Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda
Abstract
:1. Introduction
1.1. Distribution, Spread, and Host Plants
1.2. Biology
1.3. Nature and Symptoms of Damage
2. Management Approaches
2.1. Agronomic Management
2.1.1. Sowing Window
2.1.2. Tillage and Land Preparation
2.1.3. Nutrient Management
2.1.4. Cropping System Measures
2.1.5. Trap Cropping
2.1.6. Pheromones Traps
2.2. Biotechnological Approach
2.2.1. Plant Resistance
2.2.2. Genetic Engineering
2.2.3. Gene Editing Approach (CRISPR-Cas System)
2.3. Chemical Management
Poison Baits
Insecticides
2.4. Biological Approaches
2.4.1. Biological Control
2.4.2. Bird Perches
2.4.3. Use of Botanicals
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Andorf, C.; Beavis, W.D.; Hufford, M.; Smith, S.; Suza, W.P.; Wang, K.; Woodhouse, M.; Yu, J.; Lübberstedt, T. Technological advances in maize breeding: Past, present and future. Theor. Appl. Genet. 2019, 132, 817–849. [Google Scholar] [CrossRef] [PubMed]
- Kaul, J.; Jain, K.; Olakh, D. An overview on role of yellow maize in food, feed and nutrition security. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 3037–3048. [Google Scholar] [CrossRef]
- Naz, S.; Fatima, Z.; Iqbal, P.; Khan, A.; Zakir, I.; Noreen, S.; Younis, H.; Abbas, G.; Ahmad, S. Agronomic crops: Types and uses. In Agronomic Crops; Springer: Singapore, 2019; pp. 1–18. [Google Scholar]
- Gamage, A.; Liyanapathiranage, A.; Manamperi, A.; Gunathilake, C.; Mani, S.; Merah, O.; Madhujith, T. Applications of Starch Biopolymers for a Sustainable Modern Agriculture. Sustainability 2022, 14, 6085. [Google Scholar] [CrossRef]
- Malenica, N.; Dunić, J.A.; Vukadinović, L.; Cesar, V.; Šimić, D. Genetic approaches to enhance multiple stress tolerance in maize. Genes 2021, 12, 1760. [Google Scholar] [CrossRef] [PubMed]
- Brévault, T.; Ndiaye, A.; Badiane, D.; Bal, A.B.; Sembène, M.; Silvie, P.; Haran, J. First records of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in Senegal. Entomol. Gen. 2018, 37, 129–142. [Google Scholar] [CrossRef]
- Bueno, R.C.O.d.F.; Carneiro, T.R.; Bueno, A.d.F.; Pratissoli, D.; Fernandes, O.A.; Vieira, S.S. Parasitism capacity of Telenomus remus Nixon (Hymenoptera: Scelionidae) on Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) eggs. Braz. Arch. Biol. Technol. 2010, 53, 133–139. [Google Scholar] [CrossRef]
- Nagoshi, R.N.; Goergen, G.; Tounou, K.A.; Agboka, K.; Koffi, D.; Meagher, R.L. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 2018, 8, 2710. [Google Scholar] [CrossRef]
- Pogue, M.G. A World Revision of the Genus Spodoptera Guenée: (Lepidoptera: Noctuidae); American Entomological Society: Philadelphia, PA, USA, 2002; Volume 43. [Google Scholar]
- Prasanna, B.; Huesing, J.; Eddy, R.; Peschke, V. Fall Armyworm in Africa: A Guide for Integrated Pest Management; USAID; CIMMYT: Mexico City, Mexico, 2018. [Google Scholar]
- Deshmukh, S.; Pavithra, H.; Kalleshwaraswamy, C.; Shivanna, B.; Maruthi, M.; Mota-Sanchez, D. Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) on maize in India. Fla. Entomol. 2020, 103, 221–227. [Google Scholar] [CrossRef]
- Kenis, M.; Benelli, G.; Biondi, A.; Calatayud, P.; Day, R.; Desneux, N.; Harrison, R.; Kriticos, D.; Rwomushana, I.; van den Berg, J. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomol. Gen. 2022. [Google Scholar]
- Cock, M.J.; Beseh, P.K.; Buddie, A.G.; Cafá, G.; Crozier, J. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Sci. Rep. 2017, 7, 4103. [Google Scholar] [CrossRef]
- Navik, O.; Shylesha, A.; Patil, J.; Venkatesan, T.; Lalitha, Y.; Ashika, T. Damage, distribution and natural enemies of invasive fall armyworm Spodoptera frugiperda (JE smith) under rainfed maize in Karnataka, India. Crop Prot. 2021, 143, 105536. [Google Scholar] [CrossRef]
- Hafeez, M.; Li, X.; Ullah, F.; Zhang, Z.; Zhang, J.; Huang, J.; Khan, M.M.; Chen, L.; Ren, X.; Zhou, S. Behavioral and physiological plasticity provides insights into molecular based adaptation mechanism to strain shift in Spodoptera frugiperda. Int. J. Mol. Sci. 2021, 22, 10284. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; He, P.-C.; Hu, L.; Chi, X.-L.; Keller, M.A.; Chu, D. Host selection and adaptation of the invasive pest Spodoptera frugiperda to indica and japonica rice cultivars. Entomol. Gen. 2022, 42, 403–411. [Google Scholar] [CrossRef]
- Westbrook, J.; Fleischer, S.; Jairam, S.; Meagher, R.; Nagoshi, R. Multigenerational migration of fall armyworm, a pest insect. Ecosphere 2019, 10, e02919. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.; Colmenarez, Y.; Corniani, N.; Early, R.; Godwin, J. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef]
- Baudron, F.; Zaman-Allah, M.A.; Chaipa, I.; Chari, N.; Chinwada, P. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. Crop Prot. 2019, 120, 141–150. [Google Scholar] [CrossRef]
- Kumela, T.; Simiyu, J.; Sisay, B.; Likhayo, P.; Mendesil, E.; Gohole, L.; Tefera, T. Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag. 2019, 65, 1–9. [Google Scholar] [CrossRef]
- Du Plessis, H.; Schlemmer, M.-L.; van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef]
- Shylesha, A.; Jalali, S.; Gupta, A.; Varshney, R.; Venkatesan, T.; Shetty, P.; Ojha, R.; Ganiger, P.C.; Navik, O.; Subaharan, K. Studies on new invasive pest Spodoptera frugiperda (J.E. Smith)(Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 2018, 32, 1–7. [Google Scholar] [CrossRef]
- Wu, P.; Ren, Q.; Wang, W.; Ma, Z.; Zhang, R. A bet-hedging strategy rather than just a classic fast life-history strategy exhibited by invasive fall armyworm. Entomol. Gen. 2021, 41, 337–344. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.; Zhou, H.; Ren, Y.; Li, Z.; Xing, L.; Zhang, B.; Xi, Q.; Bo, L. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar] [CrossRef]
- Kumar, R.M.; Nadagouda, B.; Hiremath, S. Studies on farmers perception about maize based cropping system in irrigated ecosystem of Gataprabha left bank cannel. Plant Arch. 2015, 15, 959–961. [Google Scholar]
- Rahmathulla, V.; Kumar, C.; Angadi, B.; Sivaprasad, V. Association of climatic factors on population dynamics of leaf roller, Diaphania pulverulentalis hampson (Lepidoptera: Pyralidae) in mulberry plantations of sericulture seed farm. Psyche 2012, 2012, 186214. [Google Scholar]
- Mitchell, E.R. Relationship of planting date to damage by earworms in commercial sweet corn in north central Florida. Fla. Entomol. 1978, 61, 251–255. [Google Scholar] [CrossRef]
- Teare, I.; Wright, D.; Sprenkel, R. Early planting reduces fall armyworm problems in no-till tropical corn. In Conservation Tillage for Agriculture in the 1990’s; North Carolina State University: Raleigh, NC, USA, 1990; p. 38. [Google Scholar]
- Kandel, S.; Poudel, R. Fall armyworm (Spodoptera Frugiperda) in maize: An emerging threat in Nepal and its management. Int. J. Appl. Sci. Biotechnol. 2020, 8, 305–309. [Google Scholar] [CrossRef]
- FAO. Integrated Management of the Fall Armyworm on Maize: A Guide for Farmer Field Schools in Africa; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Tippannavar, P.; Talekar, S.; Mallapur, C.; Kachapur, R.; Salakinkop, S.; Harlapur, S. An outbreak of fall armyworm in Indian subcontinent: A new invasive pest on maize. Maydica 2019, 64, 10. [Google Scholar]
- Bhusal, S.; Chapagain, E. Threats of fall armyworm (Spodoptera frugiperda) incidence in Nepal and it’s integrated management—A review. J. Agric. Nat. Resour. 2020, 3, 345–359. [Google Scholar] [CrossRef]
- Alyokhin, A.; Nault, B.; Brown, B. Soil conservation practices for insect pest management in highly disturbed agroecosystems—A review. Entomol. Exp. Appl. 2020, 168, 7–27. [Google Scholar] [CrossRef]
- Rowen, E.K.; Regan, K.H.; Barbercheck, M.E.; Tooker, J.F. Is tillage beneficial or detrimental for insect and slug management? A meta-analysis. Agric. Ecosyst. Environ. 2020, 294, 106849. [Google Scholar] [CrossRef]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Kumar, H.; Mihm, J.A. Fall armyworm (Lepidoptera: Noctuidae), southwestern corn borer (Lepidoptera: Pyralidae) and sugarcane borer (Lepidoptera: Pyralidae) damage and grain yield of four maize hybrids in relation to four tillage systems. Crop Prot. 2002, 21, 121–128. [Google Scholar] [CrossRef]
- Clark, M.S. Generalist Predators in Reduced-Tillage Corn: Predation on Armyworm, Habitat Preferences, and a Method to Estimate Absolute Densities. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 1993. [Google Scholar]
- Roberts, P.M.; All, J.N. Hazard for fall armyworm (Lepidoptera: Noctuidae) infestation of maize in double-cropping systems using sustainable agricultural practices. Fla. Entomol. 1993, 76, 276–283. [Google Scholar] [CrossRef]
- Rivers, A.; Barbercheck, M.; Govaerts, B.; Verhulst, N. Conservation agriculture affects arthropod community composition in a rainfed maize–wheat system in central Mexico. Appl. Soil Ecol. 2016, 100, 81–90. [Google Scholar] [CrossRef]
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.R.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.T.; Cairns, J.E. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 2015, 30, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Rusinamhodzi, L.; Setimela, P.; Walker, F.; Eash, N.S. Conservation agriculture and drought-tolerant germplasm: Reaping the benefits of climate-smart agriculture technologies in central Mozambique. Renew. Agric. Food Syst. 2016, 31, 414–428. [Google Scholar] [CrossRef]
- Harrison, R.D.; Thierfelder, C.; Baudron, F.; Chinwada, P.; Midega, C.; Schaffner, U.; van den Berg, J. Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. J. Environ. Manag. 2019, 243, 318–330. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems. Soil Tillage Res. 2003, 72, 203–211. [Google Scholar] [CrossRef]
- Morales, H.; Perfecto, I.; Ferguson, B. Traditional fertilization and its effect on corn insect populations in the Guatemalan highlands. Agric. Ecosyst. Environ. 2001, 84, 145–155. [Google Scholar] [CrossRef]
- Singh, G. Improving Integrated Pest Management Strategies for the Fall Armyworm (Lepidoptera: Noctuidae) in Turfgrass. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2020. [Google Scholar]
- Kumar, R.M.; Girijesh, G. Yield potential, biological feasibility, economic viability of maize (Zea mays L.) and local field bean (Dolichos lablab L.) intercropping system in southern transitional zone of Karnataka. Res. Environ. Life Sci. 2015, 8, 27–30. [Google Scholar]
- Cannon, N.D.; Kamalongo, D.M.; Conway, J.S. The effect of bi-cropping wheat (Triticum aestivum) and beans (Vicia faba) on forage yield and weed competition. Biol. Agric. Hortic. 2020, 36, 1–15. [Google Scholar] [CrossRef]
- Sida, T.S.; Baudron, F.; Kim, H.; Giller, K.E. Climate-smart agroforestry: Faidherbia albida trees buffer wheat against climatic extremes in the Central Rift Valley of Ethiopia. Agric. For. Meteorol. 2018, 248, 339–347. [Google Scholar] [CrossRef]
- Van Huis, A. Integrated Pest Management in the Small Farmer’s Maize Crop in Nicaragua; Wageningen University and Research: Wageningen, The Netherlands, 1981. [Google Scholar]
- Khan, Z.R.; Midega, C.A.; Bruce, T.J.; Hooper, A.M.; Pickett, J.A. Exploiting phytochemicals for developing a ‘push–pull’crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef] [PubMed]
- Midega, C.A.; Khan, Z.R.; Pickett, J.A.; Nylin, S. Host plant selection behaviour of Chilo partellus and its implication for effectiveness of a trap crop. Entomol. Exp. Appl. 2011, 138, 40–47. [Google Scholar] [CrossRef]
- Altieri, M.A.; Francis, C.A.; Van Schoonhoven, A.; Doll, J.D. A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crops Res. 1978, 1, 33–49. [Google Scholar] [CrossRef]
- Altieri, M. Diversification of corn agroecosystems as a means of regulating fall armyworm [Spodoptera frugiperda] populations. Fla. Entomol. 1980, 63, 450–456. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.; Hassanali, A.; Pickett, J.A.; Wadhams, L.J. Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci. 2007, 47, 730–734. [Google Scholar] [CrossRef]
- Tanyi, C.B.; Nkongho, R.N.; Okolle, J.N.; Tening, A.S.; Ngosong, C. Effect of intercropping beans with maize and botanical extract on fall armyworm (Spodoptera frugiperda) infestation. Int. J. Agron. 2020, 2020, 4618190. [Google Scholar] [CrossRef]
- Patil, S.B.; Goyal, A.; Chitgupekar, S.S.; Kumar, S.; El-Bouhssini, M. Sustainable management of chickpea pod borer. A review. Agron. Sustain. Dev. 2017, 37, 20. [Google Scholar] [CrossRef]
- Mooventhan, P.; Baskaran, R.; Kaushal, J.; Kumar, J. Integrated Management of Fall Armyworm in Maize; ICAR-National Institute of Biotic Stress Management: Raipur, India, 2019; p. 225. [Google Scholar]
- Guera, O.G.M.; Castrejón-Ayala, F.; Robledo, N.; Jiménez-Pérez, A.; Sánchez-Rivera, G. Plant selection for the establishment of push–pull strategies for zea mays–spodoptera frugiperda pathosystem in Morelos, Mexico. Insects 2020, 11, 349. [Google Scholar] [CrossRef]
- Islam, M.A. Pheromone use for insect control: Present status and prospect in Bangladesh. Int. J. Agric. Res. Innov. Technol. 2012, 2, 47–55. [Google Scholar] [CrossRef]
- Jiang, N.J.; Mo, B.T.; Guo, H.; Yang, J.; Tang, R.; Wang, C.Z. Revisiting the sex pheromone of the fall armyworm Spodoptera frugiperda, a new invasive pest in South China. Insect Sci. 2022, 29, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Cruz, I.; Figueiredo, M.d.L.C.; Silva, R.B.d.; Silva, I.F.d.; Paula, C.d.; Foster, J.E. Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize. Int. J. Pest Manag. 2012, 58, 83–90. [Google Scholar] [CrossRef]
- Batista-Pereira, L.G.; Stein, K.; de Paula, A.F.; Moreira, J.A.; Cruz, I.; Figueiredo, M.d.L.C.; Perri, J.; Corrêa, A.G. Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. J. Chem. Ecol. 2006, 32, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- Sanches, R.E.; Suzukawa, A.K.; Contreras-Soto, R.I.; Rizzardi, D.A.; Kuki, M.C.; Zeffa, D.M.; Albuquerque, F.A.d.; Scapim, C.A. Multivariate analysis reveals key traits of fall armyworm resistance in tropical popcorn genotypes. Bragantia 2019, 78, 175–182. [Google Scholar] [CrossRef]
- Chen, Y.; Ni, X.; Buntin, G.D. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. J. Chem. Ecol. 2009, 35, 297–306. [Google Scholar] [CrossRef]
- Smith, W.; Shivaji, R.; Williams, W.; Luthe, D.; Sandoya, G.; Smith, C.; Sparks, D.; Brown, A. A maize line resistant to herbivory constitutively releases (E)-β-caryophyllene. J. Econ. Entomol. 2012, 105, 120–128. [Google Scholar] [CrossRef]
- Ni, X.; Chen, Y.; Hibbard, B.E.; Wilson, J.P.; Williams, W.P.; Buntin, G.D.; Ruberson, J.R.; Li, X. Foliar resistance to fall armyworm in corn germplasm lines that confer resistance to root-and ear-feeding insects. Fla. Entomol. 2011, 94, 971–981. [Google Scholar] [CrossRef]
- Alvarez, M.d.P.; Miranda Filho, J.B.d. Diallel crossing among maize populations for resistance to fall armyworm. Sci. Agric. 2002, 59, 731–741. [Google Scholar] [CrossRef]
- Kasoma, C.; Shimelis, H.; Laing, M.; Shayanowako, A.I.; Mathew, I. Screening of inbred lines of tropical maize for resistance to fall armyworm, and for yield and yield-related traits. Crop Prot. 2020, 136, 105218. [Google Scholar] [CrossRef]
- De Souza Tavares, W.; Cruz, I.; Petacci, F.; de Assis Júnior, S.L.; de Sousa Freitas, S.; Zanuncio, J.C.; Serrão, J.E. Potential use of Asteraceae extracts to control Spodoptera frugiperda (Lepidoptera: Noctuidae) and selectivity to their parasitoids Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) and Telenomus remus (Hymenoptera: Scelionidae). Ind. Crops Prod. 2009, 30, 384–388. [Google Scholar] [CrossRef]
- Hruska, A.J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 2019, 14, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Hallerman, E.M.; Wu, K.; Peng, Y. Insect-resistant genetically engineered crops in China: Development, application, and prospects for use. Annu. Rev. Entomol. 2020, 65, 273–292. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Romeis, J. Managing the invasive fall armyworm through biotech crops: A Chinese perspective. Trends Biotechnol. 2021, 39, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Romeis, J.; Naranjo, S.E.; Meissle, M.; Shelton, A.M. Genetically engineered crops help support conservation biological control. Biol. Control 2019, 130, 136–154. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 2017, 35, 926–935. [Google Scholar] [CrossRef]
- Li, J.-J.; Shi, Y.; Wu, J.-N.; Li, H.; Smagghe, G.; Liu, T.-X. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. J. Insect Physiol. 2021, 135, 104325. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Gul, H.; Tariq, K.; Hafeez, M.; Desneux, N.; Gao, X.; Song, D. RNA interference-mediated silencing of ecdysone receptor (EcR) gene causes lethal and sublethal effects on melon aphid, Aphis gossypii. Entomol. Gen. 2022. [Google Scholar] [CrossRef]
- Books, A. New Biotechnological Approaches to Insect Pest Management and Crop Protection; Gene Editing Approach (CRISPR-Cas System); University of Nebraska—Lincoln: Lincoln, NE, USA, 2019. [Google Scholar]
- Wu, K. Management strategies of fall armyworm (Spodoptera frugiperda) in China. Plant Prot. 2020, 46, 1–5. [Google Scholar]
- Zhu, G.-H.; Chereddy, S.C.; Howell, J.L.; Palli, S.R. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. Insect Biochem. Mol. Biol. 2020, 122, 103373. [Google Scholar] [CrossRef]
- Baranek, J.; Banaszak, M.; Lorent, D.; Kaznowski, A.; Konecka, E. Insecticidal activity of Bacillus thuringiensis Cry1, Cry2 and Vip3 toxin combinations in Spodoptera exigua control: Highlights on synergism and data scoring. Entomol. Gen. 2021, 41, 71–82. [Google Scholar] [CrossRef]
- Liang, H.-Y.; Yang, X.-M.; Sun, L.-J.; Zhao, C.-D.; Chi, H.; Zheng, C.-Y. Sublethal effect of spirotetramat on the life table and population growth of Frankliniella occidentalis (Thysanoptera: Thripidae). Entomol. Gen. 2021, 41, 219–231. [Google Scholar] [CrossRef]
- Gul, H.; Ullah, F.; Hafeez, M.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Sublethal concentrations of clothianidin affect fecundity and key demographic parameters of the chive maggot, Bradysia odoriphaga. Ecotoxicology 2021, 30, 1150–1160. [Google Scholar] [CrossRef]
- Sisay, B.; Simiyu, J.; Malusi, P.; Likhayo, P.; Mendesil, E.; Elibariki, N.; Wakgari, M.; Ayalew, G.; Tefera, T. First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa. J. Appl. Entomol. 2018, 142, 800–804. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Desneux, N.; Gao, X.; Song, D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Gen. 2019, 39, 325–337. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Thiamethoxam induces transgenerational hormesis effects and alteration of genes expression in Aphis gossypii. Pestic. Biochem. Physiol. 2020, 165, 104557. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Ullah, F.; Ding, Q.; Gao, X.; Desneux, N.; Song, D. Comparison of full-length transcriptomes of different imidacloprid-resistant strains of Rhopalosiphum padi (L.). Entomol. Gen. 2021, 41, 289–304. [Google Scholar] [CrossRef]
- Cutler, G.C.; Amichot, M.; Benelli, G.; Guedes, R.N.C.; Qu, Y.; Rix, R.R.; Ullah, F.; Desneux, N. Hormesis and insects: Effects and interactions in agroecosystems. Sci. Total Environ. 2022, 825, 153899. [Google Scholar] [CrossRef] [PubMed]
- Gowda, G.B.; Sahu, M.; Ullah, F.; Patil, N.B.; Adak, T.; Pokhare, S.; Mahendiran, A.; Rath, P.C. Insecticide-induced hormesis in a factitious host, Corcyra cephalonica, stimulates the development of its gregarious ecto-parasitoid, Habrobracon hebetor. Biol. Control 2021, 160, 104680. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Babin, A.; Lemauf, S.; Rebuf, C.; Poirié, M.; Gatti, J.-L. Effects of Bacillus thuringiensis kurstaki bioinsecticide on two non-target Drosophila larval endoparasitoid wasps. Entomol. Gen. 2022, 42, 611–620. [Google Scholar] [CrossRef]
- Akhtar, Z.R.; Tariq, K.; Handler, A.M.; Ali, A.; Ullah, F.; Ali, F.; Zang, L.-S.; Gulzar, A.; Ali, S. Toxicological risk assessment of some commonly used insecticides on Cotesia flavipes, a larval parasitoid of the spotted stem borer Chilo partellus. Ecotoxicology 2021, 30, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-Y.; Xu, W.; Desneux, N.; Nkunika, P.O.; Bao, H.-P.; Zang, L.-S. Spodoptera frugiperda egg mass scale thickness modulates Trichogramma parasitoid performance. Entomol. Gen. 2022, 42, 589–596. [Google Scholar] [CrossRef]
- Gowda, B.; Pandi, G.G.P.; Ullah, F.; Patil, N.B.; Sahu, M.; Adak, T.; Pokhare, S.; Yadav, M.K.; Mahendiran, A.; Mittapelly, P.; et al. Performance of Trichogramma japonicum under field conditions as a function of the factitious host species used for mass rearing. PLoS ONE 2021, 16, e0256246. [Google Scholar]
- Molina-Ochoa, J.; Carpenter, J.E.; Heinrichs, E.A.; Foster, J.E. Parasitoids and parasites of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas and Caribbean Basin: An inventory. Fla. Entomol. 2003, 86, 254–289. [Google Scholar] [CrossRef]
- Pair, S.; Gross, H., Jr. Field mortality of pupae of the fall armyworm, Spodoptera frugiperda (JE Smith), by predators and a newly discovered parasitoid, Diapetimorpha introita. J. Ga. Entomol. Soc. 2012, 19, 22–26. [Google Scholar]
- Tendeng, E.; Labou, B.; Diatte, M.; Djiba, S.; Diarra, K. The fall armyworm Spodoptera frugiperda (JE Smith), a new pest of maize in Africa: Biology and first native natural enemies detected. Int. J. Biol. Chem. Sci. 2019, 13, 1011–1026. [Google Scholar] [CrossRef]
- Huang, N.-X.; Jaworski, C.; Desneux, N.; Zhang, F.; Yang, P.-Y.; Wang, S. Long-term, large-scale releases of Trichogramma promote pesticide decrease in maize in northeastern China. Entomol. Gen. 2020, 40, 331–335. [Google Scholar] [CrossRef]
- Zang, L.-S.; Wang, S.; Zhang, F.; Desneux, N. Biological control with Trichogramma in China: History, present status and perspectives. Annu. Rev. Entomol. 2021, 66, 463–484. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.-C.; Du, W.-M.; Zang, L.-S.; Ruan, C.-C.; Zhang, J.-J.; Zou, Z.; Monticelli, L.S.; Harwood, J.D.; Desneux, N. Multi-parasitism: A promising approach to simultaneously produce Trichogramma chilonis and T. dendrolimi on eggsof Antheraea pernyi. Entomol. Gen. 2021, 41, 627–636. [Google Scholar] [CrossRef]
- Santoiemma, G.; Tonina, L.; Marini, L.; Duso, C.; Mori, N. Integrated management of Drosophila suzukii in sweet cherry orchards. Entomol. Gen. 2020, 40, 297–305. [Google Scholar] [CrossRef]
- Akutse, K.S.; Khamis, F.M.; Ambele, F.C.; Kimemia, J.W.; Ekesi, S.; Subramanian, S. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 2020, 177, 107477. [Google Scholar] [CrossRef] [PubMed]
- Assefa, F. Status of fall armyworm (Spodoptera frugiperda), biology and control measures on maize crop in Ethiopia: A review. Int. J. Entomol. Res. 2018, 6, 75–85. [Google Scholar] [CrossRef]
- Franz, L.; Raming, K.; Nauen, R. Recombinant expression of ABCC2 variants confirms the importance of mutations in extracellular loop 4 for Cry1F resistance in fall armyworm. Toxins 2022, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.G.; Wennmann, J.T.; Goergen, G.; Bryon, A.; Ros, V.I. Viruses of the fall armyworm Spodoptera frugiperda: A review with prospects for biological control. Viruses 2021, 13, 2220. [Google Scholar] [CrossRef]
- Valicente, F.H. Entomopathogenic viruses. In Natural Enemies of Insect Pests in Neotropical Agroecosystems; Springer: Cham, Switzerland, 2019; pp. 137–150. [Google Scholar]
- Lei, C.; Yang, S.; Lei, W.; Nyamwasa, I.; Hu, J.; Sun, X. Displaying enhancing factors on the surface of occlusion bodies improves the insecticidal efficacy of a baculovirus. Pest Manag. Sci. 2020, 76, 1363–1370. [Google Scholar] [CrossRef]
- Souza, C.; Silveira, L.; Souza, B.; Nascimento, P.; Damasceno, N.; Mendes, S. Efficiency of biological control for fall armyworm resistant to the protein Cry1F. Braz. J. Biol. 2020, 81, 154–163. [Google Scholar] [CrossRef]
- Nyffeler, M.; Şekercioğlu, Ç.H.; Whelan, C.J. Insectivorous birds consume an estimated 400–500 million tons of prey annually. Sci. Nat. 2018, 105, 47. [Google Scholar] [CrossRef]
- Patil, S.D.; Gaikwad, A.B. Awareness and knowledge of fall armyworm pest amongst maize growers in Dhule district. J. Entomol. Zool. Stud. 2021, 9, 122–126. [Google Scholar]
- Jones, G.A.; Sieving, K.E.; Avery, M.L.; Meagher, R.L. Parasitized and non-parasitized prey selectivity by an insectivorous bird. Crop Prot. 2005, 24, 185–189. [Google Scholar] [CrossRef] [Green Version]
- Badshah, K.; Ullah, F.; Ahmad, B.; Ahmad, S.; Alam, S.; Ullah, M.; Jamil, M.; Sardar, S. Management of Lycoriella ingenua (Diptera: Sciaridae) on oyster mushroom (Pleurotus ostreatus) through different botanicals. Int. J. Trop. Insect Sci. 2021, 41, 1435–1440. [Google Scholar] [CrossRef]
- Rioba, N.B.; Stevenson, P.C. Opportunities and scope for botanical extracts and products for the management of fall armyworm (Spodoptera frugiperda) for smallholders in Africa. Plants 2020, 9, 207. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Ullah, F.; Khan, M.A.; Ahmad, S.; Jamil, M.; Sardar, S.; Tariq, K.; Ahmed, N. Efficacy of various natural plant extracts and the synthetic insecticide cypermethrin 25EC against Leucinodes orbonalis and their impact on natural enemies in brinjal crop. Int. J. Trop. Insect Sci. 2022, 42, 173–182. [Google Scholar] [CrossRef]
- Martínez, A.M.; Aguado-Pedraza, A.J.; Viñuela, E.; Rodríguez-Enríquez, C.L.; Lobit, P.; Gómez, B.; Pineda, S. Effects of ethanolic extracts of Argemone ochroleuca (Papaveraceae) on the food consumption and development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 2017, 100, 339–345. [Google Scholar] [CrossRef]
- Mkenda, P.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.; Mtei, K.; Belmain, S.R. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS ONE 2015, 10, e0143530. [Google Scholar] [CrossRef]
- Mkindi, A.G.; Tembo, Y.L.; Mbega, E.R.; Smith, A.K.; Farrell, I.W.; Ndakidemi, P.A.; Stevenson, P.C.; Belmain, S.R. Extracts of common pesticidal plants increase plant growth and yield in common bean plants. Plants 2020, 9, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accessions | Reference |
---|---|
Mp708, FAW7050 | Chen et al. 2009 [66] |
Mp708, FAW7061 | Ni et al. 2011 [67] |
CMS14C and MIRT | Alvarez and Miranda Filho 2002 [68] |
Pool 16, ZM7114 CZL1310c, CML444-B, CZL15220 and TL1512847 | Kasoma et al. 2020 [69] |
MBR; MIRT; Pop. 304; Pop. 392; Pop. FAWCGA; Pop. FAW-Tuxpeno; Pop. FAW-NonTuxpeno | |
Mp496; Mp701-Mp708, Mp713; Mp714; Mp716 | |
Aelton, Arzm 05 083, Composto Chico, Composto Gaúcha, Márcia, Mateus, and Viviane | de Souza Tavares et al. 2009 [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.M.; Gadratagi, B.-G.; Paramesh, V.; Kumar, P.; Madivalar, Y.; Narayanappa, N.; Ullah, F. Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy 2022, 12, 2150. https://doi.org/10.3390/agronomy12092150
Kumar RM, Gadratagi B-G, Paramesh V, Kumar P, Madivalar Y, Narayanappa N, Ullah F. Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda. Agronomy. 2022; 12(9):2150. https://doi.org/10.3390/agronomy12092150
Chicago/Turabian StyleKumar, Revappa Mohan, Basana-Gowda Gadratagi, Venkatesh Paramesh, Parveen Kumar, Yamanura Madivalar, Nagesha Narayanappa, and Farman Ullah. 2022. "Sustainable Management of Invasive Fall Armyworm, Spodoptera frugiperda" Agronomy 12, no. 9: 2150. https://doi.org/10.3390/agronomy12092150