Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Locations
2.2. Experimental Design
2.3. Fertilizer Applications
2.4. Insecticide Programs and Applications
2.5. Soil Nutrient Assessments
2.6. Thrips Density Assessments
2.7. Bulb Size, Yield, and Bulb Rot Assessments
2.8. Statistical Analyses
3. Results
3.1. Thrips Densities
3.2. Insecticide Application Frequency
3.3. Marketable Bulb Yield
3.4. Bacterial Bulb Rot
4. Discussion
4.1. Thrips Densities
4.2. Bulb Rot Incidence
4.3. Bulb Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA National Agricultural Statistics Service (NASS). Statistics by Subject: National Statistics for Onion. Available online: https://www.nass.usda.gov/Statistics_by_Subject/result.php?F68BE147-6498-37BC-A9A5-9D7EFB926592§or=CROPS&group=VEGETABLES&comm=ONIONS (accessed on 2 April 2022).
- Wilson, B.D.; Townsend, G.R. Some nitrogen relationships in muck soils. Cornell Univ. Agric. Exp. Stn. Bull. 1931, 137, 3–5. [Google Scholar]
- Haynes, R. Mineral Nitrogen in the Plant-Soil System, 1st ed.; Elsevier Science: Burlington, MA, USA, 2012; pp. 166–241. [Google Scholar] [CrossRef]
- Alyokhin, A.; Nault, B.; Brown, B. Soil conservation practices for insect pest management in highly disturbed agroecosystems—A review. Entomol. Exper. Appl. 2019, 168, 7–27. [Google Scholar] [CrossRef]
- Diaz-Montano, J.; Fuchs, M.; Nault, B.A.; Shelton, A.M. Evaluation of onion cultivars for resistance to onion thrips (Thysanoptera: Thripidae) and Iris yellow spot virus. J. Econ. Entomol. 2010, 103, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.K.; Garg, H.; Gill, A.K.; Gillett-Kaufman, J.L.; Nault, B.A. Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J. Integr. Pest Manag. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fournier, F.; Boivin, G.; Stewart, R. Effect of Thrips tabaci Thysanoptera: Thripidae on yellow onion yields and economic thresholds for its management. J. Econ. Entomol. 1995, 88, 1401–1407. [Google Scholar] [CrossRef]
- Rueda, A.; Badenes-Perez, F.R.; Shelton, A.M. Developing economic thresholds for onion thrips in Honduras. Crop Prot. 2007, 26, 1099–1107. [Google Scholar] [CrossRef]
- Leach, A.; Reiners, S.; Fuchs, M.; Nault, B.A. Evaluating integrated pest management tactics for onion thrips and pathogens they transmit to onion. Agric. Ecosyst. Environ. 2017, 250, 89–101. [Google Scholar] [CrossRef]
- Dutta, B.; Barman, A.K.; Srinivasan, R.; Avci, U.; Ullman, D.E.; Langston, D.B.; Gitaitis, R.D. Transmission of Pantoea ananatis and P. agglomerans, causal agents of center rot of onion (Allium cepa), by onion thrips (Thrips tabaci) through feces. Phytopathology 2014, 104, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Leach, A.B.; Hay, F.; Harding, R.S.; Damann, K.C.; Nault, B.A. Relationship between onion thrips (Thrips tabaci) and Stemphylium versicarium in the development of Stemphylium leaf blight in onion. Ann. Appl. Biol. 2020, 176, 55–64. [Google Scholar] [CrossRef]
- Nault, B.A.; Huseth, A.S. Evaluating an action-threshold based insecticide program on onion cultivars varying in resistance to onion thrips Thysanoptera: Thripidae. J. Econ. Entomol. 2016, 1094, 1772–1778. [Google Scholar] [CrossRef]
- Shelton, A.M.; Nault, B.A.; Plate, J.; Zhao, J.Z. Regional and temporal variation in susceptibility to lambda-cyhalothrin in onion thrips, Thrips tabaci Thysanoptera: Thripidae, in onion fields in New York. J. Econ. Entomol. 2003, 96, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Shelton, A.M.; Zhao, J.Z.; Nault, B.A.; Plate, J.; Musser, F.R.; Larentzaki, E. Patterns of insecticide resistance in onion thrips (Thysanoptera: Thripidae) in onion fields in New York. J. Econ. Entomol. 2006, 99, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.K.M.; Scott-Dupree, C.D.; Tolman, J.H.; Harris, C.R. Resistance of Thrips tabaci to pyrethroid and organophosphate insecticides in Ontario, Canada. Pest Manag. Sci. 2005, 61, 809–815. [Google Scholar] [CrossRef]
- Nault, B.A.; Shelton, A.M. Impact of insecticide efficacy on developing action thresholds for pest management: A case study of onion thrips (Thysanoptera: Thripidae) on onion. J. Econ. Entomol. 2010, 103, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Nault, B.A.; Shelton, A.M. Battling onion thrips using insecticides. Cornell Cooperative Extension, Cornell Vegetable Program. VegEdge 2010, 6, 15–17. [Google Scholar]
- Werling, B.; Szendrei, Z. Recipe for a Cost-Effective Onion Thrips Control Program. Michigan State University Extension. Available online: http://vegetable.ent.msu.edu/wp-content/uploads/2015_Onion-thrips-control-factsheet-3-1.pdf (accessed on 2 April 2022).
- Leach, A.B.; Hoepting, C.A.; Nault, B.A. Grower adoption of insecticide resistance management practices increase with extension-based program. Pest Manag. Sci. 2019, 75, 515–526. [Google Scholar] [CrossRef]
- Schwartz, H.F.; Mohan, S.K. Compendium of Onion and Garlic Diseases and Pests, 2nd ed.; American Phytopathological Society: St. Paul, MN, USA, 2008; pp. 55–69. [Google Scholar]
- Beer, S.; Zaid, A.; Bonasera, J. Studies of bacterial problems of onion in New York. In Proceedings of the 2010 Empire Sate Fruit and Vegetable Expo, Syracuse, NY, USA, 27 January 2010. [Google Scholar]
- Zaid, A.M.; Bonasera, J.M.; Beer, S.V. First report of Enterobacter bulb decay of onions caused by Enterobacter cloacae in New York. Plant Dis. 2011. [Google Scholar] [CrossRef] [PubMed]
- Bonasera, J.M.; Asselin, J.E.; Beer, S.V. Lactic acid bacteria cause a leaf blight and bulb decay of onion (Allium cepa). Plant Dis. 2017, 101, 29–33. [Google Scholar] [CrossRef] [Green Version]
- Leach, A.; Reiners, S.; Nault, B. Challenges in integrated pest management: A case study of onion thrips and bacterial bulb rot in onion. Crop Prot. 2020, 133, 105123. [Google Scholar] [CrossRef]
- Pfeufer, E.E.; Gugino, B.K. Environmental and management factors associated with bacterial diseases of onion in Pennsylvania. Plant Dis. 2018, 102, 2205–2211. [Google Scholar] [CrossRef] [Green Version]
- Asselin, J.E.; Eikemo, H.; Perminow, J.; Nordskog, B.; Brurberg, M.B.; Beer, S.V. Rahnella spp. are commonly isolated from onion (Allium cepa) bulbs and are weakly pathogenic. J. Appl. Microbiol. 2019, 127, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Buckland, K.; Reeve, J.R.; Alston, D.; Nischwitz, C.; Drost, D. Effects of nitrogen fertility and crop rotation on onion growth and yield, thrips densities, Iris yellow spot virus and soil properties. Agric. Ecosys. Environ. 2013, 177, 63–74. [Google Scholar] [CrossRef]
- Malik, M.F.; Nawaz, M.; Ellington, J.; Sanderson, R.; El-Heneidy, A.H. Effect of different nitrogen regimes on onion thrips, Thrips tabaci Lindeman, on onions, Allium cepa L. Southwest. Entomol. 2009, 34, 219–225. [Google Scholar] [CrossRef]
- Wright, P.J. Effects of nitrogen fertilizer, plant maturity at lifting, and water during field-curing on the incidence of bacterial soft rot of onions in store. N. Z. J. Crop Hortic. Sci. 1993, 21, 377–381. [Google Scholar] [CrossRef]
- Diaz-Perez, J.C.; Purvis, A.C.; Paulk, J.T. Bolting, yield, and bulb decay of sweet onion as affected by nitrogen fertilization. J. Am. Soc. Hortic. Sci. 2003, 128, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Natural Resources Conservation Service (NRCS) Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/ (accessed on 2 April 2022).
- Nault, B.A.; Hsu, C.; Hoepting, C. Consequences of co-applying insecticides and fungicides for managing Thrips tabaci (Thysanoptera: Thripidae) on onion. Pest Manag. Sci. 2013, 69, 841–849. [Google Scholar] [CrossRef]
- Hoepting, C.; Nault, B. Cornell guidelines for onion thrips management in onion. Cornell Cooperative Extension, Cornell Vegetable Program. VegEdge 2019, 15, 8–9. [Google Scholar]
- USDA United States Standards for Grades of Onions (Other Than Bermuda Granex-Grano and Creole Type). Available online: https://www.ams.usda.gov/grades-standards/onions-other-bermuda-granex-grano-and-creole-type-grades-and-standards (accessed on 2 April 2022).
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Van Willigen, B.; Ranke, J. nlme: Linear and Nonlinear Mixed Effects Models. R Package. Version 3.1-111. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 18 February 2022).
- Batal, K.M.; Bondari, K.; Granberry, D.M.; Mullinix, B.G. Effects of source, rate, and frequency of N application on yield, marketable grades and rot incidence of sweet onion (Allium cepa L. cv. Granex-33). J. Hortic. Sci. 1994, 69, 1043–1051. [Google Scholar] [CrossRef]
- Gonzalez, M.Q.; Pellerin, A.; Parent, L.E. Onion response to added N in histosols of contrasting C and N contents. Am. J. Plant Sci. 2016, 7, 469–478. [Google Scholar] [CrossRef] [Green Version]
Thrips Densities | Bulb Yield | Bulb Rot | |||||
---|---|---|---|---|---|---|---|
Year | Effect | df | F 1 | df | F 1 | df | F 1 |
2019 | |||||||
Fertilizer rate | 2, 39 | 2.19 | 2, 83 | 0.52 | 2, 39 | 0.24 | |
Insecticide program | 1, 39 | 31.21 *** | 1, 83 | 3.02 † | 1, 39 | 0.73 | |
Fertilizer × Insecticide | 2, 39 | 0.98 | 2, 83 | 0.41 | 2, 39 | 0.22 | |
2020 | |||||||
Fertilizer rate | 2, 83 | 0.58 | 2, 83 | 1.36 | 2, 83 | 0.43 | |
Insecticide program | 1, 83 | 24.72 *** | 1, 83 | 0.03 | 1, 83 | 2.30 | |
Fertilizer × Insecticide | 2, 83 | 0.52 | 2, 83 | 1.01 | 2, 83 | 0.03 | |
2021 | |||||||
Fertilizer rate | 2, 83 | 0.54 | 2, 83 | 2.02 | 2, 83 | 0.59 | |
Insecticide program | 1, 83 | 38.16 *** | 1, 83 | 0.90 | 1, 83 | 0.25 | |
Fertilizer × Insecticide | 2, 83 | 0.02 | 2, 83 | 1.14 | 2, 83 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Regan, K.H.; Nault, B.A. Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems. Agronomy 2022, 12, 1292. https://doi.org/10.3390/agronomy12061292
Regan KH, Nault BA. Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems. Agronomy. 2022; 12(6):1292. https://doi.org/10.3390/agronomy12061292
Chicago/Turabian StyleRegan, Karly H., and Brian A. Nault. 2022. "Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems" Agronomy 12, no. 6: 1292. https://doi.org/10.3390/agronomy12061292
APA StyleRegan, K. H., & Nault, B. A. (2022). Impact of Reducing Synthetic Chemical Inputs on Pest and Disease Management in Commercial Onion Production Systems. Agronomy, 12(6), 1292. https://doi.org/10.3390/agronomy12061292