP | OS 254su | OS 255su | OS 256su | OS 247su | OS 230su |
---|---|---|---|---|---|---|
17 | 64.8 ± 21.9 aB | 73.8 ± 13.2 bA | 74.9 ± 11.6 aA | 68.1 ± 26.0 aB | 52.5 ± 26.6 aC | |
19 | 64.1 ± 19.7 aB | 67.5 ± 10.1 aAB | 70.1 ± 5.0 aA | 69.2 ± 15.0 aAB | 66.2 ± 20.7 bAB | |
2018 | 21 | 78.2 ± 13.7 bB | 86.5 ± 14.2 cA | 74.8 ± 2.0 aB | 66.4 ± 14.5 bC | 69.3 ± 4.8 bC |
23 | 70.2 ± 14.6 abB | 76.3 ± 19.2 bA | 80.0 ± 6.5 bA | 74.7 ± 25.3 bAB | 67.8 ± 4.3 bB | |
25 | 79.7 ± 23.4 bA | 84.2 ± 6.1 cA | 80.7 ± 22.6 bA | 77.9 ± 26.6 bB | 68.2 ± 21.3 bC | |
17 | 55.9 ± 6.4 aC | 72.1 ± 15.6 aA | 62.8 ± 11.6 aB | 68.8 ± 12.4 aAB | 58.3 ± 5.3 aBC | |
19 | 71.6 ± 6.3 bB | 80.5 ± 1.9 bA | 67.7 ± 13.7 aB | 78.0 ± 4.1 bA | 69.8 ± 9.0 bB | |
2019 | 21 | 78.5 ± 2.7 bcAB | 83.1 ± 0.3 bA | 75.5 ± 2.7 bB | 78.7 ± 0.4 bAB | 74.4 ± 6.6 bcB |
23 | 82.9 ± 1.5 cA | 82.8 ± 1.3 bA | 74.2 ± 7.5 bB | 81.3 ± 1.4 bA | 83.9 ± 3.5 cA | |
25 | 83.6 ± 1.7 cAB | 81.3 ± 6.5 bAB | 78.2 ± 10.9 bB | 80.9 ± 0.1 bB | 87.1 ± 1.6 cA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledenčan, T.; Horvat, D.; Špoljarić Marković, S.; Svečnjak, Z.; Jambrović, A.; Šimić, D. Effect of Harvest Date on Kernel Quality and Antioxidant Activity in su1 Sweet Corn Genotypes. Agronomy 2022, 12, 1224. https://doi.org/10.3390/agronomy12051224
Ledenčan T, Horvat D, Špoljarić Marković S, Svečnjak Z, Jambrović A, Šimić D. Effect of Harvest Date on Kernel Quality and Antioxidant Activity in su1 Sweet Corn Genotypes. Agronomy. 2022; 12(5):1224. https://doi.org/10.3390/agronomy12051224
Chicago/Turabian StyleLedenčan, Tatjana, Daniela Horvat, Sanja Špoljarić Marković, Zlatko Svečnjak, Antun Jambrović, and Domagoj Šimić. 2022. "Effect of Harvest Date on Kernel Quality and Antioxidant Activity in su1 Sweet Corn Genotypes" Agronomy 12, no. 5: 1224. https://doi.org/10.3390/agronomy12051224
APA StyleLedenčan, T., Horvat, D., Špoljarić Marković, S., Svečnjak, Z., Jambrović, A., & Šimić, D. (2022). Effect of Harvest Date on Kernel Quality and Antioxidant Activity in su1 Sweet Corn Genotypes. Agronomy, 12(5), 1224. https://doi.org/10.3390/agronomy12051224