Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Description and Soil Sample Collection
2.2. Determination of Soil Physiochemical Properties and Plant Growth
2.3. 16 SrRNA High-Throughput Sequencing
2.4. Data Analysis
2.5. Accession Numbers
3. Results
3.1. Quantity of the Microorganism Diversity in Root Zone Soil
3.2. Taxonomic Distribution of Bacteria under Silicon Fertilizer and Microbial Agent Treatments
3.3. LEfSe Analysis of Bacteria under Silicon Fertilizer and Microbial Agent Treatments
3.4. The Lily Status Analysis and the Specific Bacterial Groups under Silicon Fertilizer and Microbial Agent Treatments
3.5. Links between Bacterial Community and the Soil’s Physicochemical Properties
4. Discussion
4.1. Bacterial Diversity and Some Special Bacterial Groups Related to Soil Health
4.2. Relationship between Soil Bacteria and Soil Environment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, L.P.; Shi, G.H.; Yu, Y.L.; Li, M.Q.; Su, G.L.; Jia, X.X. Alleviating obstacles of continuous cropping in Lanzhou lily by soil fumigation combined with microbial fertilizer. J. Desert Res. 2020, 40, 169–179. (In Chinese) [Google Scholar]
- Huang, K.; Jiang, Q.P.; Liu, L.H.; Zhang, S.T.; Liu, C.L.; Chen, H.T.; Ding, W.; Zhang, Y.Q. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes. Amb. Express 2020, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Li, G.; Huang, S.J.; Zhang, C.; Tian, W.; Tian, R.; Wang, L.; Xi, Y.G. Effect of Bacillus subtilis microbial fertilizer on root-zone soil microbial ecology of organic Chinese watermelon. Microbiol. China 2019, 46, 563–576. (In Chinese) [Google Scholar]
- Chung, Y.S.; Kim, K.S.; Hamayun, M.; Kim, Y. Silicon confers soybean resistance to salinity stress through regulation of reactive oxygen and reactive nitrogen species. Front Plant Sci. 2019, 10, 1725. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.W.; Kim, Y.; Khan, A.L.; Na, C.I.; Lee, I.J. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. Bmc Plant Biol. 2018, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.; Na, C.I.; Kim, Y. Effect of silicon fertilizer treatment on nodule formation and yield in soybean (Glycine max L.). Eur. J. Agron. 2021, 122, 126172. [Google Scholar] [CrossRef]
- Huang, C.P.; Wang, L.; Gong, X.Q.; Huang, Z.T.; Zhou, M.R.; Li, J.; Wu, J.S.; Chang, S.X.; Jiang, P.K. Silicon fertilizer and biochar effects on plant and soil PhytOC concentration and soil PhytOC stability and fractionation in subtropical bamboo plantations. Sci. Total Environ. 2020, 715, 136846. [Google Scholar] [CrossRef]
- Fu, H.J.; Li, X.Y.; Li, Q.Y.; Zhu, C.Y.; Xiang, Y.J.; Zhang, H. Effects of photosynthetic bacteria and silicon fertilizer on rape and soil environment. Southwest China J. Agric. Sci. 2020, 33, 1209–1214. (In Chinese) [Google Scholar]
- Wang, B.H.; Chu, C.B.; Wei, H.W.; Zhang, L.M.; Ahmad, Z.; Wu, S.H.; Xie, B. Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals. Environ. Pollut. 2020, 267, 115411. [Google Scholar] [CrossRef]
- Li, M.Q.; Chen, J.L.; Huang, Y.W.; Bian, X.R.; Ye, S.H.; Shi, G.Y. Genetic diversity of cultivated populations of Lilium davidii.var.unicolor at different altitudes. J. Desert Res. 2016, 36, 1029–1033. (In Chinese) [Google Scholar]
- Yu, Y.L.; Shi, G.Y.; Zhang, L.P.; Shi, G.H.; Li, M.Q.; Su, G.L.; Li, X.X. Effects of silicon fertilizer and microbial inoculants on the growth and soil biochemical properties of continuous cropping in Lanzhou lily. J. Desert Res. 2021, 41, 157–165. (In Chinese) [Google Scholar]
- Delgado-Baquerizo, M.; Maestre, F.T.; Reich, P.B.; Jeffries, T.C.; Gaitan, J.J.; Encinar, D.; Berdugo, M.; Campbell, C.D.; Singh, B.K. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 2016, 7, 10541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendsen, R.L.; Pieterse, C.; Bakker, P. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Bever, J.D.; Mangan, S.A.; Alexander, H.M. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 305–325. [Google Scholar] [CrossRef]
- Shi, G.Y.; Sun, H.Q.; Calderón-Urrea, A.; Li, M.Q.; Wang, W.Z.; Su, G.L. Bacterial communities as indicators for soil health under continuous cropping system. Land Degrad. Dev. 2021, 32, 2393–2408. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Fouts, D.E.; Szpakowski, S.; Purushe, J.; Torralba, M.; Waterman, R.C.; Macneil, M.D.; Alexander, L.J.; Nelson, K.E. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE 2012, 7, e48289. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar] [CrossRef]
- Bates, S.T.; Clemente, J.C.; Flores, G.E.; Walters, W.A.; Parfrey, L.W.; Knight, R.; Fierer, N. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013, 7, 652–659. [Google Scholar] [CrossRef]
- Miller, G.E.; Engen, P.A.; Gillevet, P.M.; Shaikh, M.; Sikaroodi, M.; Forsyth, C.B.; Mutlu, E.; Keshavarzian, A. Lower neighborhood socioeconomic status associated with reduced diversity of the colonic microbiota in healthy adults. PLoS ONE 2016, 11, e0148952. [Google Scholar] [CrossRef]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2010, 54, 655–670. [Google Scholar] [CrossRef]
- Bhat, A.K. Preserving microbial diversity of soil ecosystem: A key to sustainable productivity. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 85–101. [Google Scholar]
- Araujo, R.; Dunlap, C.; Franco, C. Analogous wheat root rhizosphere microbial successions in field and greenhouse trials in the presence of biocontrol agents Paenibacillus peoriae SP9 and Streptomyces fulvissimus FU14. Mol. Plant Pathol. 2020, 21, 622–635. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.C.; Geng, G.M.; Yu, L.; Xie, Q.J.; Liao, J.J.; Qi, H.Y. Reducing fertilizer input combined with application of trichoderma to increase yield, quality of melon and soil microbial functional diversity. J. Plant Nutr. Fertil. 2019, 25, 620–629. (In Chinese) [Google Scholar]
- Song, Y.L.; Yu, J.; Chen, S.G.; Xiao, C.Z.; Li, Y.H.; Su, X.R.; Ding, F.J. University, S.A. Effects of complex microbial agent on cotton physiological characteristics, microorganism and physicochemical properties in rhizosphere soil. Soils 2019, 51, 477–487. (In Chinese) [Google Scholar]
- Fei, Y.C.; Wu, Q.Z.; Lu, J.; Ji, C.S.; Zheng, H.; Cao, S.J.; Lin, K.M.; Cao, G.Q. Effects of undergrowth vegetation management measures on the soil bacterial community structure of large diameter timber plantation of Cunninghamia lanceolata. J. Appl. Ecol. 2020, 31, 407–416. (In Chinese) [Google Scholar]
- Huang, Y.L.; Zheng, L.W.; Huang, Y.Y.; Jia, Z.H.; Li, S.S.; Li, Z.X. Effects of different application methods of Bacillus subtilis agent on soil microbial diversity and growth of muskmelon. Chin. J. Biotechnol. 2020, 36, 2644–2656. (In Chinese) [Google Scholar]
- Wang, F.W.; Wang, X.B.; Li, J.C.; Ye, A.H.; Wang, Y.; Che, W.; Zhhu, L. Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil. Chin. J. Eco-Agric. 2015, 23, 1302–1311. (In Chinese) [Google Scholar]
- Li, J.H.; Gao, K.X.; Wang, L.; Cao, G.Y.; Jiao, F.Y.; Wang, Y.P.; Tian, Y.H.; Zhao, B.J.; Li, C.R. Effects of microbial agent on the growth of Catalpa bungei seedlings and the diversity of bacterial community in rhizosphere soil. Acta Ecol. Sin. 2020, 40, 180. (In Chinese) [Google Scholar]
- Zeng, X.B.; Wang, Y.N.; Wang, Y.Z.; Lin, Z.L.; Li, L.F.; Bai, L.Y.; Su, S.M.; Shen, L.F. Effects of different fertilization regimes on abundance and composition of the bacterial community in greenhouse vegetable soils. Sci. Agric. Sin. 2013, 46, 69–79. (In Chinese) [Google Scholar]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sust. Energ. Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Lei, X.D.; Li, J.W.; Xu, X.L.; Zhang, H.L.; Cao, L.K. Effect of microbial inoculants on spinach growth characteristics and soil microbial diversity. Chin. J. Eco-Agric. 2012, 20, 488–494. (In Chinese) [Google Scholar] [CrossRef]
- Bian, X.R.; Shi, G.Y.; Liang, Q.L.; Sun, H.Q.; Fan, S.F.; Chen, J.L. University, G.A. Isolation and identification of wilt disease pathogen from Lanzhou lily and its pathogenicity. J. Gansu Agric. Univ. 2016, 51, 58–64. (In Chinese) [Google Scholar]
- Yu, X.M.; Kang, X.; Li, Y.M.; Cui, Y.L.; Tu, W.G.; Shen, T.; Yan, M.; Gu, Y.F.; Zou, L.K.; Ma, M.G.; et al. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata. Environ. Pollut. 2019, 255, 113167. [Google Scholar] [CrossRef]
- Kaiser, K.; Wemheuer, B.; Korolkow, V.; Wemheuer, F.; Nacke, H.; Schöning, I.; Schrumpf, M.; Daniel, R. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 2016, 6, 33696. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.L.; Bai, N.L.; Zheng, X.Q.; Li, S.X.; Zhang, J.Q.; Zhang, H.Y.; Zhou, S.; Sun, H.F.; Lv, W.G. Effects of straw returning and fertilization on soil bacterial and fungal community structures and diversities in rice-wheat rotation soil. Chin. J. Eco-Agric. 2021, 29, 531–539. (In Chinese) [Google Scholar]
- Shi, G.Y.; Sun, H.Q.; Calderón-Urrea, A.; Jia, X.X.; Yang, H.Y.; Su, G.L. Soil fungal diversity loss and appearance of specific fungal pathogenic communities associated with the consecutive replant problem (crp) in lily. Front. Microbiol. 2020, 11, 1649. [Google Scholar] [CrossRef]
Treatment | Seedling Index | Bulb Yield (kg/hm2) |
---|---|---|
CK | 90.77 ± 2.72 c | 13,847.26 ± 281.01 c |
SF | 105.53 ± 0.98 b | 15,713.66 ± 410.30 b |
MF | 110.03 ± 1.65 ab | 15,339.85 ± 505.80 b |
SMF | 115.17 ± 2.44 a | 17,684.44 ± 550.73 a |
Bacteria Taxa | Correlation with Seedling Index (rsi) | Correlation with Available Silicon (ras) | Relative Abundance (RA) |
---|---|---|---|
g_Nordella | 0.79 ** | 0.63 * | 0.32% |
g_Pedomicrobium | 0.63 * | 0.44 | 0.35% |
g_Chthoniobacter | −0.75 ** | −0.63 * | 0.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Zhang, L.; Li, Y.; Hou, L.; Yang, H.; Shi, G. Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies. Agronomy 2022, 12, 1530. https://doi.org/10.3390/agronomy12071530
Yu Y, Zhang L, Li Y, Hou L, Yang H, Shi G. Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies. Agronomy. 2022; 12(7):1530. https://doi.org/10.3390/agronomy12071530
Chicago/Turabian StyleYu, Yanlin, Lipeng Zhang, Yuanpeng Li, Lei Hou, Hongyu Yang, and Guiying Shi. 2022. "Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies" Agronomy 12, no. 7: 1530. https://doi.org/10.3390/agronomy12071530
APA StyleYu, Y., Zhang, L., Li, Y., Hou, L., Yang, H., & Shi, G. (2022). Silicon Fertilizer and Microbial Agents Changed the Bacterial Community in the Consecutive Replant Soil of Lilies. Agronomy, 12(7), 1530. https://doi.org/10.3390/agronomy12071530