Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Material
2.2. Zn Treatment
2.3. Plant Analyses
2.3.1. Biometric Analysis
2.3.2. Membrane Disintegration
2.3.3. Relative Chl Content (SPAD) and Fv/Fm of Chl a Fluorescence
2.4. Zn Determination in the Soil and Plant Material
2.5. Bioaccumulation Factor
2.6. Toxicological Risk Assessment
2.7. Statistical Analysis
3. Results
3.1. Plant Condition after Three Weeks of Growth in Zn-Spiked Soil
3.2. Plant Physiology between the Third and Eight Week
3.2.1. Membrane Disintegration
3.2.2. SPAD and Fv/Fm Values
3.3. Final Head Biomass, and Zn Bioaccumulation
3.4. Toxicological Risk Assessment of Cabbage Consumption
4. Discussion
4.1. Seedlings’ Response to Zn
4.2. Plant Physiology between the Third and Eighth Week
4.3. Final Head Biomass and Zn Bioaccumulation and Distribution
4.4. Toxicological Risk of Cabbage Consumption
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Barrameda-Medina, Y.; Montesinos-Pereira, D.; Romero, L.; Ruiz, J.M.; Blasco, B. Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environ. Exp. Bot. 2014, 107, 98–104. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Kicińska, A.; Smreczak, B.; Jadczyszyn, J. Soil Bioavailability of Cadmium, Lead, and Zinc in the Areas of Zn–Pb Ore Mining and Processing (Bukowno, Olkusz). J. Ecol. Eng. 2019, 20, 84–92. [Google Scholar] [CrossRef]
- Kicińska, A. Assessment of the road traffic impact on accumulation of selected elements in soils developed on Krynica and Bystrica subunit (Magura Nappe, Polish Outer Carpathians). Carpathian J. Earth Environ. Sci. 2016, 11, 245–254. [Google Scholar]
- Malinowska, E.; Jankowski, K.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Kolczarek, R.; Jankowska, J.; Ciepiela, G.A. Content of Zinc and Copper in Selected Plants Growing Along a Motorway. Bull. Environ. Contam. Toxicol. 2015, 95, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Antonkiewicz, J.; Pełka, R.; Bik-Małodzińska, M.; Żukowska, G.; Gleń-Karolczyk, K. The effect of cellulose production waste and municipal sewage sludge on biomass and heavy metal uptake by a plant mixture. Environ. Sci. Pollut. Res. 2018, 25, 31101–31112. [Google Scholar] [CrossRef]
- White, P.J.; Pongrac, P.; Sneddon, C.C.; Thompson, J.A.; Wright, G. Limits to the Biofortification of Leafy Brassicas with Zinc. Agriculture 2018, 8, 32. [Google Scholar] [CrossRef]
- Vaillant, N.; Monnet, F.; Hitmi, A.; Sallanon, H.; Coudret, A. Comparative study of responses in four Datura species to a zinc stress. Chemosphere 2005, 59, 1005–1013. [Google Scholar] [CrossRef]
- Shi, G.R.; Cai, Q.S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biol. Plant. 2009, 53, 391–394. [Google Scholar] [CrossRef]
- Tsonev, T.; Lidon, F. Zinc in plants—An overview. Emir. J. Food Agric. 2012, 24, 322–333. [Google Scholar]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 129. [Google Scholar] [CrossRef] [PubMed]
- Pongrac, P.; McNicol, J.W.; Lilly, A.; Thompson, J.A.; Wright, G.; Hillier, S.; White, P.J. Mineral element composition of cabbage as affected by soil type and phosphorus and zinc fertilisation. Plant Soil 2019, 434, 151–165. [Google Scholar] [CrossRef]
- Sarret, G.; Willems, G.; Isaure, M.-P.; Marcus, M.A.; Fakra, S.C.; Frérot, H.; Pairis, S.; Geoffroy, N.; Manceau, A.; Saumitou-Laprade, P. Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol. 2009, 184, 581–595. [Google Scholar] [CrossRef]
- Belouchrani, A.S.; Mameri, N.; Abdi, N.; Grib, H.; Lounici, H.; Drouiche, N. Phytoremediation of soil contaminated with Zn using Canola (Brassica napus L.). Ecol. Eng. 2016, 95, 43–49. [Google Scholar] [CrossRef]
- Chaudhry, H.; Nisar, N.; Mehmood, S.; Iqbal, M.; Nazir, A.; Yasir, M. Indian Mustard Brassica juncea efficiency for the accumulation, tolerance and translocation of zinc from metal contaminated soil. Biocatal. Agric. Biotechnol. 2020, 23, 101489. [Google Scholar] [CrossRef]
- Sękara, A.; Poniedziałek, M.; Ciura, J.; Jędrszczyk, E. Zinc and Copper Accumulation and Distribution in the Tissues of Nine Crops: Implications for Phytoremediation. Pol. J. Environ. Stud. 2005, 14, 829–835. [Google Scholar]
- Bączek-Kwinta, R.; Juzoń, K.; Borek, M.; Antonkiewicz, J. Photosynthetic response of cabbage in cadmium–spiked soil. Photosynthetica 2019, 57, 731–739. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, R.; Huang, F.; Yang, X.; Dai, W.; Xu, M. Physiological responses and health risks of edible amaranth under simultaneous stresses of lead from soils and atmosphere. Ecotox. Environ. Saf. 2021, 223, 112543. [Google Scholar] [CrossRef]
- Bashmakov, D.I.; Lukatkin, A.S.; Anjum, N.A.; Ahmad, I.; Pereira, E. Evaluation of zinc accumulation, allocation, and tolerance in Zeamays L. seedlings: Implication for zinc phytoextraction. Environ. Sci. Pollut. Res. 2015, 22, 15443–15448. [Google Scholar] [CrossRef] [PubMed]
- Viqar-un-Nisa; Ahmed, R.; Mohammad, M. Levels of selected essential and toxic elements in the food stuffs of Islamabad as analyzed by DPASV. Toxicol. Environ. Chem. 2005, 87, 67–75. [Google Scholar] [CrossRef]
- Mishra, A.; Tripathi, B.D. Heavy metal contamination of soil, and bioaccumulation in vegetables irrigated with treated waste water in the tropical city of Varanasi, India. Toxicol. Environ. Chem. 2008, 90, 861–871. [Google Scholar] [CrossRef]
- Kazberuk, W.; Szulc, W.; Rutkowska, B. Use Bottom Sediment to Agriculture–Effect on Plant and Heavy Metal Content in Soil. Agronomy 2021, 11, 1077. [Google Scholar] [CrossRef]
- Gisbert, C.; Clemente, R.; Navarro-Aviñó, J.; Baixauli, C.; Ginér; Serrano, R.; Walker, D.J.; Bernal, M.P. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ. Exp. Bot. 2006, 56, 19–27. [Google Scholar] [CrossRef]
- Czech, A.; Pawlik, M.; Rusinek, E. Contents of Heavy Metals, Nitrates, and Nitritesin Cabbage. Pol. J. Environ. Stud. 2012, 21, 321–329. [Google Scholar]
- Żurek, G.; Rybka, K.; Pogrzeba, M.; Krzyżak, J.; Prokopiuk, K. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses. PLoS ONE 2014, 9, e91475. [Google Scholar] [CrossRef] [PubMed]
- Jan, F.A.; Ishaq, M.; Khan, S.; Ihsanullah, I.; Ahmad, I.; Shakirullah, M. A comparative study of human health risks via consumption of food crops grown on waste water irrigated soil (Peshawar) and relatively clean water irrigated soil (lower Dir). J. Hazard. Mater. 2010, 179, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Rehman, U.Z.; Khan, S.; Shah, M.T.; Brusseau, M.L.; Khan, S.A.; Mainhagu, J. Transfer of Heavy Metals from Soils to Vegetables and Associated Human Health Risks at Selected Sites in Pakistan. Pedosphere 2018, 28, 666–679. [Google Scholar] [CrossRef]
- Bączek-Kwinta, R.; Baran, A.; Simlat, M.; Lang, J.; Bieniek, M.; Florek, B. Enrichment of Different Plant Seeds with Zinc and Assessment of Health Risk of Zn-Fortified Sprouts Consumption. Agronomy 2020, 10, 937. [Google Scholar] [CrossRef]
- Babik, I.; Adamicki, F.; Dobrzański, A.J.; Nawrocki, B.; Robak, J.; Szwejda, J. Ekologiczne Metody Uprawy Kapusty—Materiały dla Rolników; Krajowe Centrum Rolnictwa Ekologicznego–Regionalne Centrum Doradztwa Rozwoju Rolnictwa I Obszarów Wiejskich w Radomiu: Radom, Poland, 2004; ISBN 83–89060–32–9. (In Polish)
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 234p, ISBN 979–8–9862451–1–9. [Google Scholar]
- Regulation 2016. Regulation of the Minister of Environment on How to Conduct Land Surface Pollution Assessment Dated 1 September 2016. Journal of Laws of Poland, Item 1395. Available online: https://dziennikustaw.gov.pl/DU/rok/2016/pozycja/1395 (accessed on 12 September 2022). (In Polish)
- Vile, D.; Garnier, É.; Shipley, B.; Laurent, G.; Navas, M.L.; Roumet, C.; Lavorel, S.; Diaz, S.; Hodgson, J.G.; Lloret, F.; et al. Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Ann. Bot. 2005, 96, 1129–1136. [Google Scholar] [CrossRef]
- Bączek–Kwinta, R.; Kościelniak, J. The mitigating role of environmental factors in seedling injury and chill–dependent depression of catalase activity in maize leaves. Biol. Plant. 2009, 53, 278–284. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhang, J.; Li, J.L. Physiological response to zinc pollution of rape (Brassica chinensis L.) in paddy soil ecosystem. Adv. Mater. Res. 2012, 356–360, 39–43. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and excluders–strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- USEPA 2019. (United States Environmental Protection Agency). Regional Screening Levels (RSLs)–Generic Tables. Risk Based Screening Table. Composite Table: Summary Tab 0615.USEPA. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 12 September 2022).
- Poschenrieder, C.; Barceló, J. Water relations in heavy metal stressed plants. In Heavy Metal Stress in Plants, 3rd ed.; Prasad, M.N.V., Ed.; Springer: Berlin, Germany, 1999; pp. 249–270. [Google Scholar]
- Wu, F.Z.; Bao, W.K.; Li, F.L.; Wu, N. Effects of water stress and nitrogen supply on leaf gas exchange and fluorescence parameters of Sophora davidii seedlings. Photosynthetica 2008, 46, 40–48. [Google Scholar] [CrossRef]
- Stuiver, C.E.E.; Posthumus, F.S.; Parmar, S.; Shahbaz, M.; Hawkesford, M.J.; Kok, L.J.D. Zinc exposure has differential effects on uptake and metabolism of sulfur and nitrogen in Chinese cabbage. J. Plant Nutr. Soil Sci. 2014, 177, 748–757. [Google Scholar] [CrossRef]
- Ji, C.; Li, J.; Jiang, C.; Zhang, L.; Shi, L.; Xu, F.; Cai, H. Zinc and nitrogen synergistic act on root–to–shoot translocation and preferential distribution in rice. J. Adv. Res. 2021, 35, 187–198. [Google Scholar] [CrossRef]
- Milner, M.J.; Kochian, L.V. Investigating heavy–metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 2008, 102, 3–13. [Google Scholar] [CrossRef]
- Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on Undesirable Substances in Animal Feed–Council Statement. Official Journal L140, 30/05/2002P.0010–0022. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02002L0032-20131227&from=ES (accessed on 12 September 2022).
- Niedźwiecka, A.; Zamorska–Wojdyła, D. The bioaccumulation of heavy metals in Brassica napus L. in the area around Turów Power Station, Poland. In Proceedings of the 9th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO–DOK201. E3S Web of Conferences, Boguszow-Gorce, Poland, 23–25 April 2017; Volume 17, p. 00065. [Google Scholar]
- Ricachenevsky, F.K.; Punshon, T.; Salt, D.E.; Fett, J.P.; Guerinot, M.L. Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci. Rep. 2021, 11, 5278. [Google Scholar] [CrossRef]
- Szarpak, Ł.; Pruc, M.; Gasecka, A.; Jaguszewski; Michalski, T.; Peacock, F.W.; Smereka, J.; Pytkowska, K.; Filipiak, K.J. Should we supplement zinc in COVID-19 patients? Evidence from meta–analysis. Pol. Arch. Intern. Med. 2021, 131, 802–807. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Soil |
---|---|---|
Texture | - | Clay silt |
pH(H2O) | - | 7.34 ± 0.01 |
pH(KCl) | - | 7.07 ± 0.11 |
Total organic carbon | g kg−1 | 24.70 ± 0.71 |
Total N | g kg−1 | 3.84 ± 0.20 |
Available macroelements: | ||
Phosphorus (P) | 54.49 ± 4.24 | |
Potassium (K) | mg kg−1 DM | 162.12 ± 7.21 |
Magnesium (Mg) | 127.46 ± 7.39 | |
Heavy metals (total forms): | ||
Zinc (Zn) | 118.13 ± 2.80 | |
Cadmium (Cd) | 0.38 ± 0.02 | |
Copper (Cu) | 9.91 ± 0.25 | |
Nickel (Ni) | mg kg−1 DM | 11.46 ± 0.24 |
Chromium (Cr) | 25.69 ± 0.60 | |
Lead (Pb) | 23.16 ± 1.29 | |
Iron (Fe) | 11381.8 ± 105.7 |
The Content of Zn in the Soil above the Natural Value [mg kg−1 DM] | Fresh Mass of Leaves [g] and in Relation to Control [%] | Dry Mass of Leaves [g] and in Relation to Control [%] | Leaf Area [cm2] and in Relation to Control [%] | Specific Leaf Area [cm2 g−1] and in Relation to Control [%] | ||||
---|---|---|---|---|---|---|---|---|
Early cv. | Late cv. | Early cv. | Late cv. | Early cv. | Late cv. | Early cv. | Late cv. | |
Zn0 | 5.53 ± 0.99 100% a | 4.59 ± 0.49 100% a | 0.471 ± 0.068 100% a | 0.334 ± 0.086 100% a | 146.4 ± 13.6 100% a | 89.7 ± 16.5 100% a | 313.0 ± 22.1 100% a | 274.1 ± 30.7 100% b |
Zn50 | 5.47 ± 0.70 99% a | 3.25 ± 0.64 71% ab | 0.464 ± 0.075 98 % a | 0.209 ± 0.070 63%ab | 141.8 ± 14.5 97% a | 57.8 ± 6.5 64% b | 309.4 ± 25.2 99% a | 293.9 ± 73.7 107% b |
Zn200 | 5.13 ± 0.62 93% a | 2.81 ± 0.45 61% b | 0.419 ± 0.035 89% a | 0.171 ± 0.030 51% b | 127.1 ± 13.4 87% a | 61.5 ± 8.5 69% b | 303.7 ± 20.1 97% a | 363.5 ± 30.8 133% a |
The Content of Zn in the Soil above the Natural Value [mg kg −1 DM] | Biomass of Heads [kg FM] and in Relation to Control [%] | Bioavailable Zn [mg kg−1 DM Head] and in Relation to Control [%] | Bioaccumulation Factor [mg Zn heads mg Zn soil] and in Relation to Control [%] | |||
---|---|---|---|---|---|---|
Early cv. | Late cv. | Early cv. | Late cv. | Early cv. | Late cv. | |
Zn0 | 0.564 ± 0.108 100% b | 0.652 ± 0.080 100% a | 39.1 ± 1.8 100% b | 48.8 ± 4.2 100% b | 0.360 ± 0.016 100% b | 0.467 ± 0.041 100% b |
Zn50 | 0.545 ± 0.059 97% b | 0.653 ± 0.028 100% a | 64.0 ± 8.3 164% b | 67.8 ± 13.7 139% b | 0.403 ± 0.052 112% b | 0.448 ± 0.090 96% b |
Zn200 | 0.673 ± 0.060 119% a | 0.567 ± 0.072 87% b | 152.1 ± 26.6 389% a | 170.9 ± 43.2 350% a | 0.481 ± 0.084 134% a | 0.531 ± 0.134 114% a |
The Content of Zn in the Soil above the Natural Value [mg kg−1 DM] | Daily Intake of Metal, Adults [mg person kg−1 BW] | Daily Intake of Metal, Children [mg person kg−1 BW] | Health Risk Index, Adults | Health Risk Index, Children | ||||
---|---|---|---|---|---|---|---|---|
Early cv. | Late cv. | Early cv. | Late cv. | Early cv. | Late cv. | Early cv. | Late cv. | |
Zn0 | 0.0157 ± 0.0007 b | 0.0196 ± 0.0017 b | 0.0236 ± 0.0011 b | 0.0294 ± 0.0026 b | 0.052 ± 0.002 b | 0.065 ± 0.006 b | 0.079 ± 0.004 b | 0.098 ± 0.009 b |
Zn50 | 0.0257 ± 0.0033 b | 0.0272 ± 0.0055 b | 0.0386 ± 0.0050 b | 0.0409 ± 0.0082 b | 0.086 ± 0.011 b | 0.091 ± 0.018 b | 0.129 ± 0.017 b | 0.136 ± 0.027 b |
Zn200 | 0.0611 ± 0.0107 a | 0.0686 ± 0.0173 a | 0.0917 ± 0.0160 a | 0.1030 ± 0.0260 a | 0.204 ± 0.036 a | 0.229 ± 0.058 a | 0.306 ± 0.053 a | 0.343 ± 0.087 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bączek-Kwinta, R.; Antonkiewicz, J. Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil. Agronomy 2022, 12, 2186. https://doi.org/10.3390/agronomy12092186
Bączek-Kwinta R, Antonkiewicz J. Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil. Agronomy. 2022; 12(9):2186. https://doi.org/10.3390/agronomy12092186
Chicago/Turabian StyleBączek-Kwinta, Renata, and Jacek Antonkiewicz. 2022. "Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil" Agronomy 12, no. 9: 2186. https://doi.org/10.3390/agronomy12092186
APA StyleBączek-Kwinta, R., & Antonkiewicz, J. (2022). Differential Physiological Response and Potential Toxicological Risk of White Cabbage Grown in Zinc-Spiked Soil. Agronomy, 12(9), 2186. https://doi.org/10.3390/agronomy12092186