Combining Ability Analysis and Marker-Based Prediction of Heterosis in Yield Reveal Prominent Heterotic Combinations from Diallel Population of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis Combining Ability and Heterosis
2.2. DNA Extraction and RAPD Marker
2.3. PCR Mix Preparation and Amplification
2.4. Agarose Gel Electrophoresis and Visualization
2.5. Analysis of Marker Data
3. Results
3.1. Analysis of Variance (ANOVA)
3.2. Mean Performance of the Parents and Hybrids
3.3. Combining Ability Analysis (GCA and SCA)
3.4. Estimation of Heterosis
3.5. Pairwise Genetic Distance of Parents Relying on Heatmap
3.6. Cluster Analysis of Parental Genotypes Based on RAPD
3.7. Correlation between Markers Generated GD with SCA, MPH, BPH, and SPH
3.8. Maker-Based Prediction of Yield Heterosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gnanamanickam, S.S. Rice and Its Importance to Human Life. In Biological Control of Rice Diseases; Springer: Dordrecht, The Netherlands, 2009; pp. 1–11. [Google Scholar]
- Hooker, J.D. The Flora of British India; Reeve Co.: Stowmarket, UK, 1979; Volume 2L. [Google Scholar]
- Roy, R.N.; Misra, R.V. Economic and Environmental Impact of Improved Nitrogen Management in Asian Rice-Farming Systems; Sustainable rice production for food security. In Proceedings of the 20th Session of the International Rice Commission, Bangkok, Thailand, 23–26 July 2002; pp. 171–180. [Google Scholar]
- Bangladesh Bureau of Statistics (BBS). Monthly Statistical Bulletin, Statistics & Informatics Division (SID); Ministry of Planning Government of The People’s Republic of Bangladesh: Dhaka, Bangladesh, 2018; pp. 49–69.
- Food and Agricultural Organization (FAO). Rice Market Monitor; Food and Agricultural Organization (FAO): Bangkok, Thailand, 2017; pp. 1–42.
- Gramaje, L.V.; Caguiat, J.D.; Enriquez, J.O.S.; Dela Cruz, Q.D.; Millas, R.A.; Carampatana, J.E.; Tabanao, D.A.A. Heterosis and Combining Ability Analysis in CMS Hybrid Rice. Euphytica 2020, 216, 14. [Google Scholar] [CrossRef]
- Ahangar, L.; Ranjbar, G.A.; Nouroozi, M. Estimation of Combining Ability for Yield and Yield Components in Rice (Oryza sativa L.) Cultivars Using Diallel Cross. Pak. J. Biol. Sci. 2008, 11, 1278–1281. [Google Scholar] [CrossRef] [Green Version]
- Sprague, G.F.; Tatum, L.A. General vs. Specific Combining Ability in Single Crosses of Corn. J. Agron. 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Veeresha, B.A.; Hanamaratti, N.G.; Salimath, P.M. Heterosis and Combining Ability Studies for Yield and Productivity Traits in Rice. Int. J. Agric. Res. 2015, 4, 120–126. [Google Scholar]
- Griffing, B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, H.; Xie, W.; Xia, D.; Gao, G.; Zhang, Q.; He, Y. Genome-Wide Association Analyses Reveal the Genetic Basis of Combining Ability in Rice. Plant Biotechnol. 2019, 17, 2211–2222. [Google Scholar] [CrossRef] [Green Version]
- Masood, J.; Ghulam, H.; Iftikhar, K.; Raziuddin, N. Estimates of Heterosis and Heterobeltiosis for Morphological Traits in Wheat (Triticum aestivum L.). Pak. J. Biol. Sci. 2005, 8, 1261–1264. [Google Scholar]
- Kempthorne, O. An Introduction of Genetic Statistics; John Willey & Sons Inc.: New York, NY, USA, 1957; pp. 468–473. [Google Scholar]
- Melchinger, A.E.; Messmer, M.M.; Lee, M.; Woodman, W.L.; Lamkey, K.R. Diversity and Relationships among US Maize Inbreds Revealed by Restriction Fragment Length Polymorphisms. Crop Sci. 1991, 31, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Krystkowiak, K.; Adamski, T.; Surma, M.; Kaczmarek, Z. Relationship Between Phenotypic and Genetic Diversity of Parental Genotypes and the Specific Combining Ability and Heterosis Effects in Wheat (Triticum aestivum L.). Euphytica 2009, 165, 419–434. [Google Scholar] [CrossRef]
- Xiao, J.; Li, J.; Yuan, L.; McCouch, S.R.; Tanksley, S.D. Genetic Diversity and Its Relationship to Hybrid Performance and Heterosis in Rice as Revealed by PCR-Based Markers. Theor. Appl. Genet. 1996, 92, 637–643. [Google Scholar] [CrossRef]
- Zhao, M.F.; Li, X.H.; Yang, J.B.; Xu, C.G.; Hu, R.Y.; Liu, D.J.; Zhang, Q. Relationship Between Molecular Marker Heterozygosity and Hybrid Performance in Intra and Inter-Subspecific Crosses of Rice. Plant Breed. 1999, 118, 139–144. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Z.; Tan, L.; Liu, F.; Fu, Y.; Sun, C.; Cai, H. Complexity of Indica-Japonica Varietal Differentiation in Bangladesh Rice Landraces Revealed by Microsatellite Markers. Breed. Sci. 2013, 63, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.M.; Talbert, L.E.; Lanning, S.P.; Blake, N.K. Hybrid Performance in Wheat as Related to Parental Diversity. Crop Sci. 1995, 35, 104–108. [Google Scholar] [CrossRef]
- Smith, O.S.; Smith, J.S.C.; Bowen, S.L.; Tenborg, R.A.; Wall, S.J. Similarities Among a Group of Elite Maize Inbreds as Measured by Pedigree, F1 Grain Yield, Grain Yield, Heterosis, and RFLPs. Theor. Appl. Genet. 1990, 80, 833–840. [Google Scholar] [CrossRef]
- Betrán, F.J.; Ribaut, J.M.; Beck, D.; De León, D.G. Genetic Diversity, Specific Combining Ability, and Heterosis in Tropical Maize Under Stress and Nonstress Environments. Crop Sci. 2003, 43, 797–806. [Google Scholar] [CrossRef]
- Menkir, A.; Melake-Berhan, A.; Ingelbrecht, I.; Adepoju, A. Grouping of Tropical Mid-Altitude Maize Inbred Lines on the Basis of Yield Data and Molecular Markers. Theor. Appl. Genet. 2004, 108, 1582–1590. [Google Scholar] [CrossRef]
- Barata, C.; Carena, M.J. Classification of North Dakota Maize Inbred Lines into Heterotic Groups Based on Molecular and Testcross Data. Euphytica 2006, 151, 339–349. [Google Scholar] [CrossRef]
- Raihan, M.S.; Newaz, M.A. Combining Ability for Quantitative Attributes in Lablab Bean (Lablab purpureus L.). Bangladesh J. Plant Breed. Genet. 2008, 21, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Rai, B. Heterosis breeding. Agrobiol. Publ. 1979, 4, 65. [Google Scholar]
- Ferrari, C.D.S.; Valente, L.L.; Brod, F.C.A.; Tagliari, C.; Sant’Anna, E.S.; Arisi, A.C.M. Evaluation of Polymerase Chain Reaction and DNA Isolation Protocols for Detection of Genetically Modified Soybean. Int. J. Food Sci. Technol. 2007, 42, 1249–1255. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Nei, M. Genetic distance between populations. Am. Nat. 1972, 106, 283–291. [Google Scholar] [CrossRef]
- Perrier, X.; Jacquemoud-Collet, J.P. Dissimilarity Analysis and Representation for Windows. 2006. Available online: https://darwin.cirad.fr/darwin (accessed on 11 March 2022).
- Heatmapper. Available online: http://www.heatmapper.ca/ (accessed on 17 May 2022).
- Kumari, R.; Singh, A.K.; Sharma, V.K. Genetic Divergence Studies for Morpho-Agronomical Traits in Maize (Zea mays L.) Inbreds. Int. J. Curr. Microbiol. 2018, 2, 3589–3594. [Google Scholar]
- Hasan-Ud-Daula, M.; Sarker, U. Variability, Heritability, Character Association, and Path Coefficient Analysis in Advanced Breeding Lines of Rice (Oryza sativa L.). Genetika 2020, 52, 711–726. [Google Scholar] [CrossRef]
- Ali, M.A.; Sarker, U.; Mian, M.A.K.; Islam, M.A.; Johora, F.T. Estimation of Genetic Divergence in Boro Rice (Oryza sativa L.). Int. J. BioRes. 2014, 16, 28–36. [Google Scholar]
- Rai, P.K.; Sarker, U.; Roy, P.C.; Islam, A. Character Association in F4 Generation of Rice (Oryza sativa L.). Bangladesh J. Plant Breed. Genet. 2013, 26, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Nath, J.K.; Sarker, U.; Mian, M.A.K.; Hossain, T. Genetic Divergence in T. Aman Rice. Ann. Bangladesh Agric. 2008, 12, 51–60. [Google Scholar]
- Siddique, M.N.A.; Sarker, U.; Mian, M.A.K. Genetic diversity in restorer line of rice. In Proceedings of the International Conference on Plant Breeding and Seed for Food Security, Dhaka, Bangladesh, 12 September 2009; Bhuiyan, M.S.R., Rahman, L., Eds.; Plant Breeding and Genetics Society of Bangladesh: Dhaka, Bangladesh, 2009; pp. 137–142. [Google Scholar]
- Hasan, M.R.; Sarker, U.; Hossain, M.A.; Huda, K.M.K.; Mian, M.A.K.; Hossain, T.; Zahan, M.S.; Mahmud, M.N.H. Genetic Diversity in Micronutrient Dense Rice and Its Implication in Breeding Program. Ecofriendly Agril. J. 2012, 5, 168–174. [Google Scholar]
- Ganapati, R.K.; Rasul, M.G.; Mian, M.A.K.; Sarker, U. Genetic Variability and Character Association of T-Aman Rice (Oryza sativa L.). Int. J. Plant Biol. Res. 2014, 2, 1–4. [Google Scholar]
- Karim, D.; Sarker, U.; Siddique, M.N.A.; Mian, M.A.K.; Hasnat, M.Z. Variability and Genetic Parameter Analysis in Aromatic Rice. Int. J. Sustain. Crop Prod. 2007, 2, 15–18. [Google Scholar]
- Karim, D.; Siddique, M.N.A.; Sarker, U.; Hasnat, Z.; Sultana, J. Phenotypic and Genotypic Correlation Co-Efficient of Quantitative Characters and Character Association of Aromatic Rice. J. Biosci. Agric. Res. 2014, 1, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.J.; Kulsum, M.U.; Majumder, R.R.; Sarker, U. Genotypic Variability for Grain Quality Attributes in Restorer Lines of Hybrid Rice. Genetika 2020, 52, 973–989. [Google Scholar] [CrossRef]
- Sarker, U.; Azam, M.G.; Talukder, M.Z.A. Genetic Variation in Mineral Profiles, Yield Contributing Agronomic Traits, and Foliage Yield of Stem Amaranth. Genetika 2022, 54, 91–108. [Google Scholar] [CrossRef]
- Rashad, M.M.I.; Sarker, U. Genetic Variations in Yield and Yield Contributing Traits of Green Amaranth. Genetika 2020, 52, 393–407. [Google Scholar] [CrossRef]
- Sarker, U.; Iqbal, M.A.; Hossain, M.N.; Oba, S.; Ercisli, S.; Muresan, C.C.; Marc, R.A. Colorant Pigments, Nutrients, Bioactive Components, and Antiradical Potential of Danta Leaves (Amaranthus lividus). Antioxidants 2022, 11, 1206. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Alsanie, W.F.; Gaber, A. Characterization of Phytochemicals, Nutrients, and Antiradical Potential in Slim Amaranth. Antioxidants 2022, 11, 1089. [Google Scholar] [CrossRef]
- Sarker, U.; Rabbani, M.G.; Oba, S.; Eldehna, W.M.; Al-Rashood, S.T.; Mostafa, N.M.; Eldahshan, O.A. Phytonutrients, Colorant Pigments, Phytochemicals, and Antioxidant Potential of Orphan Leafy Amaranthus Species. Molecules 2022, 27, 2899. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Ercisli, S.; Assouguem, A.; Alotaibi, A.; Ullah, R. Bioactive Phytochemicals and Quenching Activity of Radicals in Selected Drought-Resistant Amaranthus tricolor Vegetable Amaranth. Antioxidants 2022, 11, 578. [Google Scholar] [CrossRef]
- Hossain, M.N.; Sarker, U.; Raihan, M.S.; Al-Huqail, A.A.; Siddiqui, M.H.; Oba, S. Influence of Salinity Stress on Color Parameters, Leaf Pigmentation, Polyphenol and Flavonoid Contents, and Antioxidant Activity of Amaranthus lividus Leafy Vegetables. Molecules 2022, 27, 1821. [Google Scholar] [CrossRef]
- Sarker, U.; Lin, Y.P.; Oba, S.; Yoshioka, Y.; Ken, H. Prospects and Potentials of Underutilized Leafy Amaranths as Vegetable Use for Health Promotion. Plant Physiol. Biochem. 2022, 182, 104–123. [Google Scholar] [CrossRef]
- Prodhan, M.M.; Sarker, U.; Hoque, M.A.; Biswas, M.S.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almutairi, M.H.; Mohamed, H.R.H.; Najda, A. Foliar Application of GA3 Stimulates Seed Production in Cauliflower. Agronomy 2022, 12, 1394. [Google Scholar] [CrossRef]
- Azad, A.K.; Sarker, U.; Ercisli, S.; Assouguem, A.; Ullah, R.; Almeer, R.; Sayed, A.A.; Peluso, I. Evaluation of Combining Ability and Heterosis of Popular Restorer and Male Sterile Lines for the Development of Superior Rice Hybrids. Agronomy 2022, 12, 965. [Google Scholar] [CrossRef]
- Azam, M.G.; Sarker, U.; Hossain, M.A.; Iqbal, M.S.; Islam, M.R.; Hossain, M.F.; Ercisli, S.; Kul, R.; Assouguem, A.; AL-Huqail, A.A.; et al. Genetic Analysis in Grain Legumes [Vigna radiata (L.) Wilczek] for Yield Improvement and Identifying Heterotic Hybrids. Plants 2022, 11, 1774. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Biswas, P.S.; Prasad, B.; Mian, M.A.K. Heterosis and Genetic Analysis in Rice Hybrids. Pak. J. Biol. Sci. 2002, 5, 1–5. [Google Scholar] [CrossRef]
- Bidhendi, M.Z.; Choukan, R.; Darvish, F.; Mostafavi, K.; Hervan, E.M. Determination of Combining Abilities and Heterotic Patterns of Fourteen Medium to Late Maturing Iranian Maize Inbred Lines Using Diallel Mating Design. Afr. J. Biotechnol. 2011, 10, 16854–16865. [Google Scholar]
- Geleta, L.F.; Labuschagne, M.T. Combining Ability and Heritability for Vitamin C and Total Soluble Solids in Pepper (Capsicum annuum L.). J. Sci. Food Agric. 2006, 86, 1317–1320. [Google Scholar] [CrossRef]
- Sari, W.K.; Nualsri, C.; Junsawang, N.; Soonsuwon, W. Combining Ability and Heritability for Yield and Its Related Traits in Thai Upland Rice (Oryza sativa L.). Agric. Nat. Resour. 2020, 54, 229–236. [Google Scholar]
- Sravan, T.; Jaiswal, H.K.; Waza, S.A.; Priyanka, K. Heterosis for Yield and Yield Attributes in Rice (Oryza sativa L.). J. Appl. Nat. Sci. 2016, 8, 622–625. [Google Scholar] [CrossRef] [Green Version]
- Alam, A.S.M.S.; Sarker, U.; Mian, M.A.K. Line × Tester Analysis in Hybrid Rice (Oryza sativa L.). Ann. Bangladesh Agric. 2007, 11, 37–44. [Google Scholar]
- Sarker, U.; Mian, M.A.K. Line × Tester Analysis for Yield and Its Components in Rice (Oryza sativa L.). J. Asiat. Soc. Bangladesh Sci. 2002, 28, 71–81. [Google Scholar]
- Sarker, U.; Rasul, M.G.; Mian, M.A.K. Combining Ability of CMS and Restorer Lines in Rice. Bangladesh J. Plant Breed. Genet. 2003, 16, 1–7. [Google Scholar]
- Begum, S.; Alam, S.S.; Omy, S.H.; Amiruzzaman, M.; Rohman, M.M. Inheritance and Combing Ability in Maize Using a 7 × 7 Diallel Cross. J. Plant Breed. Crop Sci. 2018, 10, 239–248. [Google Scholar]
- Kahani, F.; Hittalmani, S.; Erfani, R.; Haradari, C. Heterotic Effects and Combining Ability for Yield Traits in Rice Developed for Semi-Dry Aerobic Cultivation. SABRAO J. Breed. Genet. 2018, 50, 46–61. [Google Scholar]
- Sarker, U.; Rasul, M.G.; Mian, M.A.K. Heterosis and Combining Ability in Rice. Bangladesh J. Plant Breed. Genet. 2002, 15, 17–26. [Google Scholar]
- Islam, M.M.; Sarker, U.; Rasul, M.G.; Rahman, M.M. Heterosis in Local Boro Rice (Oryza sativa L.). Bangladesh J. Plant Breed. Genet. 2010, 23, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Gao, Y.J.; Yang, S.H.; Ragab, R.A.; Maroof, M.S.; Li, Z.B. A Diallel Analysis of Heterosis in Elite Hybrid Rice Based on RFLPs and Microsatellites. Theor. Appl. Genet. 1994, 89, 185–192. [Google Scholar] [CrossRef]
- Jaikishan, I.; Rajendrakumar, P.; Ramesha, M.S.; Viraktamath, B.C.; Balachandran, S.M.; Neeraja, C.N.; Sundaram, R.M. Prediction of Heterosis for Grain Yield in Rice Using ‘Key‘ Informative EST-SSR Markers. Plant Breed. 2010, 129, 108–111. [Google Scholar] [CrossRef]
- Joshi, S.P.; Bhave, S.G.; Chowdari, K.V.; Apte, G.S.; Dhonukshe, B.L.; Lalitha, K.; Gupta, V.S. Use of DNA Markers in Prediction of Hybrid Performance and Heterosis for a Three-Line Hybrid System in Rice. Biochem. Genet. 2001, 39, 179–200. [Google Scholar] [CrossRef]
Genotype | %PF | DFF | PH | TNH | PL | FGP | GL | TGW | GTW | GYH | |
---|---|---|---|---|---|---|---|---|---|---|---|
Trait | |||||||||||
Basmati × Muktagacha | −1.53 ** | −9.33 ** | −2.28 ns | 0.49 ns | 0.77 ns | 20.59 ** | 0.19 * | −1.03 ** | 0.11 ** | 7.90 ** | |
Basmati × Double Rice | 12.64 ** | 2.61 ** | 14.00 ** | −1.59 ** | 0.09 ns | −5.39 ns | −0.70 ** | −0.12 ns | 0.42 ** | 0.36 ns | |
Basmati × Pokkali | −17.76 ** | 1.17 * | −0.53 ns | 1.08 * | −0.06 ns | −30.37 ** | 0.39 ** | 1.86 ** | 0.12 ** | −6.10 ** | |
Basmati × BRRI dhan29 | 6.58 ** | 5.28 ** | 0.85 ns | 1.66 ** | 1.46 * | 8.48 * | 0.19 * | 1.79 ** | 0.07 * | 0.44 ns | |
Basmati × Kotoktara | −5.83 ** | −1.89 ** | 2.08 ns | −1.51 ** | 1.40 * | 2.77 ns | −0.10 ns | 1.02 ** | 0.07 * | −2.46 ** | |
Basmati × Chinigura | −0.27 ** | 8.50 ** | 1.55 ns | 2.49 ** | −1.09 ns | −34.25 ** | −0.63 ** | −3.40 ** | −0.30 ** | −5.28 ** | |
Muktagaccha × Double Rice | 0.74 ** | 1.44 * | 11.80 ** | 0.97 * | −0.91 ns | −51.02 ** | −0.33 ** | −2.80 ** | −0.02 ns | −4.21 ** | |
Muktagaccha × Pokkali | 4.95 ** | 0.50 ns | 0.53 ns | 0.88 ns | 0.88 ns | 31.68 * | −0.90 ** | −0.42 ns | 0.18 ** | 4.28 ** | |
Muktagaccha × BRRI dhan29 | 1.17 ** | 0.11 ns | 1.16 ns | 0.47 ns | 1.29 * | 7.35 ** | 0.82 ** | 0.91 * | −0.18 ** | 1.08 ns | |
Muktagaccha × Kotoktara | −0.90 ** | 0.94 ns | −1.62 ns | 0.05 ns | −2.02 ** | −21.24 ** | 0.10 ns | 1.34 ** | 0.05 ns | 0.19 ns | |
Muktagaccha × Chinigura | 0.07 * | −10.67 ** | 7.36 ** | −2.45 ** | 2.42 ** | 29.99 ** | −0.79 ** | 6.12 ** | 0 ns | −4.8 ** | |
Double Rice × Pokkali | 14.64 ** | 7.44 ** | 29.05 ** | −3.70 ** | 6.38 ** | 150.64 ** | 1.01 ** | 1.49 ** | −0.08 ** | 13.91 ** | |
Double Rice × BRRI dhan29 | 0.65 ** | −15.44 ** | −31.56 ** | 1.38 ** | −5.53 ** | −77.76 ns | −0.27 ** | −3.25 ** | 0.11 ** | −9.05 ** | |
Double Rice × Kotoktara | 6.19 ** | −5.61 ** | −4.34 ** | −0.53 ns | −0.35 ns | 1.16 ** | 1.02 ** | 0.46 ns | 0.03 ns | −2.67 ** | |
Double Rice × Chinigura | −1.68 ** | 1.78 ** | 7.39 ** | 0.72 ns | 3.07 ** | 17.13 ** | 0.44 ** | 4.73 ** | −0.18 ** | 3.19 ** | |
Pokkali × BRRI dhan29 | 5.97 ** | −9.89 ** | −3.84 * | −2.70 ** | −4.93 ** | −45.11 * | −0.24 ** | −1.66 ** | −0.11 ** | −7.58 ** | |
Pokkali × Kotoktara | −24.62 ** | −6.56 ** | 4.13 ** | 3.13 ** | 4.87 ** | 9.68 ** | −0.65 ** | −0.42 ns | 0.05 ns | 0.52 ns | |
Pokkali × Chinigura | 3.77 ** | −1.67 ** | −2.39 ns | 13.38 ** | −0.16 ns | −53.34 ** | 0.58 ** | 0.01 ns | 0.15 ** | 13.31 ** | |
BRRI dhan29 × Kotoktara | −4.09 ** | 2.06 ** | −2.94 * | 5.22 ** | −2.05 ** | −24.06 ** | −0.12 ns | 1.93 ** | 0.09 ** | 1.59 * | |
BRRI dhan29 × Chinigura | 1.07 ** | −9.56 ** | 19.74 ** | −0.78 ns | 3.17 ** | 78.63 ** | −0.73 ** | −1.66 ** | 0.23 ** | 10.44 ** | |
Kotoktara × Chinigura | 4.73 ** | −4.72 ** | −34.79 ** | −4.95 ** | −3.97 ** | −37.70 ** | 0.79 ** | 0.62 ns | −0.05 ns | −8.73 ** |
Genotype | % Pollen Fertility | Days to First Flowering | Plant Height | |||||||||
Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | ||||
Basmati × Muktagacha | −2.11 ** | −3.23 ** | 5.44 ** | 10.59 ns | −2.43 ns | 48.44 ** | 4.34 ns | −3.25 ns | 35.17 ** | |||
Basmati × Double Rice | 25.03 ** | 3.75 ** | 13.04 ** | −5.48 ns | −14.31 ns | −0.35 ns | 17.44 ** | 5.60 ns | 57.89 ** | |||
Basmati × Pokkali | −24.43 ** | −25.20 ** | −18.5 ** | −28.01 * | −50.70 ** | −42.66 ** | 8.38 * | 5.01 ns | 25.36 ** | |||
Basmati × BRRI dhan29 | 8.80 ** | 4.33 ** | 13.67 ** | −12.13 ns | −18.29 ns | −4.97 ns | 0.55 ns | −7.62 ns | 10.29 * | |||
Basmati × Kotoktara | −14.34 ** | −15.09 ** | −5.84 ** | −25.70 * | −44.53 ** | −35.49 ** | −2.72 ns | −3.41 ns | 15.31 ** | |||
Basmati × Chinigura | 0.11 ** | −1.36 ** | 10.73 ** | −29.11 ** | −39.00 ** | −1.62 ns | 3.61 ns | −8.52 ** | 42.58 ** | |||
Muktagaccha × Double Rice | 13.30 ns | −5.11 ** | 1.03 ** | −28.49 ** | −42.02 ** | −11.79 ns | 14.97 ** | 11.20 ** | 66.27 ** | |||
Muktagaccha × Pokkali | 3.08 ** | 2.95 ** | 9.88 ** | 49.11 ** | −4.37 ns | 45.49 ** | 8.75 * | −2.05 ns | 36.84 ** | |||
Muktagaccha × BRRI dhan29 | 5.80 ** | 2.59 ** | 9.22 ** | −1.05 ns | −18.01 * | 24.74 * | 1.00 ns | −13.36 ** | 21.05 ** | |||
Muktagaccha × Kotoktara | −6.35 ** | −8.22 ** | 1.79 ** | −30.24 ** | −51.98 ** | −26.94 * | −5.02 ns | −12.50 ** | 22.25 ** | |||
Muktagaccha × Chinigura | 3.32 ** | 0.66 ** | 12.99 ** | 20.32 ** | 16.92 * | 88.55 ** | 7.32 * | 1.77 ns | 58.61 ** | |||
Double Rice × Pokkali | 25.72 ** | 5.18 ** | 12.26 ** | 235.46 ** | 144.01 ** | 130.75 ** | 31.02 ** | 14.56 ** | 71.29 ** | |||
Double Rice × BRRI dhan29 | 16.00 ** | −0.32 ** | −0.32 ** | −78.13 ** | −78.73 ** | −78.73 ** | −22.34 ** | −35.20 ** | −3.11 ns | |||
Double Rice × Kotoktara | 10.67 ** | −8.81 ** | 1.13 ** | −9.13 ns | −27.02 * | −30.98 * | −5.10 ns | −15.20 ** | 26.79 ** | |||
Double Rice × Chinigura | 10.82 ** | −9.12 ** | 2.02 ** | 18.75 * | −5.81 ns | 51.91 ** | 8.58 ** | 6.37 * | 65.79 ** | |||
Pokkali × BRRI dhan 29 | 6.26 ** | 2.91 ** | 9.83 ** | −54.89 ** | −67.75 ** | −67.75 ** | −1.13 ns | −6.41 ns | 4.78 ns | |||
Pokkali × Kotoktara | −36.50 ** | −37.69 ** | −30.9 ** | 14.98 ns | 0.60 ns | −42.31 ** | 1.25 ns | −1.22 ns | 16.27 ** | |||
Pokkali × Chinigura | 2.59 ** | 0.06 ns | 12.33 ** | −33.90 ** | −58.14 ** | −32.49 ** | 2.90 ns | −11.59 ** | 37.80 ** | |||
BRRI dhan 29 × Kotoktara | −8.17 ** | −12.68 ** | −3.16 ** | −64.10 ** | −71.75 ** | −71.75 ** | −14.46 ** | −20.89 ** | −6.89 ns | |||
BRRI dhan 29 × Chinigura | 6.41 ** | 0.60 ** | 12.93 ** | 46.46 ** | 18.64 * | 91.33 ** | 11.45 ** | −8.52 ** | 42.58 ** | |||
Kotoktara × Chinigura | 0.54 ** | −0.06 ns | 12.19 ** | −46.48 ** | −63.73 ** | −41.50 ** | −31.09 ** | −39.52 ** | −5.74 ns | |||
Genotype | Tillers/Hill | Panicle Length (cm) | Filled Grain/Panicle | |||||||||
Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | ||||
Basmati × Muktagacha | 16.67 ns | 0.00 ns | 75.00 * | 6.99 ns | 5.83 ns | 16.99 * | 10.59 ns | −2.43 ns | 48.44 ** | |||
Basmati × Double Rice | −18.31 ns | −19.44 ns | 45.00 ns | 5.47 ns | −4.65 ns | 3.12 ns | −5.48 ns | −14.31 ns | −0.35 ns | |||
Basmati × Pokkali | 54.29 ** | 54.29 ** | 170.00 ** | 9.38 ns | −5.38 ns | 2.32 ns | −28.01 * | −50.70 ** | −42.66 ** | |||
Basmati × BRRI dhan29 | 52.73 * | 20.00ns | 110.00 ** | 1.66 ns | −2.17 ns | 5.80 ns | −12.13 ns | −18.29 ns | −4.97 ns | |||
Basmati × Kotoktara | −6.67 ns | −20.00 ns | 40.00 ns | 6.12 ns | −8.69 ns | −1.25 ns | −25.70 * | −44.53 ** | −35.49 ** | |||
Basmati × Chinigura | 55.26 ** | 43.90 ** | 195.00 ** | 1.55 ns | −5.87 ns | 1.80 ns | −29.11 ** | −39.00 ** | −1.62 ns | |||
Muktagaccha × Double Rice | 4.92 ns | −11.11 ns | 60.00 ns | 1.48 ns | −9.15 ns | 0.43 ns | −28.49 ** | −42.02 ** | −11.79 ns | |||
Muktagaccha × Pokkali | 53.33 ** | 31.43 ns | 130.00 ** | 12.91 ns | −3.23 ns | 6.97 ns | 49.11 ** | −4.37 ns | 45.49 ** | |||
Muktagaccha × BRRI dhan29 | 33.33 ns | 20.00 ns | 50.00 ns | 0.92 ns | −3.90 ns | 6.24 ns | −1.05 ns | −18.01 * | 24.74 * | |||
Muktagaccha × Kotoktara | 8.00 ns | 8.00 ns | 35.00ns | −7.76 ns | −21.35 ** | −13.06 ns | −30.24 ** | −51.98 ** | −26.94 * | |||
Muktagaccha × Chinigura | −3.03 ns | −21.95 ns | 60.00 ns | 14.47 * | 5.04 ns | 16.12 ns | 20.32 ** | 16.92 * | 88.55 ** | |||
Double Rice × Pokkali | −15.49 ns | −16.67 ns | 50.00 ns | 40.07 ** | 33.30 ** | 16.50 * | 235.46 ** | 144.01 ** | 130.75 ** | |||
Double Rice × BRRI dhan29 | 28.57 ns | 0.00 ns | 80.00 * | −26.19 ** | −30.84 ** | −30.84 ** | −78.13 ** | −78.73 ** | −78.73 ** | |||
Double Rice × Kotoktara | −11.48 ns | −25.00 ns | 35.00 ns | −0.86 ns | −6.21 ns | −18.03 * | −9.13 ns | −27.02 * | −30.98 * | |||
Double Rice × Chinigura | 22.08 ns | 14.63 ns | 135.00 ** | 19.41 * | 16.21 ns | 7.31 ns | 18.75 * | −5.81 ns | 51.91 ** | |||
Pokkali × BRRI dhan29 | 23.64 ns | −2.86 ns | 70.00 * | −20.41 * | −28.78 ** | −28.78 ** | −54.89 ** | −67.75 ** | −67.75 ** | |||
Pokkali × Kotoktara | 86.67 ** | 60.00 ** | 180.00 ** | 29.34 ** | 28.54 ** | 1.47 ns | 14.98 ns | 0.60 ns | −42.31 ** | |||
Pokkali × Chinigura | 194.74 ** | 173.17 ** | 460.00 ** | 10.78 ns | 2.74 ns | −5.12 ns | −33.90 ** | −58.14 ** | −32.49 ** | |||
BRRI dhan 29 × Kotoktara | 122.22 ** | 100.00 ** | 150.00 ** | −17.95 * | −26.99 ** | −26.99 ** | −64.1 ** | −71.75 ** | −71.75 ** | |||
BRRI dhan 29 × Chinigura | 34.43 ns | 0.00 ns | 105.00 ** | 9.36 ns | 5.18 ns | 5.18 ns | 46.46 ** | 18.64 * | 91.33 ** | |||
Kotoktara × Chinigura | −30.30 ns | −43.90 ** | 15.00 ns | −16.17 ns | −22.70 * | −28.61 ** | −46.48 ** | −63.73 ** | −41.50 ** | |||
Genotype | Grain Length (mm) | 1000-Grain Weight | Grain Test Weight | Grain Yield/Plant | ||||||||
Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | Heterosis over MP (%) | Heterosis over BP (%) | Heterosis over SP (%) | |
Basmati × Muktagacha | −1.92 ns | −6.98 * | 15.72 ** | 0.12 ns | 0.00 ns | 10.03 ns | 10.29 ** | 9.09 * | 3.18 ns | 48.15 ** | 25.51 ns | 190.95 ** |
Basmati × Double Rice | −6.08 * | −10.43 ** | −0.06 ns | 0.16 ns | −8.95 ns | 22.16 ** | 23.33 ** | 17.06 ** | 20.56 ** | −3.36 ns | −16.78 ns | 92.91 ** |
Basmati × Pokkali | 3.04 ns | −6.10 * | 4.77 ns | 10.47 ns | 6.49 ns | 16.89 * | 12.23 ** | 8.04 * | 8.04 * | −26.67 ns | −59.37 ** | −5.81 ns |
Basmati × BRRI dhan29 | −0.75 ns | −5.90 * | 4.99 ns | 6.67 ns | 1.92 ns | 11.87 ns | 9.13 ** | 5.05 ns | 5.05 ns | −11.93 ns | −36.97 ** | 46.12 ns |
Basmati × Kotoktara | −0.11 ns | −7.53 * | 3.18 ns | 11.80 * | 4.33 ns | 14.51 * | 9.13 ** | 2.11 ns | 8.41 * | −53.40 ** | −69.45 ** | −29.17 ns |
Basmati × Chinigura | −11.08 ** | −27.98 ** | −19.64 ** | −10.74 ns | −29.09 ** | −22.16 ** | −7.62 ** | −18.42 ** | −1.5 ns | −24.98 * | −28.23 * | 66.36 * |
Muktagaccha × Double Rice | −2.62 ns | −11.68 ** | 9.88 ** | −7.08 ns | −15.44 ** | 13.46 * | 2.93 ns | −1.27 ns | 1.68 ns | −20.25 ns | −21.78 ns | 30.95 ns |
Muktagaccha × Pokkali | −11.26 ** | −22.90 ** | −4.09 ns | 4.11 ns | 0.24 ns | 10.29 ns | 11.24 ** | 8.22 * | 8.22 * | 131.16 ** | 33.59 ns | 115.05 ** |
Muktagaccha × BRRI dhan29 | 5.16 * | −5.16 ns | 17.99 ** | 7.29 ns | 2.40 ns | 12.66 ns | −3.94 ns | −6.54 ns | −6.54 ns | 13.24 ns | −8.21 ns | 47.77 ns |
Muktagaccha × Kotoktara | 1.4 ns | −10.58 ** | 11.24 ** | 18.60 ** | 10.55 ns | 21.64 ** | 5.03 ns | −0.70 ns | 5.42 ns | −16.74 ns | −39.7 * | −2.94 ns |
Muktagaccha × Chinigura | −12.93 ** | −32.25 ** | −15.72 ** | 52.87 ** | 21.34 ** | 33.51 ** | 0 ns | −10.84 ** | 7.66 * | −10.88 ns | −21.55 ns | 66.06 * |
Double Rice × Pokkali | 15.85 ** | 10.43 ** | 11.80 ** | 8.22 ns | −4.82 ns | 27.70 ** | 2.39 ns | 0.91 ns | 3.93 ns | 239.88 ** | 95.40 ** | 227.09 ** |
Double Rice × BRRI dhan29 | −0.73 ns | −1.35 ns | −0.11 ns | −16.28 ** | −26.94 ** | −1.98 ns | 8.29 ** | 6.72 ns | 9.91 ** | −86.37 ** | −89.11 ** | −81.77 * |
Double Rice × Kotoktara | 18.16 ** | 14.52 ** | 15.95 ** | 8.41 ns | −7.37 ns | 24.27 ** | 5.45 ns | 3.87 ns | 10.28 ** | −52.87 * | −66.28 ** | −43.55 ns |
Double Rice × Chinigura | 8.56 * | −8.63 ** | −7.49 * | 34.31 ** | −0.49 ns | 33.51 ** | −5.10 ns | −12.07 ** | 6.17 ns | 36.14 * | 21.90 ns | 158.04 ** |
Pokkali × BRRI dhan29 | −3.34 ns | −7.32 * | −7.32 * | −10.12 ns | −10.93 ns | −9.29 ns | 0.56 ns | 0.56 ns | 0.56 ns | −73.79 ns | −83.61 * | −83.61 * |
Pokkali × Kotoktara | −4.16 ns | −5.79 ns | −10.50 ** | 5.57 ns | 2.07 ns | 3.96 ns | 6.62 * | 3.52 ns | 9.91 ** | 55.72 ns | 4.92 ns | −24.28 ns |
Pokkali × Chinigura | 7.69 ** | −5.57 ns | −13.34 ** | 11.57 ns | −8.81 ns | −7.12 ns | 6.35 * | −2.79 ns | 17.38 ** | 205.86 ** | 71.05 ** | 262.08 ** |
BRRI dhan29 × Kotoktara | 0.52 ns | −1.99 ns | −1.99 ns | 14.53 * | 11.72 ns | 11.72 ns | 6.98 * | 3.87 ns | 10.28 ** | −29.52 ns | −39.33 ns | −39.33 ns |
BRRI dhan29 × Chinigura | −12.18 ** | −25.71 ** | −25.71 ** | −3.53 ns | −20.58 ** | −20.58 * | 8.21 ** | −1.08 ns | 19.44 ** | 91.84 ** | 41.23 ** | 198.96 ** |
Kotoktara × Chinigura | 13.31 ** | −2.09 ns | −6.98 * | 22.89 ** | 3.22 ns | −1.85 ns | −0.82 ns | −6.81 * | 12.52 ** | −82.59 ** | −88.33 ** | −75.29 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Sarker, U.; Swapan, M.A.H.; Raihan, M.S.; Oba, S.; Alamri, S.; Siddiqui, M.H. Combining Ability Analysis and Marker-Based Prediction of Heterosis in Yield Reveal Prominent Heterotic Combinations from Diallel Population of Rice. Agronomy 2022, 12, 1797. https://doi.org/10.3390/agronomy12081797
Rahman MM, Sarker U, Swapan MAH, Raihan MS, Oba S, Alamri S, Siddiqui MH. Combining Ability Analysis and Marker-Based Prediction of Heterosis in Yield Reveal Prominent Heterotic Combinations from Diallel Population of Rice. Agronomy. 2022; 12(8):1797. https://doi.org/10.3390/agronomy12081797
Chicago/Turabian StyleRahman, Md. Mobinur, Umakanta Sarker, Md Ahsanul Haque Swapan, Mohammad Sharif Raihan, Shinya Oba, Saud Alamri, and Manzer H. Siddiqui. 2022. "Combining Ability Analysis and Marker-Based Prediction of Heterosis in Yield Reveal Prominent Heterotic Combinations from Diallel Population of Rice" Agronomy 12, no. 8: 1797. https://doi.org/10.3390/agronomy12081797
APA StyleRahman, M. M., Sarker, U., Swapan, M. A. H., Raihan, M. S., Oba, S., Alamri, S., & Siddiqui, M. H. (2022). Combining Ability Analysis and Marker-Based Prediction of Heterosis in Yield Reveal Prominent Heterotic Combinations from Diallel Population of Rice. Agronomy, 12(8), 1797. https://doi.org/10.3390/agronomy12081797