Proleptic and Sylleptic Shoot Formation Is Affected by Rootstock Genotype in Two-Year-Old Branches of Almond Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tree Population
2.2. Data Collection
2.3. Statistical Analysis
2.4. Shoot Probability
3. Results
3.1. Architectural Description of Two-Year-Old Branches
3.2. Number of Proleptic and Sylleptic Shoots on Two-Year-Old Branches
3.3. Probability of Proleptic and Sylleptic Shoot Formation According to Nodal Position along the Branch
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balducci, F.; Capriotti, L.; Mazzoni, L.; Medori, I.; Albanesi, A.; Giovanni, B.; Giampieri, F.; Mezzetti, B.; Capocasa, F. The Rootstock Effects on Vigor, Production and Fruit Quality in Sweet Cherry (Prunus Avium L.). J. Berry Res. 2019, 9, 249–265. [Google Scholar] [CrossRef]
- Seleznyova, A.N.; Tustin, D.S.; Thorp, T.G. Apple Dwarfing Rootstocks and Interstocks Affect the Type of Growth Units Produced during the Annual Growth Cycle: Precocious Transition to Flowering Affects the Composition and Vigour of Annual Shoots. Ann. Bot. 2008, 101, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Tworkoski, T.; Fazio, G. Effects of Size-Controlling Apple Rootstocks on Growth, Abscisic Acid, and Hydraulic Conductivity of Scion of Different Vigor. Int. J. Fruit Sci. 2015, 15, 369–381. [Google Scholar] [CrossRef]
- Tworkoski, T.; Miller, S. Rootstock Effect on Growth of Apple Scions with Different Growth Habits. Sci. Hortic. 2007, 111, 335–343. [Google Scholar] [CrossRef]
- Van Hooijdonk, B.M.; Woolley, D.J.; Warrington, I.J.; Tustin, D.S. Initial Alteration of Scion Architecture by Dwarfing Apple Rootstocks May Involve Shoot-Root-Shoot Signalling by Auxin, Gibberellin, and Cytokinin. J. Hortic. Sci. Biotechnol. 2010, 85, 59–65. [Google Scholar] [CrossRef]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling Rootstock×scion Interactions to Improve Food Security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.M.; Celton, J.M.; Chagne, D.; Tustin, D.S.; Gardiner, S.E. Two Quantitative Trait Loci, Dw1 and Dw2, Are Primarily Responsible for Rootstock-Induced Dwarfing in Apple. Hortic. Res. 2015, 2, 15001. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Alcaraz-López, C.; Muries, B.; Mota-Cadenas, C.; Carvajal, M. Physiological Aspects of Rootstock-Scion Interactions. Sci. Hortic. 2010, 127, 112–118. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; Von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Costes, E.; Lauri, P.E.; Regnard, J.L. Analizing Fruit Tree Architecture: Implications for Tree Management and Fruit Production. Hort. Rev. 2006, 32, 1–59. [Google Scholar] [CrossRef]
- Barthélémy, D.; Caraglio, Y. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef]
- Costes, E.; Crespel, L.; Denoyes, B.; Morel, P.; Demene, M.-N.; Lauri, P.-E.; Wenden, B. Bud Structure, Position and Fate Generate Various Branching Patterns along Shoots of Closely Related Rosaceae Species: A Review. Front. Plant Sci. 2014, 5, 666. [Google Scholar] [CrossRef]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Dejong, T.M.; Guédon, Y.; Costes, E. Systematic Analysis of Branching Patterns of Three Almond Cultivars with Different Tree Architectures. J. Am. Soc. Hortic. Sci. 2013, 138, 407–415. [Google Scholar] [CrossRef]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Guédon, Y.; Costes, E.; Dejong, T.M. Differences in Proleptic and Epicormic Shoot Structures in Relation to Water Deficit and Growth Rate in Almond Trees (Prunus Dulcis). Ann. Bot. 2014, 113, 545–554. [Google Scholar] [CrossRef]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Guédon, Y.; Costes, E.; Dejong, T.M. How Different Pruning Severities Alter Shoot Structure: A Modelling Approach in Young “Nonpareil” Almond Trees. Funct. Plant Biol. 2015, 42, 325–335. [Google Scholar] [CrossRef]
- Fyhrie, K.; Prats-Llinàs, M.T.; López, G.; DeJong, T.M. How Does Peach Fruit Set on Sylleptic Shoots Borne on Epicormics Compare with Fruit Set on Proleptic Shoots? Eur. J. Hortic. Sci. 2018, 83, 3–11. [Google Scholar] [CrossRef]
- Montesinos, Á.; Thorp, G.; Grimplet, J.; Rubio-Cabetas, M. Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. Horticulturae 2021, 7, 159. [Google Scholar] [CrossRef]
- Hollender, C.A.; Hadiarto, T.; Srinivasan, C.; Scorza, R.; Dardick, C. A Brachytic Dwarfism Trait (Dw) in Peach Trees Is Caused by a Nonsense Mutation within the Gibberellic Acid Receptor PpeGID1c. New Phytol. 2016, 210, 227–239. [Google Scholar] [CrossRef]
- Hollender, C.A.; Dardick, C. Molecular Basis of Angiosperm Tree Architecture. New Phytol. 2015, 206, 541–556. [Google Scholar] [CrossRef]
- Liu, J.; Moore, S.; Chen, C.; Lindsey, K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. Mol. Plant 2017, 10, 1480–1496. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Xue, H.; Zhang, L.; Zhang, F.; Ou, C.; Wang, F.; Zhang, Z. Involvement of Auxin and Brassinosteroid in Dwarfism of Autotetraploid Apple (Malus × Domestica). Sci. Rep. 2016, 6, 26719. [Google Scholar] [CrossRef]
- Costa-Broseta, Á.; Castillo, M.; León, J. Nitrite Reductase 1 Is a Target of Nitric Oxide-Mediated Post-Translational Modifications and Controls Nitrogen Flux and Growth in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 7270. [Google Scholar] [CrossRef]
- Krouk, G.; Ruffel, S.; Gutiérrez, R.A.; Gojon, A.; Crawford, N.M.; Coruzzi, G.M.; Lacombe, B. A Framework Integrating Plant Growth with Hormones and Nutrients. Trends Plant Sci. 2011, 16, 178–182. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate Transport, Signaling, and Use Efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef]
- De Saint Germain, A.; Ligerot, Y.; Dun, E.A.; Pillot, J.-P.; Ross, J.J.; Beveridge, C.A.; Rameau, C. Strigolactones Stimulate Internode Elongation Independently of Gibberellins. Plant Physiol. 2013, 163, 1012–1025. [Google Scholar] [CrossRef]
- Depuydt, S.; Hardtke, C.S. Hormone Signalling Crosstalk in Plant Growth Regulation. Curr. Biol. 2011, 21, R365–R373. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.L.; Park, J.; Tyler, L.; Yusuke, J.; Qiu, K.; Nam, E.A.; Lumba, S.; Desveaux, D.; McCourt, P.; et al. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling. Plant Physiol. 2016, 171, 2760–2770. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, J.; Zhu, K.; Fang, Y.; Gao, Z.; He, Y.; Zhang, G.; Guo, L.; Zeng, D.; Dong, G.; et al. Identification and Characterization of SHORTENED UPPERMOST INTERNODE 1, a Gene Negatively Regulating Uppermost Internode Elongation in Rice. Plant Mol. Biol. 2011, 77, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Van Hooijdonk, B.; Woolley, D.; Warrington, I.; Tustin, S. Rootstocks modify scion architecture, endogenous hormones, and root growth of newly grafted ‘Royal Gala’ apple trees. J. Am. Soc. Hortic. Sci. 2011, 136, 93–102. [Google Scholar] [CrossRef]
- Wang, B.; Smith, S.M.; Li, J. Genetic Regulation of Shoot Architecture. Annu. Rev. Plant Biol. 2018, 69, 437–468. [Google Scholar] [CrossRef] [PubMed]
- Hearn, D.J. Perennial Growth, Form and Architecture of Angiosperm Trees. In Comparative and Evolutionary Genomics of Angiosperm Trees; Plant Genetics and Genomics: Crops and Models; Groover, A., Cronk, Q., Eds.; Springer: Cham, Switzerland, 2016; Volume 21, pp. 179–204. [Google Scholar] [CrossRef]
- Génard, M.; Pagès, L.; Kervella, K. Relationship between sylleptic branching and components of parent shoot development in the peach tree. Ann. Bot. 1994, 74, 465–470. [Google Scholar] [CrossRef]
- Gradziel, T.M. The utilization of wild relatives of cultivated almond and peach in modifying tree architecture for crop improvement. Acta Hortic. 2012, 948, 271–278. [Google Scholar] [CrossRef]
Cultivar | Rootstock | Length (mm) | Nb_IN | IN_L (mm) | |||
---|---|---|---|---|---|---|---|
Value | SD | Value | SD | Value | SD | ||
‘Isabelona’ | Rootpac® 20 | 824 b | 290 | 63.6 ab | 12.6 | 13.1 b | 1.4 |
Rootpac® 40 | 927 ab | 336 | 61.7 ab | 22.5 | 15.0 ab | 2.2 | |
Rootpac® R | 806 b | 212 | 55.6 ab | 11.6 | 14.4 b | 1.9 | |
Pilowred® | 786 b | 296 | 50.0 b | 16.6 | 15.6 ab | 2.6 | |
Garnem® | 1252 a | 245 | 72.8 a | 12.6 | 17.2 a | 1.2 | |
‘Guara’ | Rootpac® 20 | 789 c | 228 | 57.0 ab | 17.1 | 13.9 c | 1.9 |
Rootpac® 40 | 1272 bc | 288 | 69.7 a | 14.3 | 18.2 ab | 2.0 | |
Rootpac® R | 1014 bc | 320 | 50.3 b | 10.1 | 19.7 ab | 3.6 | |
Pilowred® | 831 c | 160 | 50.3 b | 11.9 | 16.9 bc | 2.7 | |
Garnem® | 1409 a | 272 | 66.5 ab | 13.6 | 21.3 a | 2.0 | |
‘Lauranne’ | Rootpac® 20 | 951 b | 191 | 55.8 b | 11.9 | 17.1 ab | 1.0 |
Rootpac® 40 | 1239 b | 180 | 77.8 b | 13.8 | 16.9 ab | 1.1 | |
Rootpac® R | 1159 b | 181 | 66.0 b | 11.6 | 17.7 b | 1.8 | |
Pilowred® | 1071 b | 332 | 58.1 b | 22.4 | 18.8 a | 1.7 | |
Garnem® | 1564 a | 262 | 99.3 a | 17.3 | 16.1 b | 1.7 |
Cultivar | Rootstock | Blind Nodes | Proleptic Shoots | Sylleptic Shoots | |||
---|---|---|---|---|---|---|---|
Number | SD | Number | SD | Number | SD | ||
‘Isabelona’ | Rootpac® 20 | 45.9 a | 9.8 | 15.0 a | 2.7 b | 2.2 | |
Rootpac® 40 | 45.9 a | 18.8 | 4.3 b | 3.7 | 9.4 b | 7.4 | |
Rootpac® R | 46.9 a | 11.3 | 6.1 b | 2.9 | 2.6 b | 2.4 | |
Pilowred® | 39.8 a | 10.4 | 7.1 b | 4.4 | 3.1 b | 4.3 | |
Garnem® | 51.3 a | 11.8 | 2.8 b | 2.4 | 18.7 b | 6.5 | |
‘Guara’ | Rootpac® 20 | 49.9 a | 14.4 | 6.7 ab | 4.3 | 0.4 c | 1.0 |
Rootpac® 40 | 53.6 a | 19.3 | 3.9 b | 2.9 | 12.2 a | 8.1 | |
Rootpac® R | 41.7 a | 7.2 | 5.2 ab | 4.8 | 3.4 bc | 6.6 | |
Pilowred® | 45.7 a | 9.7 | 4.1 b | 4.7 | 0.4 c | 1.3 | |
Garnem® | 43.1 a | 9.8 | 11.9 a | 7.2 | 11.5 bc | 8.6 | |
‘Lauranne’ | Rootpac® 20 | 44.0 ab | 7.5 | 11.2 a | 12.8 | 0.6 c | 1.3 |
Rootpac® 40 | 62.7 a | 8.3 | 6.7 a | 3.1 | 8.4 b | 4.4 | |
Rootpac® R | 53.2 b | 9.0 | 9.2 a | 3.9 | 3.6 bc | 3.0 | |
Pilowred® | 43.1 b | 18.5 | 6.9 a | 4.4 | 8.1 b | 5.8 | |
Garnem® | 64.9 ab | 13.7 | 15.1 a | 8.1 | 19.3 a | 8.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesinos, Á.; Grimplet, J.; Rubio-Cabetas, M.J. Proleptic and Sylleptic Shoot Formation Is Affected by Rootstock Genotype in Two-Year-Old Branches of Almond Trees. Agronomy 2022, 12, 2006. https://doi.org/10.3390/agronomy12092006
Montesinos Á, Grimplet J, Rubio-Cabetas MJ. Proleptic and Sylleptic Shoot Formation Is Affected by Rootstock Genotype in Two-Year-Old Branches of Almond Trees. Agronomy. 2022; 12(9):2006. https://doi.org/10.3390/agronomy12092006
Chicago/Turabian StyleMontesinos, Álvaro, Jérôme Grimplet, and María José Rubio-Cabetas. 2022. "Proleptic and Sylleptic Shoot Formation Is Affected by Rootstock Genotype in Two-Year-Old Branches of Almond Trees" Agronomy 12, no. 9: 2006. https://doi.org/10.3390/agronomy12092006
APA StyleMontesinos, Á., Grimplet, J., & Rubio-Cabetas, M. J. (2022). Proleptic and Sylleptic Shoot Formation Is Affected by Rootstock Genotype in Two-Year-Old Branches of Almond Trees. Agronomy, 12(9), 2006. https://doi.org/10.3390/agronomy12092006