Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Efficacy and Time to Death
3.2. Bait Intake
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buckle, A.; Smith, R. Rodent Pests and Their Control, 2nd ed.; CABI International: Wallingford, UK, 2015. [Google Scholar]
- Frankova, M.; Kaftanova, B.; Aulicky, R.; Rodl, P.; Frynta, D.; Stejskal, V. Temporal production of coloured faeces in wild roof rats (Rattus rattus) following consumption of fluorescent non-toxic bait and a comparison with wild R. norvegicus and Mus musculus. J. Stored Prod. Res. 2019, 81, 7–10. [Google Scholar] [CrossRef]
- Buckle, A.; Eason, C. Control methods: Chemical. In Rodent Pests and Their Control, 2nd ed.; Buckle, A., Smith, R., Eds.; CABI International: Wallingford, UK, 2015; pp. 123–154. [Google Scholar]
- Aulicky, R.; Tkadlec, E.; Suchomel, J.; Frankova, M.; Heroldova, M.; Stejskal, V. Management of the common vole in the Czech lands: Historical and current perspectives. Agronomy 2022, 12, 1629. [Google Scholar] [CrossRef]
- Quy, R.J.; Shepherd, D.S.; Inglis, I.R. Bait avoidance and effectiveness of anticoagulant rodenticides against warfarin- and difenacoum-resistant populations of Norway rats (Rattus norvegicus). Crop Prot. 1992, 11, 14–20. [Google Scholar] [CrossRef]
- Henry, S.; Brown, P.R.; Van de Weyer, N.; Robinson, F.; Hinds, L.A. Effects of background food on alternative grain uptake and zinc phosphide efficacy in wild house mice. Pest Manag. Sci. 2022, 78, 1090–1098. [Google Scholar] [CrossRef]
- McGee, C.F.; McGilloway, D.A.; Buckle, A.P. Anticoagulant rodenticides and resistance development in rodent pest species—A comprehensive review. J. Stored Prod. Res. 2020, 88, 101688. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Suppression of food intake by house mouse (Mus musculus) following ingestion of brodifacoum-based rodenticide bait. Crop Prot. 2017, 100, 134–137. [Google Scholar] [CrossRef]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects 2021, 12, 590. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Efficacy of rodenticide baits with decreased concentrations of brodifacoum: Validation of the impact of the new EU anticoagulant regulation. Sci. Rep. 2019, 9, 16779. [Google Scholar] [CrossRef] [Green Version]
- ECHA. Guidance on the Biocidal Products Regulation: Volume II Efficacy—Assessment and Evaluation (Parts B + C), Version 4.0. 2021. Available online: https://echa.europa.eu/documents/10162/2324906/bpr_guidance_assessment_evaluation_part_vol_ii_part_bc_si.pdf/82523dd9-f251-d69e-338d-c3d1ac6b4db7?t=1639124056526 (accessed on 15 January 2022).
- EPPO Standards PP1/144 (2); Efficacy Evaluation of Rodenticides. Field Tests against Synanthropic Rodents (Mus musculus, Rattus norvegicus, R. rattus). European and Mediterranean Plant Protection Organization (EPPO): Paris, France, 1998.
- Pelz, H.J.; Prescott, C.V. Resistance to anticoagulant rodenticides. In Rodent Pests and Their Control, 2nd ed.; Buckle, A., Smith, R., Eds.; CABI International: Wallingford, UK, 2015; pp. 187–208. [Google Scholar]
- Blažić, T.; Jokić, G.; Götz, M.; Esther, A.; Vukša, M.; Đedović, S. Brodifacoum as a first choice rodenticide for controlling bromadiolone-resistant Mus musculus. J. Stored Prod. Res. 2018, 79, 29–33. [Google Scholar] [CrossRef]
- Jensen, P.G.; Curtis, P.D.; Dunn, J.A.; Austic, R.E.; Richmond, M.E. Field evaluation of capsaicin as a rodent aversion agent for poultry feed. Pest Manag. Sci. 2003, 59, 1007–1015. [Google Scholar] [CrossRef]
- Kaukeinen, D.E.; Rampaud, M. A review of brodifacoum efficacy in the US and worldwide. In Proceedings of the 12th Vertebrate Pest Conference, 12th Vertebrate Pest Conference, San Diego, CA, USA, 4–6 March 1986; Salmon, T.P., Ed.; University of California: Davis, CA, USA, 1986; pp. 16–50. [Google Scholar]
- O’Connor, C.E.; Booth, L.H. Palatability of rodent baits to wild house mice. Sci. Conserv. 2001, 184, 11. [Google Scholar]
- Morriss, G.C.; O’Connor, A.A.; Fisher, P. Factors influencing palatability and efficacy of toxic baits in ship rats, Norway rats and house mice. Sci. Conserv. 2008, 282, 22. [Google Scholar]
- Guidobono, J.S.; Leon, V.; Gomez Villafane, I.E.; Busch, M. Bromadiolone susceptibility in wild and laboratory Mus musculus L. (house mice) in Buenos Aires, Argentina. Pest Manag. Sci. 2010, 66, 162–167. [Google Scholar] [CrossRef]
- Witmer, G.W.; Moulton, R.S. Improving invasive house mice control and eradication strategies via more effective rodenticides. In Proceedings of the 26th Vertebrate Pest Conference, 26th Vertebrate Pest Conference, Waikoloa, HI, USA, 3–6 March 2014; Timm, R.M., O’Brien, J.M., Eds.; University of California: Davis, CA, USA, 2014; pp. 67–72. [Google Scholar]
- Rowe, F.P.; Bradfield, A. Trials of the anticoagulants rodenticide WBA 8119 against confined colonies of warfarin-resistant house mice (Mus musculus L.). J. Hyg. 1976, 77, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, R.J.; Visser, P.; Louw, H.; Ryan, P.G. Palatability and efficacy of rodent baits for eradicating house mice (Mus musculus) from Gough Island, Tristan da Cunha. Wildl. Res. 2011, 38, 196–203. [Google Scholar] [CrossRef]
- Pitt, W.C.; Driscoll, L.C.; Sugihara, R.T. Efficacy of rodenticide baits for the control of three invasive rodent species in Hawaii. Arch. Environ. Contam. Toxicol. 2011, 60, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Kappes, P.J.; Siers, S.R.; Leinbach, I.L.; Sugihara, R.T.; Jolley, W.J.; Plissner, J.H.; Flint, E.N.; Goodale, K.L.; Howald, G.R. Relative palatability and efficacy of brodifacoum-25D conservation rodenticide pellets for mouse eradication on Midway Atoll. Biol. Invasions 2022, 24, 1375–1392. [Google Scholar] [CrossRef]
- Valsecchi, P.; Singleton, G.R.; Price, W.J. Can social behaviour influence food preference of wild mice, Mus domesticus, in confined field populations? Aust. J. Zool. 1996, 44, 493–501. [Google Scholar] [CrossRef]
- Humphries, R.E.; Sibly, R.M.; Meehan, A.P. Cereal aversion in behaviourally resistant house mice in Birmingham, UK. Appl. Anim. Behav. Sci. 2000, 66, 323–333. [Google Scholar] [CrossRef]
- Fisher, P. Review of House Mouse (Mus musculus) Susceptibility to Anticoagulant Poisons; DOC Science Internal Series; Department of Conservation: Wellington, New Zealand, 2005; Volume 198, pp. 1–18. [Google Scholar]
- Buckle, A.; Prescott, C. The Current Status of Anticoagulant Resistance in Rats and Mice in the UK; Report from the Rodenticide Resistance Action Group of the United Kingdom to the Health and Safety Executive, Rodenticide Resistance Action Group: Reading, UK, 2012; p. 35. [Google Scholar]
- Leung, L.K.P.; Clark, N.M. Bait avoidance and habitat use by the roof rat, Rattus rattus, in a piggery. Int. Biodeter. Biodegr. 2005, 55, 77–78. [Google Scholar] [CrossRef]
- Modlinska, K.; Stryjek, R.; Pisula, W. Food neophobia in wild and laboratory rats (multi-strain comparison). Behav. Processes 2015, 113, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Modlinska, K.; Stryjek, R. Food neophobia in wild rats (Rattus norvegicus) inhabiting a changeable environment—A field study. PLoS ONE 2016, 11, e0156741. [Google Scholar] [CrossRef] [Green Version]
Bait | Formulation | Active Ingredient | Concentration of Active Ingredient (%) |
---|---|---|---|
Kumatox G | cereal-based pellets | warfarin | 0.45 |
Lanirat G (fish flour) | cereal-based pellets | bromadiolone | 0.005 |
Lanirat G (meat–bone flour) | cereal-based pellets | bromadiolone | 0.005 |
Lanirat G (sugar) | cereal-based pellets | bromadiolone | 0.005 |
Baraki G (fish flour) | cereal-based pellets | difethialone | 0.0025 |
Baraki G (sugar) | cereal-based pellets | difethialone | 0.0025 |
Hubex B | wax block | difethialone | 0.0025 |
Norat ATG | cereal-based pellets | brodifacoum | 0.005 |
Time to Death (Days) | ||
---|---|---|
Bait | No-Choice Feeding Test | Choice Feeding Test |
Kumatox G | 8.5 ± 4.6 | 7.8 ± 3.2 C |
Lanirat G (fish flour) | 5.8 ± 1.1 | 6.5 ± 2.3 B |
Lanirat G (meat–bone flour) | 6.5 ± 2.5 | 8.5 ± 2.3 C |
Lanirat G (sugar) | 7.2 ± 3.0 * | 10.3 ± 3.0 A,* |
Baraki G (fish flour) | 7.9 ± 2.3 | 6.5 ± 0.8 B |
Baraki G (sugar) | 5.8 ± 1.1 | 7.6 ± 2.7 C |
Hubex B | 6.9 ± 2.1 | 6.8 ± 1.2 B |
Norat ATG | 7.3 ± 2.9 | 6.6 ± 2.8 B |
Daily Bait Consumption (mg/g bw) | Daily Intake of Active Ingredient (mg/kg bw) | |||
---|---|---|---|---|
Bait | No-Choice Feeding Test | Choice Feeding Test | No-Choice Feeding Test | Choice Feeding Test |
Kumatox G | 136.6 ± 54.1 † | 95.9 ± 33.8 b,† | 614.80 ± 243.65 | 431.65 ± 152.28 |
Lanirat G (fish flour) | 133.8 ± 29.4 | 138.0 ± 16.5 a | 6.69 ± 1.47 | 6.90 ± 0.83 |
Lanirat G (meat–bone flour) | 124.2 ± 32.6 † | 90.4 ± 41.9 b,† | 6.21 ± 1.63 | 4.52 ± 2.09 |
Lanirat G (sugar) | 141.0 ± 44.0 † | 108.7 ± 25.0 c,† | 7.05 ± 2.20 | 5.43 ± 1.25 |
Baraki G (fish flour) | 107.4 ± 44.0 † | 72.3 ± 23.5 b,† | 2.69 ± 1.10 | 1.81 ± 0.59 |
Baraki G (sugar) | 101.1 ± 28.3 | 96.0 ± 39.8 c | 2.53 ± 0.71 | 2.40 ± 1.00 |
Hubex B | 115.9 ± 38.7 | 111.4 ± 53.3 c | 2.90 ± 0.97 | 2.78 ± 1.33 |
Norat ATG | 121.9 ± 34.2 † | 78.1 ± 37.7 b,† | 6.09 ± 1.71 | 3.90 ± 1.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankova, M.; Aulicky, R.; Stejskal, V. Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches. Agronomy 2022, 12, 1828. https://doi.org/10.3390/agronomy12081828
Frankova M, Aulicky R, Stejskal V. Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches. Agronomy. 2022; 12(8):1828. https://doi.org/10.3390/agronomy12081828
Chicago/Turabian StyleFrankova, Marcela, Radek Aulicky, and Vaclav Stejskal. 2022. "Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches" Agronomy 12, no. 8: 1828. https://doi.org/10.3390/agronomy12081828
APA StyleFrankova, M., Aulicky, R., & Stejskal, V. (2022). Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches. Agronomy, 12(8), 1828. https://doi.org/10.3390/agronomy12081828